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ON THE DUAL SPACE C∗
0 (S, X)

LAKHDAR MEZIANI

Abstract. Let S be a locally compact Hausdorff space and let us consider the space C0(S, X) of

continuous functions vanishing at infinity, from S into the Banach space X. A theorem of I. Singer,

settled for S compact, states that the topological dual C∗
0 (S, X) is isometrically isomorphic to the

Banach space rσbv(S, X∗) of all regular vector measures of bounded variation on S with values in
the strong dual X∗. Using the Riesz-Kakutani theorem and some routine topological arguments, we
propose a constructive detailed proof which is, as far as we know, different from that supplied elsewhere.

Let S be a locally compact Hausdorff space equipped with its Borel σ-field BS , and let X be
a Banach space. We denote by C0(S, X) the Banach space (uniform norm) of all continuous
functions f : S → X, vanishing at infinity. If X = R, we put C0(S, X) = C0(S). According to the
Riesz-Kakutani theorem [7, Theorem 6.19], the dual C∗

0 (S) is isometric to the Banach space of all
scalar regular measures on S with the variation norm. All the measures we will deal with here are
supposed to be defined on the σ-field BS . We denote by X∗ the strong dual of X.

If λ : BS → Y is an additive set function from BS into the Banach space Y , then the variation
of λ is usually defined by the extented positive set function |λ|(•) given by:

|λ|(E) = sup
∑

i

‖λ(Ei)‖, E ∈ BS(1)
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where the supremum is taken over all finite partitions {Ei} of E in BS .
We say that λ is of bounded variation if |λ|(E) < ∞, for all E ∈ BS . It is easy to check that |λ| is

additive. Moreover, if λ is of bounded variation, then λ is σ-additive if and only if |λ| is σ-additive.
We say that λ is regular if |λ| is regular in the customary sense [1]. We denote by rσbv(S, Y ) the
set of all regular Y -valued vector measures on S. For λ ∈ rσbv(S, Y ), put |λ|(S) = ‖λ‖, then the
following proposition is well known [1]:

Proposition 1.

(a) ‖λ‖ is a norm making rσbv(S, Y ) with the usual operations a Banach space.
(b) In the specific case Y = X∗, we have

|λ|(E) = sup

∣∣∣∣∣∑
i

λ(Ei)xi

∣∣∣∣∣ , E ∈ BS(2)

where the supremum is taken over all finite partitions {Ei} of E in BS, and all finite systems
{xi} of vectors in X with ‖xi‖ ≤ 1 for each i.

The RHS of formula (2) is the so called semivariation of λ [2]. So Proposition 1(b) says that, for
vector measures with values in a dual, the variation is equal to the semivariation.
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Theorem 1. There is an isometric isomorphism between the topological dual C∗
0 (S, X) of

C0(S, X) and the Banach space rσbv(S, X∗), where the functional U ∈ C∗
0 (S, X) and the cor-

responding measure λ ∈ rσbv(S, X∗) are related by the integral formula

Uf =
∫

S

f dλ, f ∈ C0(S, X)

‖U‖ = ‖λ‖.
(3)

where the integral is the termed immediate integral of Dinculeanu [3].

Let us recall that this theorem is the basic tool in the proof of the representation theorem of N.
Dinculeanu [2, Section 19].

Actually the original proof of this theorem [8] contains some gaps about the strong σ-additivity
and regularity of the measure λ attached to the functional U . These gaps have been filled by
J. Gil de Lamadrid in [5, pages 775–776]. Another proof using the Hahn-Banach theorem and
measures on product spaces, can be found in [6]. To settle the proof of the theorem we need some
preparatory lemmas. Let us start with a U ∈ C∗

0 (S, X), we will construct a λ ∈ rσbv(S, X∗) such
that formula (3) holds.

Lemma 1. For each (f, x) ∈ C0(S)×X we define B(f, x) by

B(f, x) = U(f · x), f ∈ C0(S), x ∈ X.(4)

Then B is a bounded bilinear form on C0(S)×X with ‖B‖ ≤ ‖U‖.

Proof. It is clear that B is bilinear. The norm inequality is immediate from the following
estimation: |B(f, x)| = |U(f · x)| ≤ ‖U‖ · ‖f‖∞ · ‖x‖. �
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Lemma 2. For each fixed x ∈ X, let Wx(•) = B(•, x). Then there exists a unique scalar regular
measure µx on BS such that

Wx(f) =
∫

S

fdµx, f ∈ C0(S), and ‖Wx‖ = ‖µx‖.(5)

Proof. From the construction of B in Lemma 1 we have |Wx(f)| ≤ ‖U‖ · ‖f‖∞ · ‖x‖. So Wx

is linear and bounded, that is Wx ∈ C∗
0 (S), and we have |Wx(f)| ≤ ‖U‖ · ‖f‖∞ · ‖x‖, therefore

‖Wx‖ ≤ ‖U‖ · ‖x‖. Moreover, the correspondence x 7−→ Wx is a bounded linear operator from
X into the dual space C∗

0 (S) with the norm at most ‖U‖. By the Riesz-Kakutani theorem,
C∗

0 (S) is canonically isometric to the respective space of regular measures with the variation norm.
Consequently, for each x ∈ X there is a unique scalar regular measure µx on BS such that

Wx(f) =
∫

S

fdµx, f ∈ C0(S) and ‖Wx‖ = ‖µx‖

�

Lemma 3. Define the set function λ on BS by the following recipe: for A ∈ BS, λ(A) is the
functional on X given by

λ(A)x = µx(A), x ∈ X(6)

where µx comes from Lemma 2.
Then λ(A) ∈ X∗ for each A ∈ BS, moreover, λ is additive.

Proof. Let x, y ∈ X, A ∈ BS , then λ(A)(x + y) = µx+y(A), where µx+y corresponds to Wx+y

according to (5), thus Wx+y(f) =
∫

S
f dµx+y, for all f ∈ C0(S). Since

Wx+y(f) = B(f, x + y) = B(f, x) + B(f, y),
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we deduce from (5) that

Wx+y(f) =
∫

S

fdµx+y =
∫

S

fdµx +
∫

S

fdµy =
∫

S

fd(µx + µy),

where the last equality is easy to check by standard method. Thus∫
S

fdµx+y =
∫

S

fd(µx + µy), for each f ∈ C0(S).

From the fact that µx + µy is regular, the uniqueness part of the Riesz-Kakutani theorem yields
µx+y = µx + µy. Likewise µαx = αµx, for α ∈ R. This proves that λ(A) is a linear functional on
X. On the other hand we have

|λ(A)x| = |µx(A)| ≤ |µx|(A) ≤ ‖µx‖ = ‖Wx‖ ≤ ‖U‖ · ‖x‖

(see the proof of Lemma 2). So we deduce that λ(A) ∈ X∗ and ‖λ(A)‖ ≤ ‖U‖ for each A ∈ BS .
Finally, it is clear that λ is additive. �

The remaining lemmas are intended to prove that the additive set function λ is actually a vector
measure. The following lemma is crucial:

Lemma 4. The set function λ has finite variation.Moreover, we have ‖λ‖≤‖U‖.

Proof. We use formula (2) for the variation of λ. Let A1, A2, . . . , An be a finite partition of the
locally compact space S by sets in BS and let x1, x2, . . . , xn be vectors in X with ‖xi‖ ≤ 1 for all i.
We need an estimation of the sum

∑n
1 λ(Ai)xi. Let ε > 0, then by the regularity of the measures

µxi , there exist compact sets K1,K2, . . . ,Kn and open sets G1, G2, . . . , Gn such that

Ki ⊂ Ai ⊂ Gi and |µxi
|(Gi�Ki) <

ε

2n
, i = 1, 2, . . . n.
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Note that the Ki are pairwise disjoint since Ai are so. Since S is Hausdorff, disjoint compact
sets have disjoint neighbourhoods. So, using a simple induction on n, we can construct pairwise
disjoint open sets U1, U2, . . . , Un such that Ki ⊂ Ui for each i. Letting Vi = Ui∩Gi, we get pairwise
disjoint open sets Vi such that Ki ⊂ Vi ⊂ Gi, for all i.

Now, let gi : S → R be a continuous function such that 0 ≤ gi(t) ≤ 1 for all t ∈ S, gi(t) = 1 for
all t ∈ Ki, support gi ⊂ Vi (such functions exist by Urysohn’s lemma since S is locally compact).
We have ∫

S

gidµxi =
∫

Vi

gidµxi

(since gi ≡ 0 outside Vi), so we deduce that∫
S

gidµxi
=

∫
Vi�Ki

gidµxi
+

∫
Ki

gidµxi
.

But
∫

Ki
gidµxi

= µxi
(Ki) (because gi ≡ 1 on Ki). Consequently, we have∫

S

gidµxi − µxi(Ki) =
∫

Vi�Ki

gidµxi .

This gives the following estimation∣∣∣∣∫
S

gidµxi
− µxi

(Ki)
∣∣∣∣ =

∣∣∣∣∣
∫

Vi\Ki

gidµxi

∣∣∣∣∣ ≤
∫

Vi\Ki

gid · |µxi
|

≤ |µxi
|(Vi \Ki) (since 0 ≤ gi ≤ 1)

≤ |µxi
|(Gi \Ki) (since Vi ⊂ Gi)

<
ε

2n
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Therefore ∣∣∣∣∫
S

gidµxi
− µxi

(Ki)
∣∣∣∣ <

ε

2n
, for each i.(7)

Now, let f : S → X be the function defined by

f(t) =
n∑
1

gi(t) · xi, t ∈ S

then f is continuous and we have f(t) = 0 for each t in S \ ∪n
1Vi, and f(t) = gi(t) · xi for each t in

Vi, because Vi are pairwise disjoint and support gi ⊂ Vi. Then we deduce that ‖f‖ ≤ 1 and by (5)

Uf =
n∑
1

U(gi · xi) =
n∑
1

∫
S

gidµxi
, since U(gi · xi) = Wxi

(gi).

So ∣∣∣∣∣Uf −
n∑
1

µxi
(Ki)

∣∣∣∣∣ =

∣∣∣∣∣
n∑
1

∫
S

gidµxi
−

n∑
1

µxi
(Ki)

∣∣∣∣∣
≤

n∑
1

∣∣∣∣∫
S

gidµxi − µxi(Ki)
∣∣∣∣ <

n∑
1

ε

2n
=

ε

2

Therefore ∣∣∣∣∣Uf −
n∑
1

µxi(Ki)

∣∣∣∣∣ <
ε

2
(8)
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Now, we turn to the estimation of |
∑n

1 λ(Ai)xi|.∣∣∣∣∣
n∑
1

λ(Ai)xi

∣∣∣∣∣− |Uf | ≤

∣∣∣∣∣
n∑
1

λ(Ai)xi − Uf

∣∣∣∣∣
≤

∣∣∣∣∣
n∑
1

λ(Ai)xi −
n∑
1

µxi(Ki)

∣∣∣∣∣ +

∣∣∣∣∣Uf −
n∑
1

µxi(Ki)

∣∣∣∣∣
and ∣∣∣∣∣

n∑
1

λ(Ai)xi −
n∑
1

µxi
(Ki)

∣∣∣∣∣ =

∣∣∣∣∣
n∑
1

µxi
(Ai)−

n∑
1

µxi
(Ki)

∣∣∣∣∣
≤

n∑
1

|µxi
|(Ai \Ki)

≤
n∑
1

|µxi |(Gi \Ki) <
n∑
1

ε

2n
=

ε

2

Combining this with (8), we get∣∣∣∣∣
n∑
1

λ(Ai)xi

∣∣∣∣∣− |Uf | < ε

2
+

ε

2
= ε.

So ∣∣∣∣∣
n∑
1

λ(Ai)xi

∣∣∣∣∣ < |Uf |+ ε ≤ ‖U‖ · ‖f‖∞ + ε ≤ ‖U‖+ ε (since ‖f‖ ≤ 1),

letting ε ↘ 0 we obtain |
∑n

1 λ(Ai)xi| ≤ ‖U‖.
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So, by taking the supremum for all finite partitions {Ai} of S in BS and all systems {xi} in X
with ‖xi‖ ≤ 1, this leads to |λ|(S) ≤ ‖U‖ < ∞, by formula (2). Then λ has a finite variation. �

Lemma 5. For each A ∈ BS we have

|λ|(A) = sup {|λ|(K) : K ⊂ A, K compact}(9)
|λ|(A) = inf {|λ|(G) : A ⊂ G, G open}(10)

In other words the variation measure |λ| of λ is regular, and so λ is regular.

Proof. Let A ∈ BS , since |λ| < ∞, (9) is equivalent to the following approximation: For each
ε > 0, there is a compact K such that

K ⊂ A, |λ|(A)− ε < |λ|(K)(11)

Let ε > 0, again since |λ| < ∞ there exists a finite partition E1, E2, . . . , En of A in BS and
x1, x2, . . . , xn in X with ‖xi‖ ≤ 1 for all i such that

|λ|(A)− ε

2
<

∣∣∣∣∣
n∑
1

λ(Ei)xi

∣∣∣∣∣ , by formula (2).

By formula (6) the measures λ(•)xi = µxi(•) are regular; consequently, there exist compact sets
K1,K2, . . . ,Kn, with Ki ⊂ Ei and |λ(Ei \Ki)xi| <

ε

2n
for all i. Then we have

|λ| (A)− ε

2
<

∣∣∣∣∣
n∑
1

λ(Ei)xi

∣∣∣∣∣ ≤
∣∣∣∣∣

n∑
1

λ(Ki)xi

∣∣∣∣∣ +

∣∣∣∣∣
n∑
1

λ(Ei \Ki)xi

∣∣∣∣∣
≤

n∑
1

|λ(Ki)xi|+
n∑
1

|λ(Ei \Ki)xi| < |λ|(K) +
ε

2
,
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where K is defined to be the compact set
n
∪
1
Ki.

Therefore, (11) is valid and proves (9). We can get (10) by applying (9) to the complement Ac

of the set A. �

Lemma 6. The variation measure |λ| is σ-additive.

Proof. Since λ is additive then so is |λ|. By the regularity property just proved, the result is a
consequence of Alexandroff theorem (see [4, p. 138]. �

Lemma 7. The set function λ is a regular vector measure, that is λ is a member of rσbv(S, X∗).

Proof. We know that λ is additive, so to prove the σ-additivity it is enough to prove the
continuity at ∅, that is for every sequence An in BS decreasing to ∅, we have λ(An) → 0. But it is
a consequence of the σ-additivity of |λ| and the fact that ‖λ(A)‖ ≤ |λ|(A), for each A ∈ BS . On
the other hand λ is regular since |λ| is regular by Lemma 5. �

Lemma 8. Let υ, µ ∈ rσbv(S, X∗) be such that
∫

S
fdυ =

∫
S

fdµ for all f ∈ C0(S, X), then
υ ≡ µ.

Proof. Take f ∈ C0(S, X) of the form f(•) = g(•) · x where g ∈ C0(S) and x fixed in X. Then
by standard tools we have

∫
S

fdυ =
∫

S
gdυ(•)x and

∫
S

fdµ =
∫

S
gdµ(•)x. This yields

∫
S

gdυ(•)x
=

∫
S

gdµ(•)x. Since both scalar measures υ(•)x and µ(•)x are regular and since g is arbitrary, we
deduce from Riesz-Kakutani theorem that υ(•)x = µ(•)x for each x ∈ X. Thus υ ≡ µ. �

Now, we are in a position to give the proof of Theorem 1.

Proof of Theorem 1. First we prove relation (3), i.e, for all f ∈ C0(S, X), Uf =
∫

S
fdλ where

λ is the vector measure constructed in Lemma 3.
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Let f ∈ C0(S, X) be of the form f(•) = g(•) · x for g ∈ C0(S) and x fixed in X. Then

Uf = Wx(g)

=
∫

S

gdµx by Lemma 2, formula (5)

=
∫

S

gdλ(•)x by Lemma 3, formula (6).

But we have
∫

S
gdλ(•)x =

∫
S

g ·x ·dλ. Therefore, formula (3) is satisfied for f = g ·x. By linearity
we can see that formula (3) is satisfied for all f ∈ C0(S)⊗X, the vector space of all f ∈ C0(S, X)

of the form f(•) =
n∑
1

gi(•) · xi with gi ∈ C0(S) for each i. It is well known that C0(S) ⊗ X is

dense in C0(S, X) (see [2, Proposition 1 of Section 19]. Consequently, if f ∈ C0(S, X), there is a
sequence fn in C0(S)⊗X converging to f uniformly on S. By the integration process with respect
to an operator valued measure we get∣∣∣∣∫

S

fndλ−
∫

S

fdλ

∣∣∣∣ ≤ ‖fn − f‖∞ · λ̃(S),

where λ̃ is the semivariation of λ defined by the RHS of formula (2) and which is, in the present
context, equal to the variation |λ| (see the Preliminaries). As λ is of finite variation and ‖fn −
f‖∞ → 0, we have

∫
S

fndλ →
∫

S
f dλ. But Ufn =

∫
S

fndλ because fn ∈ C0(S) ⊗X for each n.
Since U is bounded and fn → f uniformly we get Ufn =

∫
S

fndλ → Uf .
Hence,

Uf =
∫

S

fdλ, for all f ∈ C0(S, X).



JJ J I II

Go back

Full Screen

Close

Quit

By Lemma 8, λ is the unique measure in rσbv(S, X∗) satisfying relation (3). This proves that the
correspondence U

ϕ→ λ from C∗
0 (S, X) into rσbv(S, X∗) is well-defined. Moreover, we have

|Uf | = |
∫

S

fdλ| ≤ ‖f‖∞ · λ̃(S) = ‖f‖∞ · ‖λ‖,

so ‖U‖ ≤ ‖λ‖ and by Lemma 4 we get ‖U‖ = ‖λ‖. This implies that ϕ is an isometry and then
it is one-one. It is not difficult to show that ϕ is linear (make use of Lemma 8). To complete
the proof, we must show that ϕ is onto. To this end, let us start with µ ∈ rσbv(S, X∗), to which
we associate the functional on C0(S, X) given by Uf =

∫
S

fdµ, f ∈ C0(S, X). It is clear that
U is linear and bounded, so U ∈ C∗

0 (S, X). We show that ϕ(U) = µ. Put ϕ(U) = λ, that is λ
is the vector measure constructed along Lemmas 3–7. Then by formula (3), Uf =

∫
S

fdλ for all
f ∈ C0(S, X), which yields

∫
S

f dµ =
∫

S
fdλ for all f ∈ C0(S, X). From Lemma 8, we deduce

that µ = λ, and this complete the proof of Theorem 1. �
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