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GALOIS–TYPE CONNECTIONS AND CLOSURE OPERATIONS
ON PREORDERED SETS

ÁRPÁD SZÁZ

Abstract. For a function f of one preordered set X to another Y , we shall establish several conse-

quences of the following two definitions:
(a) f is increasingly ϕ–regular, for some function ϕ of X to itself, if for any x1 , x2 ∈ X we have

x1 ≤ ϕ ( x2) if and only if f ( x1) ≤ f ( x2);
(b) f is increasingly g–normal, for some function g of Y to X , if for any x ∈ X and y ∈ Y we

have f (x) ≤ y if and only if x ≤ g (y).
These definitions have been mainly suggested to us by a recent theory of relators (families of

relations) worked out by Á. Száz and G. Pataki and the extensive literature on Galois connections
and residuated mappings.

In this paper, for a function f of one preordered set X to another Y , we shall establish several
consequences of the following two definitions:

(a) f is increasingly ϕ-regular, for some function ϕ of X to itself, if for any x1 , x2 ∈ X we
have x1 ≤ ϕ (x2) if and only if f (x1) ≤ f (x2);
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(b) f is increasingly g-normal, for some function g of Y to X , if for any x ∈ X and y ∈ Y
we have f (x) ≤ y if and only if x ≤ g (y).

These definitions have been mainly suggested to us by a recent theory of relators (families of
binary relations) worked out by Száz [28] and Pataki [20] and the extensive literature on Galois
connections [1, p. 124] and residuated mappings [2, p. 11].

For instance, we shall show that if f is an increasingly g-normal function of X to Y , then

(1) f is increasing;
(2) f [ sup (A) ] ⊂ sup ( f [A ] ) for all A ⊂ X ;
(3) g (y) ∈ max {x ∈ X : f (x) ≤ y } for all y ∈ Y .

Moreover, if ϕ = g ◦ f , then

(4) f is increasingly ϕ-regular;
(5) ϕ is a closure operation on X;
(6) ϕ (x) ∈ max {u ∈ X : f (u) ≤ f (x) } for all x ∈ X .

On the other hand, as a partial converse to (4), we shall also show that if f is an increasingly
ϕ–regular function of X onto Y , then there exists a function g of Y to X such that f is increasingly
g-normal. Moreover, if in particular Y is partially ordered, then g is injective. Therefore, in spite of
(4), the increasingly normal functions are more general objects than the increasingly regular ones.
However, the latter ones, being more closely to closure operations, are sometimes more convenient.

The results obtained extend and supplement some basic theorems on Galois connections and
residuated mappings. Moreover, they can be immediately applied to almost all topological and
order theoretic structures derived from relators in [26], [27] and [32].

For instance, if

F (R) = intR = {(A, x) ∈ P(X)×X : ∃ R ∈ R : R(x) ⊂ A }
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for any relator R on X and

G(int) = Rint =
{
S ⊂ X2 : intS ⊂ int

}
for any relation int on P(X) to X, then we can see that F is an increasingly G-normal function of
P2

(
X2

)
to P (P(X)×X). Moreover,

Φ(R) = (G ◦ F )(R) = R∧ =
{
S ⊂ X2 : ∀x ∈ X : x ∈ intR (S(x))

}
.

Thus, ∧ is a closure operation on P2
(
X2

)
. Moreover, for any relator R on X, R∧ is the largest

relator on X such that intR∧ ⊂ intR (resp. intR∧ = intR).
However, if for instance

F (R) = TR = {A ⊂ X : A ⊂ intR(A)}

for any relator R on X, then by [15, Example 5.3] there does not, in general, exist a largest relator
R� on X such that TR� ⊂ TR (resp. TR� = TR). Thus, the function F is not even regular.
Therefore, it is rather curious that topology and analysis have been mostly based on open sets.

In this respect, it is also worth mentioning that all reasonable generalizations of the usual
topological structures (such as proximities, closures, topologies, filters and convergences) can be
easily derived from relators (according to the results of [27] and [25]). Thus, they need not be
studied separately.

Moreover, the various operations on relators can be used to put the basic concepts of topology
and analysis in a proper perspective. For instance, it has become completely clear that compactness
and connectedness are particular cases of precompactness and well-chainedness, respectively. (See
[29] and [21].) Moreover, several continuity properties of relations can be briefly expressed in
terms of these operations and compositions of relations and relators. (See [30] and [38].)
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1. A few basic facts on relations

A subset F of a product set X × Y is called a relation on X to Y . If in particular F ⊂ X2, then
we may simply say that F is a relation on X. Thus, ∆

X
= {(x, x) : x ∈ X} is a relation on X.

If F is a relation on X to Y , then for any x ∈ X the set F (x) = {y ∈ Y : (x, y) ∈ F} is called
the image of x under F . And the set DF = {x ∈ X : F (x) 6= ∅} is called the domain of F .

In particular, a relation F on X to Y is called a function if for each x ∈ D
F

there exists y ∈ Y
such that F (x) = {y}. In this case, by identifying singletons with their elements, we may usually
write F (x) = y in place of F (x) = {y}.

More generally, if F is a relation on X to Y , then for any A ⊂ X the set F [A] =
⋃

x∈A F (x) is
called the image of A under F . And the set RF = F [DF ] is called the range of F .

If F is a relation on X to Y such that DF = X, then we say that F is a relation of X to Y .
While, if F is a relation X to Y such that RF = Y , then we say that F is a relation on X onto Y .

If F is a relation on X to Y , then a function f of DF to Y is called a selection of F if f ⊂ F ,
i.e., f(x) ∈ F (x) for all x ∈ DF . Thus, the Axiom of Choice can be briefly expressed by saying
that every relation has a selection.

If F is a relation on X to Y , then the values F (x), where x ∈ X, uniquely determine F
since we have F =

⋃
x∈X{x}×F (x). Therefore, the inverse F−1 of F can be defined such that

F−1(y) = {x ∈ X : y ∈ F (x)} for all y ∈ Y .
Moreover, if F is a relation on X to Y and G is a relation on Y to Z, then the composition

G ◦ F of G and F can be defined such that (G ◦ F )(x) = G[F (x)] for all x ∈ X. Thus, we also
have (G ◦ F )[A] = G[F [A]] for all A ⊂ X.

A relation R on X is called reflexive, symmetric, antisymmetric, and transitive if ∆
X
⊂ R,

R−1 ⊂ R, R ∩R−1 ⊂ ∆
X

, and R ◦R ⊂ R, respectively. Now, a reflexive relation may be called a
tolerance (preorder) if it is symmetric (transitive).
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If R is a relation on X, then we write Rn = R ◦Rn−1 for all n ∈ N by agreeing that R0 = ∆
X

.
Moreover, we also write R∞ =

⋃∞
n=0R

n. Thus, R∞ is the smallest preorder on X such that
R ⊂ R∞. Therefore, R∞∞ = R∞.

A family R of relations on one nonvoid set X to another Y is called a relator on X to Y .
Moreover, the ordered pair (X,Y )(R) = ((X,Y ),R) is called a relator space. (For the origins, see
[26] and the references therein.)

If in particular R is a relator on X to itself, then we may simply say that R is a relator on X.
Moreover, by identifying singletons with their element, we may naturally write X(R) in place of
(X,X)(R). Namely, (X,X) = {{X}}.

A relator R on X to Y is called simple if R = {R} for some relation R on X to Y . In this case,
we may simply write (X,Y )(R) in place of (X,Y )(R) = (X,Y )({R}).

Ordered sets and formal contexts [11, p. 17] are simple relator spaces. While, uniform spaces
[10] are non-simple relator spaces. Note that the ordinary uniformities are tolerance relators.
While, topologies and filters correspond to preorder relators by [40].

2. A few basic facts on ordered sets

If ≤ is a relation on a nonvoid set X, then having in mind the terminology of Birkhoff [1, p. 2] the
simple relator space X(≤) is called a goset (generalized ordered set). And we usually write X in
place of X(≤).

If X(≤) is a goset, then by taking X∗ = X and ≤∗=≤−1 we can form a new goset X∗(≤∗).
This is called the dual of X(≤). And we usually write ≥ in place of ≤∗.

The goset X is called reflexive, transitive, and antisymmetric if the inequality relation ≤ in it
has the corresponding property. Moreover, for instance, X is called preordered if it is reflexive and
transitive.
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In particular, a preordered set will be called a proset and a partially ordered set will be called a
poset. The usual definitions on posets can be naturally extended to gosets [33] (or even to arbitrary
relator spaces [32]).

For instance, for any subset A of a goset X, the members of the families

lb(A) = {x ∈ X : ∀a ∈ A : x ≤ a}
and

ub(A) = {x ∈ X : ∀a ∈ A : a ≤ x}
are called the lower and upper bounds of A in X, respectively.

Moreover, the members of the families

min(A) = A ∩ lb(A), max(A) = A ∩ ub(A),

inf(A) = max(lb(A)), sup(A) = min (ub(A)) ,

are called the minima, maxima, infima and suprema of A in X, respectively.
Thus, we can can easily prove the following theorems.

Theorem 2.1. If A ⊂ X, then
(1) lb(A) =

⋂
a∈A

lb(a); (2) ub(A) =
⋂

a∈A

ub(a).

Remark 2.2. Hence, it is clear
(1) lb(∅) = X and ub(∅) = X;

(2) lb(B) ⊂ lb(A) and ub(B) ⊂ ub(A) for all A ⊂ B ⊂ X.

Theorem 2.3. For any A,B ⊂ X, we have

B ⊂ ub(A) ⇐⇒ A ⊂ lb(B).
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Remark 2.4. Hence, it will follow that
(1) lb(A) = lb (ub (lb(A))); (2) ub(A) = ub (lb (ub(A))).

Theorem 2.5. If A ⊂ X, then
(1) min(A) = {x ∈ A : A ⊂ ub(x)};
(2) max(A) = {x ∈ A : A ⊂ lb(x)}.
Remark 2.6. By this theorem, for any A ⊂ X, we may also naturally define

lb∗(A) = {x ∈ X : A ∩ lb(x) ⊂ ub(x)} .
Thus, min∗(A) = A ∩ lb∗(A) is just the family of all minimal elements of A.

Theorem 2.7. If A ⊂ X, then
(1) inf(A) = lb(A) ∩ ub (lb(A)); (2) sup(A) = ub(A) ∩ lb (ub(A)).

Theorem 2.8. If A ⊂ X, then
(1) inf(A) = sup (lb(A)); (2) sup(A) = inf (ub(A));

(3) min(A) = A ∩ inf(A); (4) max(A) = A ∩ sup(A).

Theorem 2.9. If X is reflexive, then the following assertions are equivalent:
(1) X is antisymmetric:

(2) card (min(A)) ≤ 1 for all A ⊂ X;

(3) card (max(A)) ≤ 1 for all A ⊂ X.

Remark 2.10. In [34], by taking L = {A ⊂ X : A ⊂ lb(A)}, we have first proved that (1)
holds if and only if card(A) ≤ 1 for all A ∈ L.

Moreover, we have observed that, because of Theorem 2.8, we may write infimum and supremum
instead of minimum and maximum in the above theorem.
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3. Increasingly regular and normal structures

Definition 3.1. A function ϕ of a proset X to itself will be called a unary operation on X.
More generally, a function f of one proset X to another Y will be called a structure on X.

Remark 3.2. This terminology and the following definitions have been mainly motivated by
the various structures derived from relators and their inducedoperations. (See [28] and [20].)

A structure f on X to Y may be called increasing if for any x1, x2 ∈ X, with x1 ≤ x2, we have
f(x1) ≤ f(x2). Moreover, f may be called decreasing if it is increasing as a structure on X to Y ∗.

Now, somewhat differently, we shall introduce the following

Definition 3.3. A structure f on X will be called increasingly ϕ-regular, for some operation
ϕ on X, if for any x1, x2 ∈ X we have

x1 ≤ ϕ(x2) ⇐⇒ f(x1) ≤ f(x2).

Remark 3.4. Now, a structure f on X to Y may be naturally called decreasingly ϕ-regular if it
is an increasingly ϕ-regular structure on X to Y ∗. That is, for any x1, x2 ∈ X, we have x1 ≤ ϕ(x2)
if and only if f(x2) ≤ f(x1).

The above definition closely resembles to a brief characterization of Galoisconnections estab-
lished by Schmidt [23, p. 205]. (See also Pickert [22] and Davey and Pristley [6, p. 155].)

However, instead of Galois connections, it is now more convenient to use the residuated mappings
of Derdérian [7] and Blyth and Janowitz [2, p. 11] in the following modified form.

Definition 3.5. A structure f onX to Y will be called increasingly g-normal, for some structure
g on Y to X, if for any x ∈ X and y ∈ Y we have

f(x) ≤ y ⇐⇒ x ≤ g(y).
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Remark 3.6. Now, a structure f on X to Y may be naturally called decreasingly g-normal if
it is an increasingly g-normal structure on X to Y ∗. That is, for any x ∈ X and y ∈ Y , we have
y ≤ f(x) if and only if x ≤ g(y).

To establish the relationships between increasingly regular and normal structures, we first prove
the following

Theorem 3.7. If f is an increasingly g-normal structure on X to Y and ϕ is an operation on
X such that ϕ ≤ g ◦ f ≤ ϕ, then f is increasingly ϕ-regular.

Proof. By using above inequalities, the transitivity of X, and Definition 3.5, we can easily see
that for any x1, x2 ∈ X, we have

x1 ≤ ϕ(x2) ⇐⇒ x1 ≤ (g ◦ f)(x2)

⇐⇒ x1 ≤ g (f(x2)) ⇐⇒ f(x1) ≤ f(x2).

Therefore, f is increasingly ϕ-regular. �

Now, as an immediate consequence of the above theorem and the reflexivity of X, we can also
state

Corollary 3.8. If f is an increasingly g-normal structure on X to Y , then ϕ = g ◦ f is an
operation on X such that f is increasingly ϕ-regular.

Remark 3.9. Hence, it is clear that several properties of increasingly normal structures can be
immediately derived from those of the increasingly regular ones.

However, the following partial converse to Theorem 3.7 indicates that theincreasingly normal
structures are still more general objects than the increasingly regular ones.

Theorem 3.10. If f is an increasingly ϕ-regular structure on X onto Y and g is a structure
on Y to X such that ϕ ≤ g ◦ f ≤ ϕ, then f is increasingly g-normal.
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Proof. Suppose that x ∈ X and y ∈ Y . Then, since Y = f [X], there exists u ∈ X such that
y = f(u). Hence, by Definition 3.3, the above inequalities and the transitivity of X, it is clear that

f(x) ≤ y ⇐⇒ f(x) ≤ f(u) ⇐⇒ x ≤ ϕ(u)

⇐⇒ x ≤ (g ◦ f)(u)) ⇐⇒ x ≤ g (f(u)) ⇐⇒ x ≤ g(y).

Therefore, f is an increasingly g-normal. �

Now, as an immediate consequence of the above theorem and the reflexivity of X, we can also
state

Corollary 3.11. If f is an increasingly ϕ-regular structure on X onto Y and g is a structure
on Y to X such ϕ = g ◦ f , then f is increasingly g-normal.

Remark 3.12. Note that Definitions 3.3 and 3.5 and Corollaries 3.8 and 3.11 do not need the
assumed reflexivity and transitivity of X and Y .

In the sequel, we shall also need the following

Theorem 3.13. If f is an increasingly g-normal structure on X to Y , then g is an increasingly
f–normal structure on Y ∗ to X∗.

Proof. By the corresponding definitions, for any y ∈ Y and x ∈ X, we have

g(y) ≤∗ x ⇐⇒ x ≤ g(y) ⇐⇒ f(x) ≤ y ⇐⇒ y ≤∗ f(x).

Therefore, the required assertion is true. �

Remark 3.14. From the above theorem or its proof, it is clear that the converse of Theorem 3.13
is also true.

For a preliminary illustration of the above notions and the forthcoming results, we shall only
mention here the following straightforward extension of Theorem 2.3.
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Example 3.15. Let R be a relation on one set X to another Y . For any A ⊂ X and B ⊂ Y ,
define

F (A) = ubR(A) = {y ∈ Y : ∀x ∈ A : xRy}
and

G(A) = lbR(B) = {x ∈ X : ∀y ∈ B : xRy} .
Then, it can be easily seen that F is a decreasingly G–normal structure on P(X) to P(Y ).

Remark 3.16. The above construction was first considered by Birkhoff [1, p. 122] in 1940
under the name polarities. (For some further studies, see also Ore [19] and Everett [9].)

4. Closure operations and increasingly regular structures

Definition 4.1. An operation ϕ on a proset X will be called
(1) expansive if ∆X ≤ ϕ; (2) semi-idempotent if ϕ2 ≤ ϕ.

Remark 4.2. Note that if (1) holds, then we also have ϕ = ∆X ◦ ϕ ≤ ϕ ◦ ϕ = ϕ2. Therefore,
if both (1) and (2) hold and X is a poset, then ϕ is actually idempotent in the sense that ϕ2 = ϕ.

Now, as a straightforward extension of the corresponding definition of [2, p. 111], we may also
have the following

Definition 4.3. An increasing and expansive operation will be called a preclosure operation.
And a semi-idempotent preclosure operation will be called a closure operation.

Moreover, an expansive and semi-idempotent operation will be called a semi-closure operation.
And an increasing and idempotent operation will be called a modification operation.

Remark 4.4. Now, an operation ϕ on X may be naturally called an interior operation on X
if it is a closure operation on X∗. That is, it is increasing, ϕ ≤ ∆X and ϕ ≤ ϕ2.
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To feel the importance of modification operations, note that if

Φ(R) = R∞ = {R∞ : R ∈ R} and Ψ(R) = R∂ =
{
S ⊂ X2 : S∞ ∈ R

}
for any relator R on a set X, then Φ and Ψ are only modification operations on the poset P2(X2).

We can also note that Φ is an increasingly Ψ-normal structure on P2(X2) to itself. Moreover,
by [16], R∧∞ is the largest preorder relator on X such that TR∧∞ ⊂ TR (resp. TR∧∞ = TR).

From Corollaries 3.8 and 3.11, it is clear that increasingly regular structures are also closely
related to closure operations. To easily establish this relationship, we shall start with the following

Theorem 4.5. If f is an increasingly ϕ-regular structure on X to Y , then
(1) ϕ is expansive; (2) f is increasing; (3) f ≤ f ◦ ϕ ≤ f .

Proof. If x ∈ X, then by the reflexivities of Y and X we have f(x) ≤ f(x) and ϕ(x) ≤ ϕ(x).
Hence, by using the assumed regularity of f , we can infer that x ≤ ϕ(x) and f (ϕ(x)) ≤ f(x).
Therefore, (1) and the second part of (3) are true.

Moreover, if x1, x2 ∈ X such that x1 ≤ x2, then by the inequality x2 ≤ ϕ(x2) and the transitivity
of X we also have x1 ≤ ϕ(x2). Hence, by using the assumed regularity of f , we can infer that
f(x1) ≤ f(x2). Therefore, (2) is also true. Now, if x ∈ X, then from the inequality x ≤ ϕ(x), we
can also see that f(x) ≤ f (ϕ(x)). Therefore, the first part of (3) is also true. �

Now, as an immediate consequence of assertion (3), we can also state

Corollary 4.6. If f is an increasingly ϕ-regular structure on X to a poset Y , then f = f ◦ ϕ.

Moreover, as a straightforward extension of [20, Theorem 1.9], we can also prove the following

Theorem 4.7. If ϕ is an operation on X, then the following assertions are equivalent:
(1) ϕ is a closure operation;
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(2) ϕ is increasingly ϕ-regular;

(3) there exists an increasingly ϕ-regular structure f on X.

Proof. Suppose that (1) holds and x1, x2 ∈ X. If x1 ≤ ϕ(x2), then by the increasingness
of ϕ we also have ϕ(x1) ≤ ϕ (ϕ(x2)). Moreover, by the semi-idempotency of ϕ, we also have
ϕ (ϕ(x2)) ≤ ϕ(x2). Hence, by the transitivity of X, it follows that ϕ(x1) ≤ ϕ(x2).

On the other hand, by the expansivity of ϕ, we have x1 ≤ ϕ(x1). Therefore, if ϕ(x1) ≤ ϕ(x2),
then by the transitivity of X we also have x1 ≤ ϕ(x2). Thus, (2) also holds. Moreover, if (2) holds,
then by taking f = ϕ we can at once see that (3) also holds.

Therefore, to complete the proof, we need only show that (3) also implies (1). For this, assume
that f is an increasingly ϕ-regular structure on X to another proset Y . Then, by Theorem 4.5,
the operation ϕ is expansive and f ◦ ϕ ≤ f . Hence, we can infer that f ◦ ϕ2 = f ◦ ϕ ◦ ϕ ≤ f ◦ ϕ.
Therefore, by the transitivity of Y , we also have f ◦ ϕ2 ≤ f . Thus, for any x ∈ X, we have
f

(
ϕ2(x)

)
≤ f(x). Hence, by using the assumed regularity of f , we can infer that ϕ2(x) ≤ ϕ(x).

Therefore, ϕ2 ≤ ϕ, and thus ϕ is semi-idempotent.
Finally, if x1, x2 ∈ X such that x1 ≤ x2, then by Theorem 4.5 we have f(x1) ≤ f(x2). Moreover,

by Theorem 4.5, we also have f (ϕ(x1)) ≤ f(x1). Hence, by the transitivity of Y , it follows
that f (ϕ(x1)) ≤ f(x2). Hence, by using the assumed regularity of f , we can already infer that
ϕ(x1) ≤ ϕ(x2). Therefore, ϕ is increasing, and thus (1) also holds. �

Remark 4.8. According to Erné [8, p. 50], the origins of (2) go back to R. Dedekind. For
similar observations, see also Everett [9] and Meyer and Nieger [17, p. 343].

A simple application of Theorem 4.7 yields the following characterization of increasingly regular
structures.

Corollary 4.9. If f is a structure and ϕ is an operation on X, then the following assertions
are equivalent:
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(1) f is increasingly ϕ-regular;
(2) ϕ is a closure operation and, for any x1, x2 ∈ X, we have

ϕ(x1) ≤ ϕ(x2) ⇐⇒ f(x1) ≤ f(x2).

Proof. From Theorem 4.7, we know that if (1) holds, then ϕ is a closureoperation. Moreover, if
ϕ is a closure operation, then for any x1, x2 ∈ X we have

x1 ≤ ϕ(x2) ⇐⇒ ϕ(x1) ≤ ϕ(x2).

Therefore, by Definition 3.3, assertions (1) and (2) are equivalent. �

Finally, we note that from Theorem 4.5 and 4.7, by using Theorems 3.7 and 3.10, we can easily
derive some theorems on increasingly normal structures.

Theorem 4.10. If f is an increasingly g-normal structure on X to Y , then f is increasing.
Moreover, if ϕ is an operation on X such that ϕ ≤ g ◦ f ≤ ϕ, then ϕ is a closure operation on X
such that f ≤ f ◦ ϕ ≤ f .

Proof. By Theorem 3.7, the structure f is increasingly ϕ-regular, and thus by Theorems 4.5
and 4.7 the required assertions are true. �

From the above theorem, by Theorem 3.13, it is clear that we also have

Corollary 4.11. If f is an increasingly g-normal structure on X to Y , then g is increasing.
Moreover, if ψ is an operation on Y such that ψ ≤ f ◦ g ≤ ψ, then ψ is an interior operation on
Y such that g ≤ g ◦ ψ ≤ g.

Remark 4.12. Note that if in particular X and Y are posets, then we may write equalities
instead of the above inequalities.
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Now, as a slight extension of [6, Lemma 7.26, p. 159], we can also prove the following counterpart
of Corollary 4.9.

Theorem 4.13. For any structures f on X to Y and g on Y to X, the following assertions
are equivalent:

(1) f is increasingly g-normal;
(2) f and g are increasing and ∆X ≤ g ◦ f and f ◦ g ≤ ∆

Y
.

Proof. If (1) holds, then by Theorem 4.10 and Corollary 4.11 the structures f and g are increas-
ing. Moreover, g ◦ f is a closure operation on X and f ◦ g is an interior operation on Y . Thus, in
particular ∆X ≤ g ◦ f and f ◦ g ≤ ∆Y . Therefore, (2) also holds.

Suppose now that (2) holds and x ∈ X and y ∈ Y . If f(x) ≤ y, then by the increasingness of
g we also have g (f(x)) ≤ g(y). Hence, since x = ∆X(x) ≤ (g ◦ f)(x) = g (f(x)), it is clear that
x ≤ g(y). Conversely, if x ≤ g(y), then by the increasingness of f we also have f(x) ≤ f (g(y)).
Hence, since f (g(y)) = (f ◦ g)(y) ≤ ∆Y (y) = y, it is clear that f(x) ≤ y. Therefore, (1) also
holds. �

Remark 4.14. This theorem shows that increasingly normal structures are also natural gen-
eralizations of residuated mappings [2, p. 11].

5. Characterizations of increasingly normal structures

Definition 5.1. For any structure f on one proset X to another Y , we define two relations Γf

and gf on Y to X such that

Γf (y) = {x ∈ X : f(x) ≤ y} and gf (y) = max (Γf (y))

for all y ∈ Y .
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Remark 5.2. Note that thus we have Γf (y) = f−1 [lb(y)] =
(
f−1 ◦ lb

)
(y) for all y ∈ Y .

Moreover, note that if in particular X is a poset, then by Theorem 2.9 the relation gf is already
a function.

By Definition 3.5 and Theorem 4.10, the above definitions could only be naturally applied to
increasing structures. Therefore, it is not surprising that most of the forthcoming statements need
increasing structures.

Theorem 5.3. If f is a structure on X to Y , then
(1) Γf (y1) ⊂ Γf (y2) for all y1, y2 ∈ Y with y1 ≤ y2;

(2) if f is increasing, then Γf (y) is descending in X for all y ∈ Y .

Proof. To check (2), note that if y ∈ Y and x ∈ Γf (y), then by the defintion of Γf (y) we have
f(x) ≤ y. Moreover, if u ∈ X such that u ≤ x, then by the increasingness of f we also have
f(u) ≤ f(x). Hence, by the transitivity of Y , it follows that f(u) ≤ y. Therefore, u ∈ Γf (y), and
thus the required assertion is also true. �

Theorem 5.4. If f is a structure on X to Y , then
(1) gf (y) = Γf (y) ∩ ub (Γf (y)) for all y ∈ Y ;

(2) if f is increasing, then gf (y) = {x ∈ X : lb(x) = Γf (y)} for all y ∈ Y .

Proof. To check (2), note that, by Definition 5.1 and Theorem 2.5, for any x ∈ X and y ∈ Y ,
we have

x ∈ gf (y) ⇐⇒ x ∈ max (Γf (y)) ⇐⇒ x ∈ Γf (y) and Γf (y) ⊂ lb(x).
Moreover, by Theorem 5.3, we have x ∈ Γf (y) if and only if lb(x) ⊂ Γf (y). �

Remark 5.5. Note that, in addition to the above assertions, by Theorem 2.8 we can also state
that gf (y) = Γf (y) ∩ sup (Γf (y)) for all y ∈ Y .
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Now, as an extension of an observation of Pickert [22] and [2, Theorem 2.5], we can also prove
the following

Theorem 5.6. For any structures f on X to Y and g on Y to X, the following assertions are
equivalent:

(1) f is increasingly g-normal;

(2) f is increasing and g ⊂ gf ;

(3) Γf (y) = lb (g(y)) for all y ∈ Y .

Proof. If (1) holds, then by Theorem 4.10 the structure f is increasing. Moreover, if y ∈ Y , then
by the reflexivity of X we have g(y) ≤ g(y). Hence, by using (1), we can infer that f (g(y)) ≤ y.
Therefore, by the definition of Γf , we have g(y) ∈ Γf (y).

Moreover, if x ∈ Γf (y), then f(x) ≤ y. Hence, by using (1), we can infer that x ≤ g(y).
Therefore, g(y) ∈ ub (Γf (y)) is also true. Hence, by Theorem 5.4, it is clear that

g(y) ∈ Γf (y) ∩ ub (Γf (y)) = gf (y).

Therefore, (2) also holds.
While, if (2) holds, then g(y) ∈ gf (y) for all y ∈ Y . Hence, by using Theorem 5.4, we can infer

that Γf (y) = lb (g(y)) for all y ∈ Y . Therefore, (3) also holds. Finally, if (3) holds, then it is clear
that, for any x ∈ X and y ∈ Y , we have

f(x) ≤ y ⇐⇒ x ∈ Γf (y) ⇐⇒ x ∈ lb (g(y)) ⇐⇒ x ≤ g(y).

Therefore, (1) also holds. �

From the above theorem, by the second part of Remark 5.2, we can immediately get

Corollary 5.7. If f is an increasingly g-normal structure on a poset X to Y , then g = gf .
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Hence, it is clear that in particular we also have

Corollary 5.8. If f is a structure on a poset X to Y , then there exists at most one structure
g on Y to X such that f is increasingly g-normal.

Moreover, by using Theorem 5.6, we can also easily establish the following

Theorem 5.9. If f is an increasing structure on X to Y such that gf is a structure on Y , then
f is increasingly gf–normal.

Proof. In this case, gf is already a selection of itself. Therefore, by Theorem 5.6, the required
assertion is true. �

From the above theorem, by Corollary 4.11, we can also state

Corollary 5.10. If f is an increasing structure on X to Y such that gf is a structure on Y ,
then gf is also increasing.

Definition 5.11. For any structure f on X to Y , we define

Qf =
{
g ∈ XY : f is increasingly g-normal

}
.

Moreover, if in particular Qf 6= ∅, then we say that f is increasingly normal.

Now, by using Theorem 5.6, we can also easily prove the following two theorems.

Theorem 5.12. If f is a structure on X to Y , then the following assertions are equivalent:
(1) f is increasingly normal;

(2) f is increasing and Y is the domain of gf ;

(3) for each y ∈ Y there exists x ∈ X such that Γf (y) = lb(x).
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Proof. If (1) holds, then by Definition 5.11 there exists a structure g on Y to X such that f is
increasingly g-normal. Hence, by Theorem 5.6, it follows that f is increasing and g(y) ∈ gf (y) for
all y ∈ Y . Therefore, gf (y) 6= ∅ for all y ∈ Y , and thus (2) also holds.

While, if (2) holds, then by the Axiom of Choice, there exists a function g of Y into X such
that g ⊂ gf . Hence, by Theorem 5.6, it is clear that Γf (y) = lb (g(y)) for all y ∈ Y . Therefore, (3)
also holds.

Finally, if (3) holds, then by the Axiom of Choice there exists a function g of Y into X such that
Γf (y) = lb (g(y)) for all y ∈ Y . Hence, by Theorem 5.6, it is clear that f is g-normal. Therefore,
(1) also holds. �

Theorem 5.13. If f is an increasingly normal structure on X to Y , thengf =
⋃
Qf .

Proof. If g ∈ Qf , then by Theorem 5.6 we have g ⊂ gf . Therefore, the inclusion
⋃
Qf ⊂ gf is

true.
On the other hand, from Theorem 5.12 we can see that gf (y) 6= ∅ for all y ∈ Y . Therefore, if

y ∈ Y and x ∈ gf (y), then by the Axiom of Choice there exists a function g of Y to X such that
x = g(y) and g(t) ∈ gf (t) for all t ∈ Y \{y}. Moreover, from Theorem 5.6, we can see that g ∈ Qf .
Hence, it is clear that

x ∈
⋃

g∈Qf

{g(y)} =
( ⋃

g∈Qf

g

)
(y) =

(⋃
Qf

)
(y).

Therefore, gf (y) ⊂ (
⋃
Qf ) (y), and thus the inclusion gf ⊂

⋃
Qf is also true. �

Moreover, in addition to Theorem 5.9 and Corollary 5.10, we can also prove

Theorem 5.14. If f is an increasingly normal structure on poset X to Y , then gf is an
increasing structure on Y to X and Qf = {gf}.
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Proof. In this case, by Definition 5.11, there exists g ∈ Qf . Hence, by Corollary 5.7, it follows
that g = gf , and thus gf ∈ Qf . Hence, by Corollary 5.8, it is clear that Qf = {gf}. Moreover,
from Corollary 5.10, we can see that gf is also increasing. �

6. Characterizations of increasingly regular structures

Definition 6.1. For any structure f on a proset X, we define two relations Λf and ϕf on X
such that

Λf (x) = {u ∈ X : f(u) ≤ f(x)} and ϕf (x) = max (Λf (x))

for all x ∈ X.

Remark 6.2. Note that thus we have Λf (x) = f−1[lb (f(x))]=
(
f−1◦ lb ◦f

)
(x) for all x ∈ X.

Moreover, note that if in particular X is a poset, then by Theorem 2.9 the relation ϕf is already
a function.

By Definition 3.3 and Theorem 4.5, the above definitions could only be naturally applied to
increasing structures. Therefore, it is not surprising that most of our forthcoming theorems need
increasing structures.

Theorem 6.3. If f is a structure on X, then Λf is preorder on X.

Proof. This is immediate from the reflexivity and transitivity of the range of f by the definition
of Λf . �

Theorem 6.4. If f is a structure on X, then

Λf = Γf ◦ f and ϕf = gf ◦ f.
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Proof. If x ∈ X, then for any u ∈ X we have

u ∈ Λf (x) ⇐⇒ f(u) ≤ f(x) ⇐⇒ u ∈ Γf (f(x)) ⇐⇒ u ∈ (Γf ◦ f) (x).

Therefore, Λf (x) = (Γf ◦ f) (x). Hence, it is clear

ϕf (x) = max (Λf (x)) = max ((Γf ◦ f) (x))

= max (Γf (f(x))) = gf (f(x)) = (gf ◦ f)(x).

Therefore, the required equalities are also true. �

Theorem 6.5. If f is a structure on X, then the following assertions are equivalent:
(1) f is increasing;

(2) Λf (x) is descending in X for all x ∈ X;

(3) Λf (x1) ⊂ Λf (x2) for all x1, x2 ∈ X with x1 ≤ x2.

Proof. Suppose that (1) holds and x ∈ X. Then, by Theorem 6.4, we have Λf (x)=(Γf ◦f) (x) =
Γf (f(x)). Hence, by Theorem 5.3, we can see that Λf (x) is descending in X, and thus (2) also
holds.

Suppose now that (2) holds and x1, x2 ∈ X such that x1 ≤ x2. Then, by Theorem 6.3, we have
x2 ∈ Λf (x2). Hence, by (2) and the inequality x1 ≤ x2, we can see that x1 ∈ Λf (x2). Now, by
Theorem 6.3, it is clear that Λf (x1) ⊂ Λf (Λf (x2)) = (Λf ◦ Λf ) (x2) ⊂ Λf (x2). Therefore, (3) also
holds.

Finally, suppose that (3) holds and x1, x2 ∈ X such that x1 ≤ x2. Then, by Theorem 6.3 and
assertion (3), we have x1 ∈ Λf (x1) ⊂ Λf (x2). Hence, by the definition of Λf , it is clear that
f(x1) ≤ f(x2). Therefore, (1) also holds. �

From Theorem 6.4, by Theorem 5.4, it is clear that we also have the following
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Theorem 6.6. If f is a structure on X, then
(1) ϕf (x) = Λf (x) ∩ ub (Λf (x)) for all x ∈ X;

(2) if f is increasing, then ϕf (x) = {u ∈ X : lb(u) = Λf (x)} for all x ∈ X.

Remark 6.7. Now, by Remark 5.5, we can also state that ϕf (x) = Λf (x)∩ sup (Λf (x)) for all
x ∈ X.

Moreover, we can also easily prove the following

Theorem 6.8. If f is a structure on X, then
(1) ϕf (x) ⊂ ub(x) for all x ∈ X;

(2) if f is increasing, then ϕf (x1) ⊂ lb (ϕf (x2)) for all x1, x2 ∈ X with x1 ≤ x2.

Proof. If x ∈ X, then by Theorem 6.3 we have {x} ⊂ Λf (x). Hence, by Theorem 6.6, it is clear
that

ϕf (x) ⊂ ub (Λf (x)) ⊂ ub ({x}) = ub(x),
and thus (1) is true.

To prove (2), suppose that x1, x2 ∈ X such that x1 ≤ x2, and moreover u ∈ ϕf (x1) and
v ∈ ϕf (x2). Then, by Theorems 6.6 and 6.5, we have

u ∈ ϕf (x1) ⊂ Λf (x1) ⊂ Λf (x2) and v ∈ ϕf (x2) ⊂ ub (Λf (x2)) .

Hence, it is clear that u ≤ v. Therefore, u ∈ lb (ϕf (x2)), and thus (2) is also true. �

Remark 6.9. From the above theorem, we can at once see that if the structure f is increasing
and ϕf is an operation on X, then ϕf is a preclosure operation.

However, this observation is of no particular importance for us since by using the following
extension of [20, Theorem 1.12], we can prove a stronger statement.
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Theorem 6.10. If ϕ is an operation and f is a structure on X, then the following assertions
are equivalent:

(1) f is increasingly ϕ-regular;

(2) f is increasing and ϕ ⊂ ϕf ;

(3) Λf (x) = lb (ϕ(x)) for all x ∈ X.

Proof. If (1) holds, then by Theorem 4.5, the structure f is increasing. Moreover, if x ∈ X,
then by Theorem 4.5 we have f (ϕ(x)) ≤ f(x). Hence, by the definition of Λf , it follows that
ϕ(x) ∈ Λf (x).

Moreover, if u ∈ Λf (x), i.e., f(u) ≤ f(x), then by (1) we also have u ≤ ϕ(x). Therefore,
ϕ(x) ∈ ub (Λf (x)) is also true. Hence, by Theorem 6.6, it is clear that

ϕ(x) ∈ Λf (x) ∩ ub (Λf (x)) = ϕf (x).

Therefore, (2) also holds.
While, if (2) holds, then ϕ(x) ∈ ϕf (x) for all x ∈ X. Hence, by using Theorem 6.6, we can infer

that Λf (x) = lb (ϕ(x)) for all x ∈ X. Therefore, (3) also holds. (Thus, by Remark 6.2, we can
also state that f−1 ◦ lb ◦f = lb ◦ϕ.)

Finally, if (3) holds, then it is clear that, for any x1, x2 ∈ X, we have

x1 ≤ ϕ(x2) ⇐⇒ x1 ∈ lb (ϕ(x2)) ⇐⇒ x1 ∈ Λf (x2) ⇐⇒ f(x1) ≤ f(x2).

Therefore, (1) also holds. �

Now, as an immediate consequence of Theorem 6.10 and the second part of Remark 6.2, we can
also state

Corollary 6.11. If f is an increasingly ϕ-regular structure on a poset X, then ϕ = ϕf .

Hence, it is clear that in particular we also have
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Corollary 6.12. If f is a structure on a poset X, then there exists at most one operation ϕ on
X such that f is increasingly ϕ-regular.

Moreover, by using Theorem 6.10, we can also easily establish the following

Theorem 6.13. If f is an increasing structure on X such that ϕf is an
operation on X, then f is ϕf -increasingly regular.

Hence, by Theorem 4.7, it is clear that in particular we also have

Corollary 6.14. If f is an increasing structure on X such that ϕf is an operation on X, then
ϕf is a closure operation.

Definition 6.15. For any structure f on a proset X, we define

Of =
{
ϕ ∈ XX : f is increasingly ϕ-regular

}
.

Moreover, if in particular Of 6= ∅, then we say that f is increasingly regular.

By Corollary 3.8, we evidently have the following

Theorem 6.16. If f is an increasingly normal structure on X to Y , then f is increasingly
regular.

Moreover, analogously to the corresponding results of Section 5, we can also easily establish the
following three theorems.

Theorem 6.17. If f is a structure on X, then the following assertions are equivalent:
(1) f is increasingly regular;

(2) f is increasing and X is the domain of ϕf ;

(3) for each x ∈ X there exists u ∈ X such that Λf (x) = lb(u).
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Theorem 6.18. If f is an increasingly regular structure on X, then ϕf =
⋃
Of .

Theorem 6.19. If f is an increasingly regular structure on a poset X, then ϕf is a closure
operation on X and Of = {ϕf}.

7. Injective and surjective increasingly regular structures

In addition to Theorem 6.3, we can also prove the following

Theorem 7.1. If f is a structure on X onto Y , then the following assertions are equivalent:
(1) Λf is antisymmetric;

(2) f is injective and Y is antisymmetric.

Proof. Suppose that (1) holds and x1, x2 ∈ X such that f(x1) ≤ f(x2) and f(x2) ≤ f(x1).
Then, by the definition of Λf , we have x1 ∈ Λf (x2) and x2 ∈ Λf (x1). Hence, by using (1), we can
infer that x1 = x2, and thus f(x1) = f(x2). Hence, since Y = f [X], it is clear that the second part
of (2) is true. Moreover, by the reflexivity of Y , it is clear that the first part of (2) is also true.

To prove the converse implication, suppose now that (2) holds and x1 ∈ Λf (x2)
and x2 ∈ Λf (x1). Then, by the definition of Λf , we have f(x1) ≤ f(x2) and f(x2) ≤ f(x1).
Hence, by the antisymmetry of Y , it follows that f(x1) = f(x2). Thus, by the injectivity of f , we
also have x1 = x2. Therefore, (1) also holds. �

However, Theorem 7.1 is of no particular importance for us since we also have the following

Theorem 7.2. If f is an increasingly ϕ-regular structure on one poset X to another, then the
following assertions are equivalent:

(1) f is injective; (2) ϕ is the identity function of X.
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Proof. Suppose that (1) holds and x ∈ X. Then, by Corollary 4.6, we have f (ϕ(x)) = f(x).
Hence, by (1), it follows that ϕ(x) = x. Thus, (2) also holds.

Suppose now that (2) holds and x1, x2 ∈ X such that f(x1) = f(x2). Then, by the reflexivity
of the range of f , we also have f(x1) ≤ f(x2) and f(x2) ≤ f(x1). Hence, by using (2) and the
assumed regularity of f , we can infer that x1 ≤ ϕ(x2) = x2 and x2 ≤ ϕ(x1) = x1. Now, by the
antisymmetry of X, it is clear that x1 = x2. Therefore, (1) also holds. �

In this respect, it is also worth mentioning that, according to [2, Theorem 2.6], we also have
the following

Theorem 7.3. If f is an increasingly g-normal structure on one poset X to another Y and
ψ = f ◦ g, then the following assertions are equivalent:

(1) f is onto Y ;

(2) g is an injection of Y ;

(3) ψ is the identity function of Y .

Proof. Define ϕ = g ◦ f . Then, by Corollary 3.8, f is increasingly ϕ-regular. Moreover, by
Corollary 4.6, we have

f(x) = f (ϕ(x)) = f (g (f(x)))
for all x ∈ X. Hence, if (1) holds, we can infer that

y = f (g(y)) = ψ(y)

for all y ∈ Y . Therefore, (2) and (3) also hold.
On the other hand, from Theorem 3.13 we know that now g is an increasingly f–normal structure

on Y ∗ to X∗. Thus, by Corollary 3.8, the function g is an increasingly ψ-regular structure on Y ∗

to X∗. Hence, by Theorem 7.2, it is clear that (2) and (3) are equivalent. Now, to complete the
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proof, it remains to note only that if (3) holds, then we have f (g(y)) = y for all y ∈ Y . Therefore,
f [Rg] = Y , and thus in particular (1) also holds. �

Now, as an useful consequence of Theorems 7.2 and 7.3, we can also state

Corollary 7.4. If f is an increasingly g-normal structure on one poset X to another Y such
that f is injective and onto Y , then g = f−1.

Proof. Namely, by Theorem 7.3, we have f ◦ g = ∆Y . Moreover, by Corollary 3.8 and Theo-
rem 7.2, we also have g ◦ f = ∆X . Therefore, g = f−1 also holds. �

Moreover, by using Theorems 5.12, 6.16 and 6.17, we can also prove the following

Theorem 7.5. If f is a structure on X onto Y , then the following assertions are equivalent:
(1) f is increasingly regular; (2) f is increasingly normal.

Proof. If (1) holds, then by Theorems 6.17 and 6.4 we can see that f isincreasing and

gf (f(x)) = ϕf (x) 6= ∅
for all x ∈ X. Hence, by using that Y = f [X], we can infer that gf (y) 6= ∅ for all y ∈ Y . Therefore,
by Theorem 5.12, assertion (1) also holds.

On the other hand, from from Theorem 6.16, we know that (2) implies (1) even if f is not onto
Y . �

Remark 7.6. By Theorems 7.5 and 7.3, it is clear that, in the case of posets, the class of
all increasingly regular structures coincides with the class of all increasingly injectively normal
structures.

Therefore, the increasingly normal structures are more general objects, than the increasingly
regular ones. However, despite this the latter ones are sometimes more natural and important
means than the former ones.
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8. A modification of the induced operation

By Theorem 4.5 and the results Section 6, we may also naturally introduce

Definition 8.1. For any structure f on a proset X, we define two relations Λ∗f and ϕ∗f on X
such that

Λ∗f (x) = {u ∈ X : f(x) ≤ f(u) ≤ f(x)} and ϕ∗f (x) = max
(
Λ∗f (x)

)
for all x ∈ X.

Remark 8.2. Note that if X is a poset, then by Theorem 2.9 the relation ϕ∗f is already a
function.

Moreover, note that if the range of f is a poset, then we simply have Λ∗f (x)={u∈X: f(u)=f(x)}
for all x ∈ X.

By using the corresponding definitions and Theorem 6.3, we can easily prove

Theorem 8.3. If f is a structure on X, then
(1) Λ∗f = Λf ∩ Λ−1

f ; (2) Λ∗f is an equivalence on X.

Proof. To prove (1), note that if x ∈ X and u ∈ Λ∗f (x), then by the definition of Λ∗f , we have
f(x) ≤ f(u) ≤ f(x). Hence, by the definition of Λf , it follows that u ∈ Λf (x) and x ∈ Λf (u).
Hence, we can already see that

u ∈ Λf (x) ∩ Λ−1
f (x) =

(
Λf ∩ Λ−1

f

)
(x).

Therefore, Λ∗f (x) ⊂
(
Λf ∩ Λ−1

f

)
(x), and thus Λ∗f ⊂ Λf ∩ Λ−1

f . Moreover, by reversing the above
argument, we can easily see that the converse inclusion is also true.
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Now, to prove (2), it remains only to note that, by Theorem 6.3, Λf is a preorder on X. Hence,
it is clear that Λ−1

f , and thus Λ∗f = Λf ∩Λ−1
f is also a preorder on X. Now, since the latter relation

is obviously symmetric the proof is complete. �

However, instead of an analogue of Theorem 6.6, we can only state thefollowing

Theorem 8.4. If f is a structure on X, then

(1) ϕ∗f (x) = Λ∗f (x) ∩ ub
(
Λ∗f (x)

)
for all x ∈ X;

(2) if f is increasing, then ϕ∗f (x) =
{
u ∈ X : u ∈ Λ∗f (x) ⊂ lb(u)

}
for all x ∈ X.

Moreover, instead of an analogue of Theorem 6.10, we can only prove thefollowing

Theorem 8.5. If f is an increasingly ϕ-regular structure on X, then ϕ ⊂ ϕ∗f .

Proof. If x ∈ X, then by Theorem 4.5, we have f(x) ≤ f (ϕ(x)) ≤ f(x). Hence, by the definition
Λ∗f , it follows that ϕ(x) ∈ Λ∗f (x). Moreover, by Theorems 6.10 and 6.6, we have ϕ(x) ∈ ϕf (x) ⊂

ub (Λf (x)). Hence, by the inclusion Λ∗f (x) ⊂ Λf (x), it follows that ϕ(x) ∈ ub
(
Λ∗f (x)

)
is also true.

Therefore, by Theorem 8.4, we also have

ϕ(x) ∈ Λ∗f (x) ∩ ub
(
Λ∗f (x)

)
= ϕ∗f (x).

Thus, the required inclusion is also true. �

Remark 8.6. If ϕ is an operation and f is an increasing structure on X such that ϕ ⊂ ϕ∗f ,
then in contrast to Theorem 6.10 we can only prove that x1 ≤ ϕ(x2) implies f(x1) ≤ f(x2) for all
x1, x2 ∈ X.

Now, as an immediate consequence of Theorems 8.5 and 6.18, we can also state the following



JJ J I II

Go back

Full Screen

Close

Quit

Theorem 8.7. If f is an increasingly regular structure on X, then ϕf ⊂ ϕ∗f .

Proof. Namely, if ϕ ∈ Of , then by Theorem 8.5 we have ϕ ⊂ ϕ∗f . Hence, by Theorem 6.18, it
is clear that ϕf =

⋃
Of ⊂ ϕ∗f . �

From the above theorem, by Theorem 6.17 and Remark 8.2, it is clear that in particular we also
have

Corollary 8.8. If f is an increasingly regular structure on a poset X, thenϕf = ϕ∗f .

Now, as an immediate consequence of this corollary and Theorem 6.19, we can also state the
following

Theorem 8.9. If f is an increasingly regular structure on a poset X, then ϕ∗f is a closure
operation on X and Of = {ϕ∗f}.
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(1977), 343–350.
18. O’Carroll L., A basis for the theory of residuated groupoids, J. London Math. Soc. 3 (1971), 7–20.
19. Ore O., Galois connexions, Trans. Amer. Math. Soc. 55 (1944), 493–513.
20. Pataki G., On the extensions, refinements and modifications of relators, Math. Balk. 15 (2001), 155–186.
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