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NEW CLASSES OF k-UNIFORMLY CONVEX AND STARLIKE
FUNCTIONS WITH RESPECT TO OTHER POINTS

C. SELVARAJ and K.A. SELVAKUMARAN

Abstract. In this paper we introduce new subclasses of k-uniformly convex and
starlike functions with respect to other points. We provide necessary and suffi-

cient conditions, coefficient estimates, distortion bounds, extreme points and radii

of close-to-convexity, starlikeness and convexity for these classes. We also obtain
integral means inequalities with the extremal functions for these classes.

1. Introduction, Definitions and Preliminaries

Let A denote the class of functions given by

f(z) = z +
∞∑

n=2

anz
n(1)

which are regular in the unit disc D = {z : |z| < 1} and normalized by f(0) =
f ′(0) − 1 = 0. Let S be the subclass of A consisting of functions that are regular
and univalent in D. Let S∗ be the subclass of S consisting of functions starlike in

D. It is known that f ∈ S∗ if and only if Re
{

zf ′(z)
f(z)

}
> 0, z ∈ D.

In [6], Sakaguchi defined the class of starlike functions with respect to symmetric
points as follows:

Let f ∈ S. Then f is said to be starlike with respect to symmetric points in D
if and only if

Re
{

zf ′(z)
f(z)− f(−z)

}
> 0, z ∈ D.

We denote this class by S∗s . Obviously, it forms a subclass of close-to-convex
functions and hence univalent. Moreover, this class includes the class of convex
functions and odd starlike functions with respect to the origin, see [6]. EL-Ashwah
and Thomas in [2] introduced two other classes, namely the class S∗c consisting of
functions starlike with respect to conjugate points and S∗sc consisting of functions
starlike with respect to symmetric conjugate points.
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Motivated by S∗s , many authors discussed the following class C∗s of functions
convex with respect to symmetric points and its subclasses (See [4, 5, 7, 11]).

Let f ∈ S. Then f is said to be convex with respect to symmetric points in D
if and only if

Re
{

(zf ′(z))′

f ′(z) + f ′(−z)

}
> 0, z ∈ D.

Let T denote the class consisting of functions f of the form

f(z) = z −
∞∑

n=2

anz
n,(2)

where an is a non-negative real number.
Silverman [8] introduced and investigated the following subclasses of T :

T ∗(α) := S∗(α) ∩ T and C(α) := K(α) ∩ T (0 ≤ α < 1).

In this paper we introduce the class Ss(λ, k, β) of functions regular in D given
by (1) and defined as follows

Definition 1.1. A function f(z) ∈ A is said to be in the class Ss(λ, k, β) if for
all z ∈ D,

Re
[

2zf ′(z) + 2λz2f ′′(z)
(1− λ)(f(z)− f(−z)) + λz(f ′(z) + f ′(−z))

]
> k

∣∣∣∣ 2zf ′(z) + 2λz2f ′′(z)
(1− λ)(f(z)− f(−z)) + λz(f ′(z) + f ′(−z))

− 1
∣∣∣∣ + β,

(3)

for some 0 ≤ λ ≤ 1, 0 ≤ β < 1 and k ≥ 0.

For suitable values of λ, k, β the class of functions Ss(λ, k, β) reduces to various
new classes of regular functions. We also observe that

Ss(0, 0, 0) ≡ S∗s and Ss(1, 0, 0) ≡ C∗s .

We now let TSs(λ, k, β) = Ss(λ, k, β) ∩ T .
In the present investigation of the function class TSs(λ, k, β) we obtain nec-

essary and sufficient conditions, coefficient estimates, distortion bounds, extreme
points, radii of close-to-convexity, starlikeness and convexity. We also obtain inte-
gral means inequality for the functions belonging to this class. Analogous results
are also obtained for the class of functions f ∈ T and k-uniformly convex and
starlike with respect to conjugate points. The class is defined below:

Definition 1.2. A function f(z) ∈ A is said to be in the class Sc(λ, k, β) if for
all z ∈ D,

Re
[

2zf ′(z) + 2λz2f ′′(z)
(1− λ)(f(z) + f(z̄)) + λz(f ′(z) + f ′(z̄))

]
> k

∣∣∣∣ 2zf ′(z) + 2λz2f ′′(z)
(1− λ)(f(z) + f(z̄)) + λz(f ′(z) + f ′(z̄))

− 1
∣∣∣∣ + β,

(4)

for some 0 ≤ λ ≤ 1, 0 ≤ β < 1 and k ≥ 0.
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Here we let TSc(λ, k, β) = Sc(λ, k, β) ∩ T .
We now state two lemmas which we may need to establish our results in the

sequel.

Lemma 1.3. If β is a real number and w is a complex number, then

Re (w) ≥ β ⇔ |w + (1− β)| − |w − (1 + β)| ≥ 0.

Lemma 1.4. If w is a complex number and β, k are real numbers, then

Re (w) ≥ k|w − 1|+ β ⇔ Re {w(1 + k eiθ)− k eiθ} ≥ β, −π ≤ θ ≤ π.

2. Coefficient Inequalities

We employ the technique adopted by Aqlan et al. [1] to find the coefficient esti-
mates for the function class TSs(λ, k, β).

Theorem 2.1. A function f ∈ TSs(λ, k, β) if and only if
∞∑

n=2

[2(1 + k)n− (k + β)(1− (−1)n)](1− λ+ λn)an ≤ 2(1− β)(5)

for 0 ≤ λ ≤ 1, 0 ≤ β < 1 and k ≥ 0.

Proof. Let a function f(z) of the form (2) in T satisfy the condition (5). We
will show that (3) is satisfied and so f ∈ TSs(λ, k, β). Using Lemma 1.4 it is
enough to show that

Re
{

2zf ′(z) + 2λz2f ′′(z)
(1− λ)(f(z)− f(−z)) + λz(f ′(z) + f ′(−z))

(1 + k eiθ)− k eiθ

}
> β,(6)

−π ≤ θ ≤ π.

That is, Re
{A(z)

B(z)

}
≥ β, where

A(z) := [2zf ′(z) + 2λz2f ′′(z)](1 + k eiθ)− k eiθ[(1− λ)(f(z)− f(−z))
+ λz(f ′(z) + f ′(−z))],

B(z) := (1− λ)(f(z)− f(−z)) + λz(f ′(z) + f ′(−z)).
In view of Lemma 1.3, we only need to prove that

|A(z) + (1− β)B(z)| − |A(z)− (1 + β)B(z)| ≥ 0.

For A(z) and B(z) as above, we have

|A(z) + (1− β)B(z)|

=
∣∣∣∣(4− 2β)z −

∞∑
n=2

[2n+ (1− β)(1− (−1)n)](1− λ+ λn)anz
n

− k eiθ
∞∑

n=2

[2n− (1− (−1)n)](1− λ+ λn)anz
n

∣∣∣∣
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≥ (4− 2β)|z| −
∞∑

n=2

[2n+ (1− β)(1− (−1)n)](1− λ+ λn)an|z|n

− k
∞∑

n=2

[2n− (1− (−1)n)](1− λ+ λn)an|z|n.

Similarly, we obtain

|A(z)− (1 + β)B(z)|

≤ 2β|z|+
∞∑

n=2

[2n− (1 + β)(1− (−1)n)](1− λ+ λn)an|z|n

+ k
∞∑

n=2

[2n− (1− (−1)n)](1− λ+ λn)an|z|n.

Therefore, we have

|A(z) + (1− β)B(z)| − |A(z)− (1 + β)B(z)|

≥ 4(1− β)|z| − 2
∞∑

n=2

[2(1 + k)n− (k + β)(1− (−1)n)](1− λ+ λn)an|z|n

≥ 0,

by the given condition (5). Conversely, suppose f ∈ TSs(λ, k, β). Then by
Lemma 1.4 we have (6). Choosing the values of z on the positive real axis the
inequality (6) reduces to

Re
{

2(1− β)−
∑∞

n=2[2n− β(1− (−1)n)](1− λ+ λn)anz
n−1

2−
∑∞

n=2(1− λ+ λn)(1− (−1)n)anzn−1

−
k eiθ

∑∞
n=2[2n− (1− (−1)n)](1− λ+ λn)anz

n−1

2−
∑∞

n=2(1− λ+ λn)(1− (−1)n)anzn−1

}
≥ 0.

In view of the elementary identity Re (− eiθ) ≥ −| eiθ | = −1, the above inequality
becomes

Re
{

2(1− β)−
∑∞

n=2[2(1 + k)n− (k + β)(1− (−1)n)](1− λ+ λn)anr
n−1

2−
∑∞

n=2(1− λ+ λn)(1− (−1)n)anrn−1

}
≥ 0.

Letting r → 1− we get the desired inequality (5). �

The following coefficient estimate for f ∈ TSs(λ, k, β) is an immediate conse-
quence of Theorem 2.1.

Theorem 2.2. If f ∈ TSs(λ, k, β), then

an ≤
2(1− β)

Φ(λ, k, β, n)
, n ≥ 2
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where Φ(λ, k, β, n) = (1− λ+ λn)[2(1 + k)n− (k + β)(1− (−1)n)].
The equality holds for the function

f(z) = z − 2(1− β)
Φ(λ, k, β, n)

zn.

We now state coefficient properties for the functions belonging to the class
TSc(λ, k, β). Method of proving Theorem 2.3 is similar to that of Theorem 2.1.

Theorem 2.3. A function f ∈ TSc(λ, k, β) if and only if
∞∑

n=2

[(1 + k)n− (k + β)](1− λ+ λn)an ≤ (1− β)(7)

for 0 ≤ λ ≤ 1, 0 ≤ β < 1 and k ≥ 0.

Theorem 2.4. If f ∈ TSc(λ, k, β), then

an ≤
(1− β)

Θ(λ, k, β, n)
, n ≥ 2,

where Θ(λ, k, β, n) = (1− λ+ λn)[(1 + k)n− (k + β)].
The equality holds for the function

f(z) = z − (1− β)
Θ(λ, k, β, n)

zn.

3. Distortion and Covering Theorems

Theorem 3.1. Let f be defined by (2). If f ∈ TSs(λ, k, β) and |z| = r < 1,
then we have the sharp bounds

r − 1− β

2(1 + k)(1 + λ)
r2 ≤ |f(z)| ≤ r +

1− β

2(1 + k)(1 + λ)
r2(8)

and

1− 1− β

(1 + k)(1 + λ)
r ≤ |f ′(z)| ≤ 1 +

1− β

(1 + k)(1 + λ)
r.

Proof. We only prove the right side inequality in (8), since the other inequalities
can be justified using similar arguments.
First, it is obvious that

4(1 + k)(1 + λ)
∞∑

n=2

an ≤
∞∑

n=2

[2(1 + k)n− (k + β)(1− (−1)n)](1− λ+ λn)an

and as f ∈ TSs(λ, k, β), the inequality (5) yields
∞∑

n=2

an ≤
1− β

2(1 + k)(1 + λ)
.
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From (2) with |z| = r(r < 1), we have

|f(z)| ≤ r +
∞∑

n=2

anr
n ≤ r +

∞∑
n=2

anr
2 ≤ r +

1− β

2(1 + k)(1 + λ)
r2.

The distortion bounds in Theorem 3.1 are sharp for

f(z) = z − 1− β

2(1 + k)(1 + λ)
z2, z = ±r.(9)

�

Theorem 3.2. If f ∈ TSs(λ, k, β), then f ∈ T ∗(δ), where

δ = 1− 1− β

2(1 + k)(1 + λ)− (1− β)

The result is sharp for the function given by (9).

Proof. It is sufficient to show that (5) implies
∞∑

n=2

(n− δ)an ≤ 1− δ

that is
n− δ

1− δ
≤ [2(1 + k)n− (k + β)(1− (−1)n)](1− λ+ λn)

2(1− β)
, n ≥ 2.(10)

Since, (10) is equivalent to

δ ≤ 1− 2(n− 1)(1− β)
[2(1 + k)n− (k + β)(1− (−1)n)](1− λ+ λn)− 2(1− β)

= ψ(n), n ≥ 2

and ψ(n) ≤ ψ(2), (10) holds true for any n ≥ 2, k ≥ 0 and 0 ≤ β < 1. This
completes the proof of Theorem 3.2. �

For completeness, we now state the following results with regards to the class
TSc(λ, k, β).

Theorem 3.3. Let f be defined by (2) and f ∈ TSc(λ, k, β). Then for
{z : 0 < |z| = r < 1} we have the sharp bounds

r − 1− β

(2 + k − β)(1 + λ)
r2 ≤ |f(z)| ≤ r +

1− β

(2 + k − β)(1 + λ)
r2(11)

and

1− 2(1− β)
(2 + k − β)(1 + λ)

r ≤ |f ′(z)| ≤ 1 +
2(1− β)

(2 + k − β)(1 + λ)
r.

The result in (11) is sharp for the function

f(z) = z − 1− β

(2 + k − β)(1 + λ)
z2, z = ±r.(12)
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Theorem 3.4. If f ∈ TSc(λ, k, β), then f ∈ T ∗(δ), where

δ = 1− 1− β

(2 + k − β)(1 + λ)− (1− β)
.

The result is sharp for the function given by (12).

4. Extreme Points

Theorem 4.1. Let f1(z) = z and

fn(z) = z − 2(1− β)
Φ(λ, k, β, n)

zn (n ≥ 2),

where Φ(λ, k, β, n) is defined in Theorem 2.2. Then f(z) is in TSs(λ, k, β) if and
only if it can be expressed in the form f(z) =

∑∞
n=1 λnfn(z) where λn ≥ 0 and∑∞

n=1 λn = 1.

Proof. Adopting the same technique used by Silverman [8], we first assume that

f(z) =
∞∑

n=1

λnfn(z) = z −
∞∑

n=2

λn

[
2(1− β)

Φ(λ, k, β, n)
zn

]
.

∞∑
n=2

λn

{
2(1− β)

Φ(λ, k, β, n)

}
.

{
Φ(λ, k, β, n)

2(1− β)

}
=

∞∑
n=2

λn = 1− λ1 ≤ 1.

Therefore by Theorem 2.1, f ∈ TSs(λ, k, β).
Conversely, suppose f ∈ TSs(λ, k, β). Then by Theorem 2.2

an ≤
2(1− β)

Φ(λ, k, β, n)
, n ≥ 2.

Now, by letting

λn =
{

Φ(λ, k, β, n)
2(1− β)

}
an, n ≥ 2

and λ1 = 1−
∑∞

n=2 λn we conclude the theorem, since

f(z) =
∞∑

n=1

λnfn = λ1f1(z) +
∞∑

n=2

λnfn(z).

�

Now, we give extreme points for functions belonging to TSc(λ, k, β). We omit
the proof of Theorem 4.2 as it is similar to that of Theorem 4.1.

Theorem 4.2. Let f1(z) = z and

fn(z) = z − (1− β)
Θ(λ, k, β, n)

zn (n ≥ 2),

where Θ(λ, k, β, n) is defined in Theorem 2.4. Then f(z) is in TSc(λ, k, β) if and
only if it can be expressed in the form f(z) =

∑∞
n=1 λnfn(z) where λn ≥ 0 and∑∞

n=1 λn = 1.
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5. Radii of Close-To-Convexity, Starlikeness and Convexity

Theorem 5.1. If f(z) ∈ TSs(λ, k, β), then f is close-to-convex of order γ
(0 ≤ γ < 1) in |z| < r1(λ, k, β, γ), where

r1(λ, k, β, γ) = inf
n

{
(1− γ)Φ(λ, k, β, n)

2n(1− β)

} 1
n−1

, n ≥ 2(13)

and Φ(λ, k, β, n) is defined in Theorem 2.2.

Proof. By a computation, we have∣∣f ′(z)− 1
∣∣ =

∣∣∣∣− ∞∑
n=2

nanz
n−1

∣∣∣∣ ≤ ∞∑
n=2

nan|z|n−1.

Now, f is close-to-convex of order γ if we have the condition
∞∑

n=2

(
n

1− γ

)
an|z|n−1 ≤ 1.(14)

Considering the coefficient conditions required by Theorem 2.1, the above inequal-
ity (14) is true if (

n

1− γ

)
|z|n−1 ≤ Φ(λ, k, β, n)

2(1− β)
or if

|z| ≤
{

(1− γ)Φ(λ, k, β, n)
2n(1− β)

} 1
n−1

, n ≥ 2.

This last expression yields the bound required by the above theorem. �

Theorem 5.2. If f(z) ∈ TSs(λ, k, β), then f is starlike of order γ (0 ≤ γ < 1)
in |z| < r2(λ, k, β, γ), where

r2(λ, k, β, γ) = inf
n

{
(1− γ)Φ(λ, k, β, n)

2(n− γ)(1− β)

} 1
n−1

, n ≥ 2(15)

and Φ(λ, k, β, n) is defined in Theorem 2.2.

Proof. By a computation, we have

∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ =

∣∣∣∣∣∣∣∣
−

∞∑
n=2

(n− 1)anz
n−1

1−
∞∑

n=2
anzn−1

∣∣∣∣∣∣∣∣
≤

∞∑
n=2

(n− 1)an|z|n−1

1−
∞∑

n=2
an|z|n−1

.
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Now, f is starlike of order γ if we have the condition
∞∑

n=2

(
n− γ

1− γ

)
an|z|n−1 ≤ 1.(16)

Considering the coefficient conditions required by Theorem 2.1, the above inequal-
ity (16) is true if (

n− γ

1− γ

)
|z|n−1 ≤ Φ(λ, k, β, n)

2(1− β)
or if

|z| ≤
{

(1− γ)Φ(λ, k, β, n)
2(n− γ)(1− β)

} 1
n−1

, n ≥ 2.

This last expression yields the bound required by the above theorem. �

Theorem 5.3. If f(z) ∈ TSs(λ, k, β), then f is convex of order γ (0 ≤ γ < 1)
in |z| < r3(λ, k, β, γ), where

r3(λ, k, β, γ) = inf
n

{
(1− γ)Φ(λ, k, β, n)
2n(n− γ)(1− β)

} 1
n−1

, n ≥ 2(17)

and Φ(λ, k, β, n) is defined in Theorem 2.2.

Proof. By a computation, we have

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ =

∣∣∣∣∣∣∣∣
−

∞∑
n=2

n(n− 1)anz
n−1

1−
∞∑

n=2
nanzn−1

∣∣∣∣∣∣∣∣
≤

∞∑
n=2

n(n− 1)an|z|n−1

1−
∞∑

n=2
nan|z|n−1

.

Now, f is convex of order γ if we have the condition
∞∑

n=2

n(n− γ)
1− γ

an|z|n−1 ≤ 1.(18)

Considering the coefficient conditions required by Theorem 2.1, the above inequal-
ity (18) is true if (

n(n− γ)
1− γ

)
|z|n−1 ≤ Φ(λ, k, β, n)

2(1− β)
or if

|z| ≤
{

(1− γ)Φ(λ, k, β, n)
2n(n− γ)(1− β)

} 1
n−1

, n ≥ 2.

This last expression yields the bound required by the above theorem. �

For completeness, we give, without proof, theorem concerning the radii of close-
to-convexity, starlikeness and convexity for the class TSc(λ, k, β).
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Theorem 5.4. If f(z) ∈ TSc(λ, k, β), then f is close-to-convex of order γ
(0 ≤ γ < 1) in |z| < r4(λ, k, β, γ), where

r4(λ, k, β, γ) = inf
n

{
(1− γ)Θ(λ, k, β, n)

n(1− β)

} 1
n−1

, n ≥ 2(19)

and Θ(λ, k, β, n) is defined in Theorem 2.4.

Theorem 5.5. If f(z) ∈ TSc(λ, k, β), then f is starlike of order γ (0 ≤ γ < 1)
in |z| < r5(λ, k, β, γ), where

r5(λ, k, β, γ) = inf
n

{
(1− γ)Θ(λ, k, β, n)

(n− γ)(1− β)

} 1
n−1

, n ≥ 2(20)

and Θ(λ, k, β, n) is defined in Theorem 2.4.

Theorem 5.6. If f(z) ∈ TSc(λ, k, β), then f is convex of order γ (0 ≤ γ < 1)
in |z| < r6(λ, k, β, γ), where

r6(λ, k, β, γ) = inf
n

{
(1− γ)Θ(λ, k, β, n)
n(n− γ)(1− β)

} 1
n−1

, n ≥ 2(21)

and Θ(λ, k, β, n) is defined in Theorem 2.4.

6. Integral means Inequalities

In [8], Silverman found that the function f2(z) = z − z2

2 is often extremal over
the family T . He applied this function to resolve his integral means inequality,
conjectured in [9] and settled in [10], that∫ 2π

0

|f(r eiθ)|ηdθ ≤
∫ 2π

0

|f2(r eiθ)|ηdθ,

for all f ∈ T, η > 0 and 0 < r < 1. In [10], he also proved his conjecture for the
subclasses T ∗(α) and C(α) of T .

Now, we prove Silverman’s conjecture for the class of functions TSs(λ, k, β).
An analogous result is also obtained for the family of functions TSc(λ, k, β).

We need the concept of subordination between analytic functions and a subor-
dination theorem of Littlewood [3].

Two given functions f and g, which are analytic in D, the function f is said to
be subordinate to g in D if there exists a function w analytic in D with

w(0) = 0, |w(z)| < 1 (z ∈ D),

such that

f(z) = g(w(z)) (z ∈ D).

We denote this subordination by f(z) ≺ g(z).
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Lemma 6.1. If the functions f and g are analytic in D with f(z) ≺ g(z), then
for η > 0 and z = r eiθ (0 < r < 1)∫ 2π

0

|g(r eiθ)|ηdθ ≤
∫ 2π

0

|f(r eiθ)|ηdθ.

Now, we discuss the integral means inequalities for functions f in TSs(λ, k, β).

Theorem 6.2. Let f ∈ TSs(λ, k, β), 0 ≤ λ ≤ 1, 0 ≤ β < 1, k ≥ 0 and f2(z)
be defined by

f2(z) = z − 2(1− β)
Φ(λ, k, β, 2)

z2,

where Φ(k, β, λ, n) is defined in Theorem 2.2. Then for z = r eiθ, 0 < r < 1, we
have ∫ 2π

0

|f(z)|ηdθ ≤
∫ 2π

0

|f2(z)|ηdθ.(22)

Proof. For f(z) = z −
∑∞

n=2 anz
n, (22) is equivalent to∫ 2π

0

∣∣∣∣1− ∞∑
n=2

anz
n−1

∣∣∣∣ηdθ ≤
∫ 2π

0

∣∣∣∣1− 2(1− β)
Φ(λ, k, β, 2)

z

∣∣∣∣ηdθ.
By Lemma 6.1, it is enough to prove that

1−
∞∑

n=2

anz
n−1 ≺ 1− 2(1− β)

Φ(λ, k, β, 2)
z.

Assuming

1−
∞∑

n=2

anz
n−1 = 1− 2(1− β)

Φ(λ, k, β, 2)
w(z),

and using (5), we obtain

|w(z)| =
∣∣∣∣ ∞∑

n=2

Φ(λ, k, β, 2)
2(1− β)

anz
n−1

∣∣∣∣
≤ |z|

∞∑
n=2

Φ(λ, k, β, n)
2(1− β)

an

≤ |z|.

This completes the proof by Theorem 2.1. �

For completeness, we now give the integral means inequality for the class
TSc(λ, k, β). The method of proving Theorem 6.3 is similar as that of Theo-
rem 6.2.
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Theorem 6.3. Let f ∈ TSc(λ, k, β), 0 ≤ λ ≤ 1, 0 ≤ β < 1, k ≥ 0 and f2(z) be
defined by

f2(z) = z − (1− β)
Θ(λ, k, β, 2)

z2,

where Θ(λ, k, β, n) is defined in Theorem 2.4. Then for z = r eiθ, 0 < r < 1, we
have ∫ 2π

0

|f(z)|ηdθ ≤
∫ 2π

0

|f2(z)|ηdθ.(23)
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classes of starlike functions with respect to symmetric points, Bull. Korean Math. Soc. 43(3)

(2006), 589–598.
8. Silverman H., Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51

(1975), 109–116.
9. , A survey with open problems on univalent functions whose coefficients are negative,

Rocky Mountain J. Math. 21(3) (1991), 1099–1125.
10. , Integral means for univalent functions with negative coefficients, Houston J. Math.

23(1) (1997), 169–174.

11. Wang Z.-G., A new subclass of quasi-convex functions with respect to k-symmetric points,

Lobachevskii J. Math. 19 (2005), 41–50.

C. Selvaraj, Department of Mathematics, Presidency College (Autonomous), Chennai-600 005,
India, e-mail : pamc9439@yahoo.co.in

K. A. Selvakumaran, Department of Mathematics, R.M.K. Engg. College, Kavaraipettai-601 206,

India, e-mail : selvaa1826@gmail.com


