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A NOTE ON A MULTIVALUED ITERATIVE EQUATION

LIN LI

Abstract. In this note, we consider a second order multivalued iterative equation, and the result on
decreasing solutions is given.

1. Introduction

Let X be a topological space and for integer n ≥ 0 the n-th iterate of a mapping f is defined
by fn = f ◦ fn−1 and f0 = id, where ◦ denotes the composition of mappings and id denotes
the identity mapping. As an important class of functional equations [1, 2], the polynomial-like
iterative equation is a linear combination of iterates, which is of the general form

λ1f(x) + λ2f
2(x) + . . . + λnfn(x) = F (x), x ∈ X,(1)

where X is a Banach space or its closed subset, where F is a given mapping, f is an unknown
mapping, and λi (i = 1, . . . , n) are real constants. Equation (1) has been studied extensively on
the existence, uniqueness and stability of its solutions [1, 2], it was also considered in the class of
multifunctions [3].

Let I = [a, b] be a given interval and cc(I) denote the family of all nonempty convex compact
subsets of I. This family endowed with the Hausdorff distance is defined by

h(A,B) = max {sup{d(a,B) : a ∈ A}, sup{d(b, A) : b ∈ B}},
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where d(a,B) = inf{|a− b| : b ∈ B}.
A multifunction F : I → cc(I) is decreasing (resp. strictly decreasing) if max F (x) ≤ minF (y)

(resp. max F (x) < minF (y)) for every x, y ∈ I with x > y.
Let Γ(I) be the family of all multifunctions F : I → cc(I) and Φ(I) be defined by

Φ(I) = {F ∈ Γ(I) : is USC, increasing, F (a) = {a}, F (b) = {b}},

and endowed with the metric

D(F1, F2) = sup{h(F1(x), F2(x)) : x ∈ I}, ∀F1, F2 ∈ Φ(I).

In [3], the authors investigated the second order multivalued iterative equation

λ1F (x) + λ2F
2(x) = G(x),(2)

in an interval I = [a, b], and the following results were obtained:

Lemma 1. ([3, Lemma 1.]) The metric space (Φ(I), D) is complete.

Lemma 2. ([3, Lemma 2.]) If F,G ∈ Φ and F (x) ⊂ G(x) for all x ∈ I, then F = G.

Lemma 3. ([3, Theorem 1.]) Let G ∈ Φ(I), λ1 > λ2 ≥ 0 and λ1 + λ2 = 1. Then the equation
(2) has a unique solution F ∈ Φ(I).

In this paper, as in [3], we are still interested in a multivalued solution of the equation (2), and
the decreasing solutions are given.

2. Main Result

Let I = [−a, a] be a given interval and Ψ(I) be defined by

Ψ(I) = {F : I → cc(I), is USC, decreasing, F (−a) = {a}, F (a) = {−a}}.
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We endow Ψ(I) with the metric

D(F1, F2) = sup{h(F1(x), F (x2)) : x ∈ I}, ∀F1, F2 ∈ Ψ(I)

Obviously, by Lemma 1 the metric space (Ψ(I), D) is complete.

Lemma 4. If G, F ∈ Ψ(I) and F (x) ⊂ G(x) for all x ∈ I, then F = G.

This Lemma follows from Lemma 2. More concretely, we should consider the monotonicity of
decreasing.

Theorem 1. Let G ∈ Ψ(I), λ1 > 1/2, λ2 < 0 and λ1 − λ2 = 1. Then the equation (2) has a
unique solution F ∈ Ψ(I).

Proof. Define the mapping L : Ψ(I) → Γ(I)

LF (x) = λ1x + λ2F (x), ∀x ∈ I,

where F ∈ Ψ(I). Obviously, LF is USC and LF (−a) = −λ1a+λ2a = {−a}, LF (a) = λ1a−λ2a =
{a}. Moreover, for any x2 > x1 in I, we have maxF (x2) −minF (x1) ≤ 0 since F is decreasing.
Therefore,

minLF (x2)−max LF (x1) = λ1(x2 − x1) + λ2(minF (x2)−max F (x1))

≥ λ1(x2 − x1) > 0

for λ1 > 0 and λ2 < 0, which implies that LF is strictly increasing and the multifunction (LF )−1

defined by (LF )−1(y) = {x ∈ I : y ∈ LF (x)} is single-valued and continuous.
Define the mapping Υ : Ψ(I) → Γ(I) as

ΥF (x) = (LF )−1(G(x)), ∀F ∈ Ψ(I), ∀x ∈ I,

Hence, ΥF is also USC and ΥF (−a) = (LF )−1(G(−a)) = {a}, ΥF (a) = (LF )−1(G(a)) = {−a}.
Moreover, ΥF is decreasing since (LF )−1 is increasing and G is decreasing.
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Finally, by (c.f. [3, pp. 431–432]), we have

D(ΥF1,ΥF2) = sup
x∈I

h((LF1)−1(G(x)), (LF2)−1(G(x)))

≤ 1
λ1

sup
x∈I

h(LF1(x), LF2(x)),

for every x ∈ I and F1, F2 ∈ Ψ(I). Hence, we obtain that

D(ΥF1,ΥF2) ≤
1
λ1

sup
x∈I

h(LF1(x), LF2(x))

≤ 1
λ1

sup
x∈I

h(λ1x + λ2F1(x), λ1x + λ2F2(x))

=
|λ2|
λ1

sup
x∈I

h(F1(x), F2(x))

≤ |λ2|
λ1

D(F1, F2)

=
(

1
λ1

− 1
)

D(F1, F2)

< D(F1, F2)

which implies that Υ is a contraction. Therefore, by the Banach fixed point principle, Υ has a
unique fixed point F in Ψ(I), i.e.

(LF )−1(G(x)) = F (x), ∀x ∈ I.

Consequently, by Lemma 4, we have

λ1F (x) + λ2F
2(x) = G(x), ∀x ∈ I.
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The proof is completed. �
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