ON THE DUAL SPACE C; (S, X)

LAKHDAR MEZIANI

ABSTRACT. Let S be a locally compact Hausdorff space and let us consider the space Cp(S, X) of
continuous functions vanishing at infinity, from S into the Banach space X. A theorem of I. Singer,
settled for S compact, states that the topological dual Cf(S,X) is isometrically isomorphic to the
Banach space rabv(S, X*) of all regular vector measures of bounded variation on S with values in
the strong dual X*. Using the Riesz-Kakutani theorem and some routine topological arguments, we
propose a constructive detailed proof which is, as far as we know, different from that supplied elsewhere.

Let S be a locally compact Hausdorff space equipped with its Borel o-field Bg, and let X be
a Banach space. We denote by Cy(S, X) the Banach space (uniform norm) of all continuous
functions f : S — X, vanishing at infinity. If X = R, we put Cy(S, X) = Cp(S). According to the
Riesz-Kakutani theorem [7, Theorem 6.19], the dual Cg(S) is isometric to the Banach space of all
scalar regular measures on S with the variation norm. All the measures we will deal with here are
supposed to be defined on the o-field Bg. We denote by X* the strong dual of X.

If A\: Bs — Y is an additive set function from Bg into the Banach space Y, then the variation
of A is usually defined by the extented positive set function |A|(e) given by:

(1) IAI(E) = SupZ IANEDI,  E€Bs
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where the supremum is taken over all finite partitions {F;} of E in Bg.

We say that A is of bounded variation if |A|(E) < oo, for all E' € Bg. It is easy to check that || is
additive. Moreover, if A is of bounded variation, then X is o-additive if and only if |}| is o-additive.
We say that A is regular if |A| is regular in the customary sense [1]. We denote by robu(S,Y") the
set of all regular Y-valued vector measures on S. For A € rabv(S,Y), put |A|(S) = ||A]|, then the
following proposition is well known [1]:

Proposition 1.

(a) ||\l is a norm making robuv(S,Y) with the usual operations a Banach space.
(b) In the specific case Y = X*, we have

(2) |A|(E) = sup ,  EebBs

where the supremum is taken over all finite partitions {E;} of E in Bg, and all finite systems
{z;} of vectors in X with ||z;|| < 1 for each i.

The RHS of formula (2) is the so called semivariation of A [2]. So Proposition 1(b) says that, for
vector measures with values in a dual, the variation is equal to the semivariation.



Theorem 1. There is an isometric isomorphism between the topological dual CF(S,X) of
Co(S,X) and the Banach space robv(S,X*), where the functional U € C§(S,X) and the cor-
responding measure X € robv(S, X*) are related by the integral formula

ur= [ fan  fec(sx)
S
11 = 1AL

(3)

where the integral is the termed immediate integral of Dinculeanu [3].

Let us recall that this theorem is the basic tool in the proof of the representation theorem of N.
Dinculeanu [2, Section 19].

Actually the original proof of this theorem [8] contains some gaps about the strong o-additivity
and regularity of the measure A attached to the functional U. These gaps have been filled by
J. Gil de Lamadrid in [5, pages 775-776]. Another proof using the Hahn-Banach theorem and
measures on product spaces, can be found in [6]. To settle the proof of the theorem we need some
preparatory lemmas. Let us start with a U € C§(S, X), we will construct a A € robv(S, X*) such
that formula (3) holds.

Lemma 1. For each (f,x) € Co(S) x X we define B(f,z) by
(4) B(f,z)=U(f-z), [feC(S), zeX.
Then B is a bounded bilinear form on Cy(S) x X with ||B|| < ||U]|.

Proof. It is clear that B is bilinear. The norm inequality is immediate from the following
estimation: |B(f, )| = [U(f - 2)| < [|U]l- [|fllc - [l]]- O



Lemma 2. For each fized x € X, let W, (o) = B(e,x). Then there exists a unique scalar reqular
measure [, on Bg such that

(5) Wa(f) = /S fdis,  f€Co(S), and [Wal = sl

Proof. From the construction of B in Lemma 1 we have |W,(f)| < [|[U]| - || flloo - [|Z||. So W,
is linear and bounded, that is W, € C§(S), and we have |[W,(f)| < U]l - || flloo - |||, therefore
Wl < Ul - |l=]]. Moreover, the correspondence z — W, is a bounded linear operator from
X into the dual space CF(S) with the norm at most ||U]|. By the Riesz-Kakutani theorem,
C§(S) is canonically isometric to the respective space of regular measures with the variation norm.
Consequently, for each « € X there is a unique scalar regular measure p, on Bg such that

Walf) = /5 fdue, £ € Col(S) and Wil = ||ual
]

Lemma 3. Define the set function A on Bg by the following recipe: for A € Bg, A(A) is the
functional on X given by

(6) AMA)z = pa(A), reX

where p, comes from Lemma 2.
Then A(A) € X* for each A € Bs, moreover, A is additive.

Proof. Let x,y € X, A € Bg, then A\(A)(z +y) = pgty(A), where py i, corresponds to Wy,
according to (5), thus W4y (f) = [g f dptey, for all f € Co(S). Since

Weiy(f) = B(f,x +y) = B(f,2) + B(f, ),
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we deduce from (5) that

Wac-i-y(f)=/Sfdﬂx+y=/Sfd/1'ac+/sfdﬂy=/sfd(uac+ﬂy)a

where the last equality is easy to check by standard method. Thus

[ fdhasy = [ o+, tor cach £ € Co(S).
S S|

From the fact that p, + pu, is regular, the uniqueness part of the Riesz-Kakutani theorem yields
Paty = Mg + py. Likewise pias = apig, for o € R. This proves that A(A) is a linear functional on
X. On the other hand we have

(A(A)2] = |pa(A)] < [pal(A) < el = [Well < U] - (||

(see the proof of Lemma 2). So we deduce that A(A) € X* and ||A(A)|| < ||U|| for each A € Bs.
Finally, it is clear that A is additive. O

The remaining lemmas are intended to prove that the additive set function \ is actually a vector
measure. The following lemma is crucial:

Lemma 4. The setfunction \ has finite variation. Moreover, we have ||| <||U].

Proof. We use formula (2) for the variation of \. Let Ay, As, ..., A, be a finite partition of the
locally compact space S by sets in Bg and let x1, s, . .., z, be vectors in X with ||z;|| < 1 for all 4.
We need an estimation of the sum Y} A\(4;)z;. Let € > 0, then by the regularity of the measures
iz, , there exist compact sets K, K, ..., K, and open sets G1,Ga,...,G, such that

e

K; C Az C G, and |/,Lw_b|(Gz\K,) < %,

i=1,2,...n.



Go back

Full Screen

Close

Quit

Note that the K; are pairwise disjoint since A; are so. Since S is Hausdorff, disjoint compact
sets have disjoint neighbourhoods. So, using a simple induction on n, we can construct pairwise
disjoint open sets Uy, U, . . ., U, such that K; C U; for each i. Letting V; = U;NG;, we get pairwise
disjoint open sets V; such that K; C V; C G, for all 3.

Now, let g; : S — R be a continuous function such that 0 < g;(¢) <1 for all ¢t € S, g;(¢t) = 1 for
all t € K;, support g; C V; (such functions exist by Urysohn’s lemma since S is locally compact).

‘We have
/ gidpz, = / gidpz;
S f

(since g; = 0 outside V;), so we deduce that

/ gidpta, = / gidpa; + / gidpia, -
S ViN\ K K;

But [ k, 9idia, = piz,(K;) (because g; = 1 on Kj;). Consequently, we have

/ Gidpie, — pa, (Ki) = / gidptz, -
S

ViN K

This gives the following estimation

‘ / gidpiz, — plo; (K5)
S

/ gidpiz, S/ gid - |pz, |
Vi\K; Vi\K;

< [ (Vi \ K5) (since 0 < g; <1)

< lpe [(Gi \ K;)  (since V; C Gi)
€
<



Therefore
< i, for each 1.
2n

(7) ‘ /S 9idptz, — po, (Ki)

Now, let f: S — X be the function defined by

n

f(t) = Zgi(t) ° B, te S

1
then f is continuous and we have f(¢) = 0 for each ¢ in S\ UT'V;, and f(¢) = g;(¢) - z; for each ¢ in
Vi, because V; are pairwise disjoint and support g; C V;. Then we deduce that || f|| < 1 and by (5)

n

Uf = Z Ulg; - i) = Z/Sgid'ux“ since Ul(gi - i) = Wa,(9:)-
1

1

So
Uf- zn:ﬂxi(Ki) = Zn:/sgidpxi — zn:,uzi(Ki)
1 T -
< ; [ s, = 1 (09 < ;% ¢
Therefore
¥ Uf_zn:/‘wi(Ki) < %
1




Now, we turn to the estimation of | >} A(A4;)x;|.

n

1

n

— U< D MA)z - Uf

<D MA)z = >t (K3

1

and
n

Z AMAy)zi — Zﬂzi(Kz) =
1

1

Z pra; (Ai) — Z i, ()
<D I l(Ai \ K)
1

Z'um Z;Z_
1 1

Combining this with (8), we get

n

€ e
—|Uf|<§+—:€
1

2

So

n

1
letting & \, 0 we obtain | >} A(4;)z;| < |U].

<|Ufl+e<|Ull-Ifllc +e < Ul +e  (since [|f]| <1),




So, by taking the supremum for all finite partitions {4;} of S in Bg and all systems {z;} in X
with |la;|| <1, this leads to |A[(S) < ||U|| < oo, by formula (2). Then A has a finite variation. [

Lemma 5. For each A € Bs we have
(9) [A|(4) = sup{|A|(K): K C A, K compact}
(10) [A|(4) = inf{|A\(G):ACG,G open}
In other words the variation measure |\| of \ is regular, and so X is regular.

Proof. Let A € Bg, since |A| < oo, (9) is equivalent to the following approximation: For each
€ > 0, there is a compact K such that

(11) KcA, M) —e<]A(K)
Let € > 0, again since |A| < oo there exists a finite partition Fy, Es,...,E, of A in Bs and
Z1,%9, ..., &y in X with [|z;]| <1 for all ¢ such that
n
A|(A) — ‘< Z)\(Ez)xz , by formula (2).
2 1

By formula (6) the measures A(e)z; = u,, () are regular; consequently, there exist compact sets
K1, Ko, ..., K,, with K; C E; and |\(E; \ K;)z:| < 23 for all 5. Then we have
n

n

1

n

1

< 37 ME ]+ D7 IME:N Kol < M(E) + 2

n

A (A) — g < < DK +

57



where K is defined to be the compact set LZJKZ

Therefore, (11) is valid and proves (9). We can get (10) by applying (9) to the complement A©
of the set A. 0

Lemma 6. The variation measure |\| is o-additive.

Proof. Since A is additive then so is |A|. By the regularity property just proved, the result is a
consequence of Alexandroff theorem (see [4, p. 138]. O

Lemma 7. The set function X is a regular vector measure, that is X is a member of robv(S, X*).

Proof. We know that A is additive, so to prove the o-additivity it is enough to prove the
continuity at (), that is for every sequence A,, in Bg decreasing to (}, we have A\(A4,) — 0. But it is
a consequence of the o-additivity of |A| and the fact that [[A(A)| < |A|(A), for each A € Bg. On
the other hand X is regular since || is regular by Lemma 5. O

Lemma 8. Let v, pu € robv(S,X*) be such that [¢ fdv = [g fdp for all f € Co(S,X), then
U= W

Proof. Take f € Co(S, X) of the form f(e) = g(e) - x where g € Co(S) and z fixed in X. Then
by standard tools we have [¢ fdv = [¢gdv(e)z and [¢ fdu = [g gdu(e)z. This yields [4 gdv(e)z
= [ gdu(e)z. Since both scalar measures v(e)z and j(e)z are regular and since g is arbitrary, we
deduce from Riesz-Kakutani theorem that v(e)z = p(e)z for each z € X. Thus v = p. O

Now, we are in a position to give the proof of Theorem 1.

Proof of Theorem 1. First we prove relation (3), i.e, for all f € Co(S,X), Uf = [ fdX where
A is the vector measure constructed in Lemma 3.



Let f € Cp(S, X) be of the form f(e) = g(e) - x for g € Cy(S) and z fixed in X. Then

Uf =Wal(9)
= / gd by Lemma 2, formula (5)
s
= / gdX(e)z by Lemma 3, formula (6).
s

But we have |, g gd\(e)x = S 5 9-x-dA. Therefore, formula (3) is satisfied for f = g-z. By linearity
we can see that formula (3) is satisfied for all f € Cy(S) ® X, the vector space of all f € Cy(S, X)

of the form f(e) = > gi(e) - z; with g; € Co(S) for each 7. It is well known that Cp(S) ® X is
1

dense in Cy(S, X) (see [2, Proposition 1 of Section 19]. Consequently, if f € Cy(S, X), there is a
sequence f,, in Cy(S)® X converging to f uniformly on S. By the integration process with respect
to an operator valued measure we get

’/ fndA—/fdA‘ < (1 = fllso - X(S),
IS| S|

where )\ is the semivariation of A defined by the RHS of formula (2) and which is, in the present
context, equal to the variation || (see the Preliminaries). As X is of finite variation and ||f, —
flloo = 0, we have [ fndX — [of dX. But Uf, = [ fndX because f, € Co(S) ® X for each n.
Since U is bounded and f, — f uniformly we get Uf,, = [ sfndA = Uf.

Hence,

Uf = /Sfd)\, for all f € Cy(S, X).



By Lemma 8, A is the unique measure in robv(S, X*) satisfying relation (3). This proves that the
correspondence U 5 X from C% (S, X) into robv(S, X*) is well-defined. Moreover, we have

Uf] = /S FAN < 11 flloe - X8) = 11 lloe - A1l

so [|[U|| < ||A|| and by Lemma 4 we get |U| = ||A||. This implies that ¢ is an isometry and then
it is one-one. It is not difficult to show that ¢ is linear (make use of Lemma 8). To complete
the proof, we must show that ¢ is onto. To this end, let us start with u € robv(S, X*), to which
we associate the functional on Cy(S, X) given by Uf = |, g fdu, f € Co(S,X). It is clear that
U is linear and bounded, so U € C§(S,X). We show that ¢(U) = p. Put o(U) = A, that is A
is the vector measure constructed along Lemmas 3-7. Then by formula (3), Uf = |, g fdA for all
f € Co(S,X), which yields [¢ f du = [ fdX for all f € Co(S,X). From Lemma 8, we deduce
that = A, and this complete the proof of Theorem 1. O
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