A NOTE ON A MULTIVALUED ITERATIVE EQUATION

LIN LI

Abstract

In this note, we consider a second order multivalued iterative equation, and the result on decreasing solutions is given.

1. Introduction

Let X be a topological space and for integer $n \geq 0$ the n-th iterate of a mapping f is defined by $f^{n}=f \circ f^{n-1}$ and $f^{0}=\mathbf{i d}$, where \circ denotes the composition of mappings and id denotes the identity mapping. As an important class of functional equations $[\mathbf{1}, \mathbf{2}]$, the polynomial-like iterative equation is a linear combination of iterates, which is of the general form

$$
\begin{equation*}
\lambda_{1} f(x)+\lambda_{2} f^{2}(x)+\ldots+\lambda_{n} f^{n}(x)=F(x), \quad x \in X \tag{1}
\end{equation*}
$$

where X is a Banach space or its closed subset, where F is a given mapping, f is an unknown mapping, and $\lambda_{i}(i=1, \ldots, n)$ are real constants. Equation (1) has been studied extensively on the existence, uniqueness and stability of its solutions $[\mathbf{1}, \mathbf{2}]$, it was also considered in the class of multifunctions [3].

Let $I=[a, b]$ be a given interval and $c c(I)$ denote the family of all nonempty convex compact subsets of I. This family endowed with the Hausdorff distance is defined by

$$
h(A, B)=\max \{\sup \{d(a, B): a \in A\}, \sup \{d(b, A): b \in B\}\}
$$

where $d(a, B)=\inf \{|a-b|: b \in B\}$.
A multifunction $F: I \rightarrow c c(I)$ is decreasing (resp. strictly decreasing) if $\max F(x) \leq \min F(y)($ resp. $\max F(x)<\min F(y))$ for every $x, y \in I$ with $x>y$.

Let $\Gamma(I)$ be the family of all multifunctions $F: I \rightarrow c c(I)$ and $\Phi(I)$ be defined by

$$
\Phi(I)=\{F \in \Gamma(I): \text { is USC, increasing, } F(a)=\{a\}, F(b)=\{b\}\}
$$

and endowed with the metric

$$
D\left(F_{1}, F_{2}\right)=\sup \left\{h\left(F_{1}(x), F_{2}(x)\right): x \in I\right\}, \quad \forall F_{1}, F_{2} \in \Phi(I) .
$$

In [3], the authors investigated the second order multivalued iterative equation

$$
\begin{equation*}
\lambda_{1} F(x)+\lambda_{2} F^{2}(x)=G(x), \tag{2}
\end{equation*}
$$

Received November 30, 2007; revised March 12, 2008.
2000 Mathematics Subject Classification. Primary 39B12, 37E05, 54C60.
Key words and phrases. iteration; functional equation; multifunctions; upper semicontinuity.
in an interval $I=[a, b]$, and the following results were obtained:
Lemma 1. ([3, Lemma 1.]) The metric space $(\Phi(I), D)$ is complete.
Lemma 2. ([3, Lemma 2.]) If $F, G \in \Phi$ and $F(x) \subset G(x)$ for all $x \in I$, then $F=G$.

Lemma 3. ([3, Theorem 1.]) Let $G \in \Phi(I), \lambda_{1}>\lambda_{2} \geq 0$ and $\lambda_{1}+\lambda_{2}=1$. Then the equation (2) has a unique solution $F \in \Phi(I)$.

In this paper, as in [3], we are still interested in a multivalued solution of the equation (2), and the decreasing solutions are given.

2. Main Result

Let $I=[-a, a]$ be a given interval and $\Psi(I)$ be defined by

$$
\Psi(I)=\{F: I \rightarrow c c(I), \text { is USC, decreasing, } F(-a)=\{a\}, F(a)=\{-a\}\}
$$

We endow $\Psi(I)$ with the metric

$$
D\left(F_{1}, F_{2}\right)=\sup \left\{h\left(F_{1}(x), F\left(x_{2}\right)\right): x \in I\right\}, \quad \forall F_{1}, F_{2} \in \Psi(I)
$$

Obviously, by Lemma 1 the metric space $(\Psi(I), D)$ is complete.
Lemma 4. If $G, F \in \Psi(I)$ and $F(x) \subset G(x)$ for all $x \in I$, then $F=G$.
This Lemma follows from Lemma 2. More concretely, we should consider the monotonicity of decreasing.

Theorem 1. Let $G \in \Psi(I), \lambda_{1}>1 / 2, \lambda_{2}<0$ and $\lambda_{1}-\lambda_{2}=1$. Then the equation (2) has a unique solution $F \in \Psi(I)$.

Proof. Define the mapping $L: \Psi(I) \rightarrow \Gamma(I)$

$$
L F(x)=\lambda_{1} x+\lambda_{2} F(x), \quad \forall x \in I,
$$

where $F \in \Psi(I)$. Obviously, $L F$ is USC and $L F(-a)=-\lambda_{1} a+\lambda_{2} a=\{-a\}$, $L F(a)=\lambda_{1} a-\lambda_{2} a=\{a\}$. Moreover, for any $x_{2}>x_{1}$ in I, we have $\max F\left(x_{2}\right)-$ $\min F\left(x_{1}\right) \leq 0$ since F is decreasing. Therefore,

$$
\begin{aligned}
\min L F\left(x_{2}\right)-\max L F\left(x_{1}\right) & =\lambda_{1}\left(x_{2}-x_{1}\right)+\lambda_{2}\left(\min F\left(x_{2}\right)-\max F\left(x_{1}\right)\right) \\
& \geq \lambda_{1}\left(x_{2}-x_{1}\right)>0
\end{aligned}
$$

for $\lambda_{1}>0$ and $\lambda_{2}<0$, which implies that $L F$ is strictly increasing and the multifunction $(L F)^{-1}$ defined by $(L F)^{-1}(y)=\{x \in I: y \in L F(x)\}$ is singlevalued and continuous.

Define the mapping $\Upsilon: \Psi(I) \rightarrow \Gamma(I)$ as

$$
\Upsilon F(x)=(L F)^{-1}(G(x)), \quad \forall F \in \Psi(I), \quad \forall x \in I,
$$

Hence, ΥF is also USC and $\Upsilon F(-a)=(L F)^{-1}(G(-a))=\{a\}, \Upsilon F(a)=$ $(L F)^{-1}(G(a))=\{-a\}$. Moreover, ΥF is decreasing since $(L F)^{-1}$ is increasing and G is decreasing.

Finally, by (c.f. [3, pp. 431-432]), we have

$$
\begin{aligned}
D\left(\Upsilon F_{1}, \Upsilon F_{2}\right) & =\sup _{x \in I} h\left(\left(L F_{1}\right)^{-1}(G(x)),\left(L F_{2}\right)^{-1}(G(x))\right) \\
& \leq \frac{1}{\lambda_{1}} \sup _{x \in I} h\left(L F_{1}(x), L F_{2}(x)\right)
\end{aligned}
$$

for every $x \in I$ and $F_{1}, F_{2} \in \Psi(I)$. Hence, we obtain that

$$
\begin{aligned}
D\left(\Upsilon F_{1}, \Upsilon F_{2}\right) & \leq \frac{1}{\lambda_{1}} \sup _{x \in I} h\left(L F_{1}(x), L F_{2}(x)\right) \\
& \leq \frac{1}{\lambda_{1}} \sup _{x \in I} h\left(\lambda_{1} x+\lambda_{2} F_{1}(x), \lambda_{1} x+\lambda_{2} F_{2}(x)\right) \\
& =\frac{\left|\lambda_{2}\right|}{\lambda_{1}} \sup _{x \in I} h\left(F_{1}(x), F_{2}(x)\right) \\
& \leq \frac{\left|\lambda_{2}\right|}{\lambda_{1}} D\left(F_{1}, F_{2}\right) \\
& =\left(\frac{1}{\lambda_{1}}-1\right) D\left(F_{1}, F_{2}\right) \\
& <D\left(F_{1}, F_{2}\right)
\end{aligned}
$$

which implies that Υ is a contraction. Therefore, by the Banach fixed point principle, Υ has a unique fixed point F in $\Psi(I)$, i.e.

$$
(L F)^{-1}(G(x))=F(x), \quad \forall x \in I
$$

Consequently, by Lemma 4, we have

$$
\lambda_{1} F(x)+\lambda_{2} F^{2}(x)=G(x), \quad \forall x \in I
$$

The proof is completed.
Acknowledgement. The author is very grateful to Professor Bing Xu (Sichuan University) and the referee who checked her paper carefully and gave detailed suggestions.

References

1. Braon K., Jarczyk W., Recent results on functional equations in a single variable, perspectives and open problems, Aequationes Math. 61 (2001), 1-48.
2. Kuczma M., Functional equations in a single variable, Monografie Mat. 46, PWN, Warszawa, 1968.
3. Nikodem K. and Weinian Zhang, On a multivalued iterative equation, Publ. Math. Debrecen 64 (2004), 427-435.

Lin Li, Department of Mathematics and Information Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China

