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STRONG STABLY FINITE RINGS AND SOME EXTENSIONS

M. R. VEDADI

Dedicated to Professor Ahmad Haghany

Abstract. A ring R is called right strong stably finite (r.ssf) if for all n ≥ 1,

injective endomorphisms of R
(n)
R are essential. If R is an r.ssf ring and e is an

idempotent of R such that eR is a retractable R-module, then eRe is an r.ssf ring.

A direct product of rings is an r.ssf ring if and only if each factor is so. The R.ssf

condition is investigated for formal triangular matrix rings. In particular, if M is a

finitely generated module over a commutative ring R such that for all n ≥ 1, M
(n)
R

is co-Hopfian, then
h

EndR(M) M
0 R

i
is an r.ssf ring. If X is a right denominator set

of regular elements of R, then R is an r.ssf ring if and only if RX−1 is so.

1. Introduction

All rings are associative with a unit element and all modules are unitary right
modules. Rings in which right-invertibility of elements implies left-invertibility are
called directly-finite or Dedekind finite. A ring R is stably finite (sf for short) if the
matrix rings Mn(R) are directly finite for all n ≥ 1. The stable finiteness property
is of interest in various parts of mathematics, see [10, § 1B]. In [4], Goodearl gave
a characterization of rings R for which every surjective endomorphism of a finitely
generated R-module is injective. Such rings form a proper subclass of sf-rings [10,
Proposition 1.7]. Another proper subclass of sf-rings is the class of right strong
stably finite rings (r.ssf for short) [8]. A ring R is said to be r.ssf if for every n ≥ 1,
injective endomorphisms of R

(n)
R are essential. In [8], it was shown that the class

of r.ssf rings is closed under Morita equivalence and r.ssf rings R satisfy the right
strong rank condition (r.src) (i.e., a right R-module monomorphism R(n) → R(m)

can exist only when n ≤ m). The main results about r.ssf rings of [8], can be
summarized in Figure 1. All of the implications here are not reversible.

In this paper, we will study the r.ssf condition for rings R and S where R ⊆ S
is a ring extension. Direct products, formal triangular matrix rings and some
localization extensions are investigated. Any unexplained terminology, and all the
basic results on rings and modules that are used in the sequel can be found in
[5] and [10].
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(sf)
⇑

(u.dim(RR) < ∞) ⇒ (r.ssf) ⇒ (r.src)
⇑

Commutative

Figure 1

2. Results

Recall that a module is Hopfian (resp. co-Hopfian) if any of its surjective (resp.
injective) endomorphisms is an automorphism. Following [8], an R-module M is
called weakly co-Hopfian (wcH) if every injective endomorphism of MR is essential.
We call a ring R right wcH if R as right R-module is wcH. We first state some
results from [8], [9] which are generalizations of the fact that a ring R is right wcH
if and only if every right regular element of R generates an essential right ideal in R.
Recall that a module MR is semi-projective if for every surjective homomorphism
f : MR → NR with N ≤ MR and every homomorphism g : MR → NR there exists
h ∈ EndR(M) such that fh = g. Also MR is called retractable if HomR(M,N) 6= 0
for all 0 6= N ≤ MR.

Theorem 2.1. Let M be a semi-projective retractable R-module. Then MR is
wcH if and only if EndR(M) is a right wcH ring.

Proof. By [9, Theorem 2.6]. �

The following result is a useful characterization of r.ssf rings whose proof is
immediate from the above Theorem and [8, Proposition 2.7].

Theorem 2.2. The following statements are equivalent for a ring R.
(i) R is an r.ssf ring.
(ii) For any n ≥ 1, if u1, · · · , un are R-linearly independent elements in R

(n)
R

then u1R + · · ·+ unR is an essential submodule of R
(n)
R .

(iii) For any n ≥ 1, Mn(R) is a right wcH ring.

A ring S is said to be right Ore if for every a, b ∈ S, with b regular, there exist
c, d ∈ S, with d regular, such that ad = bc. Clearly, every right Ore ring in which
right regular elements are regular is a right wcH ring. In [2, Theorem 2.5] it is
proved that if R[x] is right Ore, then R is an sf ring. But from some results of
[2] and Theorem 2.2, we observe that R is in fact an r.ssf ring. We record this as
below.

Theorem 2.3 (Cedo and Herbera). Let R be a ring such that R[x] is right
Ore. Then R is an r.ssf ring.

Proof. Let n ≥ 1 and set S = Mn(R). By [2, Lemma 2.4], for all A,B ∈ S
there exist p(x), q(x) ∈ S[x], with q(x) regular, such that (1S −Ax)p(x) = Bq(x).
Hence by [2, Lemma 2.1(ii)], S is a right wcH ring. The result is now clear by
Theorem 2.2. �
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Using Theorem 2.2, we will show that the class of r.ssf rings is closed under direct
products. The following Lemma is needed and may be found in the literature, we
give a proof for completeness.

Lemma 2.4. Let {Ri}i∈I be any family of rings and T =
∏

Ri their direct
product. Then for any n ≥ 1, the rings Mn(T ) and

∏
i∈IMn(Ri) are isomorphic.

Proof. Let n ≥ 1, Q = Mn(T ) and S =
∏

i∈IMn(Ri). For any A=[ars]n×n ∈ Q,
suppose that ars =

∏
i airs ∈ T for any r, s ∈ {1, . . . , n}. For each i ∈ I, let

Ai = [airs]n×n ∈ Mn(Ri). Then it is easy to verify that the map ϕ : Q → S with
ϕ(A) =

∏
i Ai is an additive group isomorphism. To see that ϕ is indeed a ring

homomorphism, let B = [brs]n×n ∈ Q and set AB = C. Then C = [crs]n×n ∈ Q
where

crs =
n∑

t=1

(∏
i

airt

)(∏
i

bits

)
=
∏

i

(
n∑

t=1

airtbits

)
∈ T.

Hence cirs =
∑n

t=1 airtbits for all i ∈ I, r, s ∈ {1, . . . , n}. Thus by definition of ϕ,
we have

ϕ(C) =
∏

i

Ci

where

Ci = [cirs]n×n =

[
n∑

t=1

airtbits

]
n×n

∈ Mn(Ri)

for all i ∈ I. On the other hand,

ϕ(A)ϕ(B) =
∏

i

(AiBi) =
∏

i

[airs][birs] =
∏

i

[(
n∑

t=1

airtbits

)]
.

It follows that
ϕ(AB) = ϕ(A)ϕ(B).

Therefore ϕ is a ring isomorphism. �

Theorem 2.5. Let {Ri}i∈I be any family of rings and T =
∏

Ri their direct
product. Then T is r.ssf if and only if Ri is r.ssf for each i ∈ I.

Proof. In view of Theorem 2.2(iii) and Lemma 2.4, we need to prove that if
{Si}i∈I is a family of rings and Q =

∏
Si their direct product, then Q is a right

wcH ring if and only if each Si is a right wcH ring. Suppose that Q is a right
wcH ring and 1Q = {ei}i∈I . Let j ∈ I and xj be a right regular element of Sj .
Then the element x = {x′i}i∈I with x′j = xj and x′i = ei for every i 6= j, is a right
regular element in Q. Thus by our assumption, xQ is an essential right ideal in
Q. It follows that (xj)Sj is also an essential right ideal in Sj . Hence Sj is a right
wcH ring.

Conversely, let Si be a right wcH ring for all i ∈ I. If q = {qi}i∈I is a right
regular element in Q then each qi is a right regular element in Si. Hence for every
i ∈ I, the right ideal xiSi is essential in Si. It follows that qQ is an essential right
ideal in Q, proving that Q is a right wcH ring. �
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Let M be an R-module. We call M , Σ-co-Hopfian if M
(n)
R is co-Hopfian for

all n ≥ 1. Every quasi-injective Dedekind finite module is Σ-co-Hopfian; see for
example [8, Proposition 1.4 and Corollary 1.5(i)]. Note that if M is any non-zero
module, then any infinite direct sum of copies of M is neither Hopfian nor co-
Hopfian. We investigate in Theorem 2.12, the r.ssf condition of formal triangular
matrix rings [ A M

0 B ] where either MB is Σ-co-Hopfian or AM is flat. Such bimodules
naturally arise among localizations of a ring. Let X be a right denominator set in
a ring R, then RX−1 is a flat left R-module [5, Corollary 10.13]. If X = CR(0),
the set of all regular elements of R, then the ring RX−1 is called the classical right
quotient ring of R [10, 10.17]. Suppose that R is a ring having a classical right
quotient ring Q. Then [6, Theorem 2.4] shows that if QQ is (Σ-)co-Hopfian, then
R is an r.ssf ring. The converse of this will be investigated in Theorem 2.7 where
the r.ssf condition is characterized for RX−1 with X ⊆ CR(0).

Proposition 2.6. Let X be a right denominator set of regular elements in a
ring R. Let S = RX−1 and n ≥ 1. Then the following statements hold.

(i) If u1, · · · , un ∈ R(n) are R-linearly independent, then for every x ∈ X,
u1x

−1, · · · , unx−1 are S-linearly independent.
(ii) Let u1x

−1, · · · , unx−1 ∈ S(n) be S-linearly independent, where x ∈ X and
ui ∈ R(n). Then u1, · · · , un are R-linearly independent.

(iii) If u1, · · · , un ∈ R(n) such that
∑n

i=1 uiR is an essential submodule of R
(n)
R ,

then for every x ∈ X,
∑n

i=1 uix
−1S is an essential submodule of S

(n)
S .

(iv) Let
∑n

i=1(uix
−1)S be an essential submodule of S

(n)
S , where x ∈ X and

ui ∈ R(n). Then
∑n

i=1 uiR is an essential in R
(n)
R .

Proof. We only prove (iv). Let W =
∑n

i=1 uiR and 0 6= u ∈ R(n). By hypothe-
sis, there exists s ∈ S such that

0 6= us = u1x
−1s1 + · · · ... + unx−1sn.

Now by [5, Lemma 6.1(b)], there is y ∈ X such that sy and (x−1si)y (1 ≤ i ≤ n)
are in R. Hence, 0 6= u(sy) ∈ W . It follows that W is essential in R(n). �

Theorem 2.7. Let X be a right denominator set of regular elements in a ring
R. Then R is an r.ssf ring if and only if RX−1 is an r.ssf ring.

Proof. Note first that for every v1, · · · vn elements in S(n), by using the common
denominator property [5, Lemma 6.1(b)], there exist ui ∈ R(n) and x ∈ X such
that vi = uix

−1. Hence, the result is proved by Theorem 2.2(ii) and Proposi-
tion 2.6. �

Corollary 2.8.
(i) Let R ⊆ S be rings such that R is a right order in S. Then R is an r.ssf

ring if and only if S is an r.ssf ring.
(ii) For any ring R, the ring R[x] is r.ssf if and only if R[x, x−1] is so.

Proof. By Theorem 2.7. �
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We are now going to study formal triangular matrix rings. In the next results,
A, B are two rings, and AMB is a left A right B-bimodule and T is the formal
triangular matrix ring [ A M

0 B ]. Let [ 0 0
0 1 ] = b ∈ T , then it is easy to verify that

b = b2, bT is a retractable (right) T -module and bTb ' B as rings. In [8, Theorem
2.6], it is proved that being right strong stably finite is a Morita invariant property.
Hence, if R is an r.ssf ring and e is a full idempotent in R (i.e., e2 = e and
ReR = R), then the ring eRe is r.ssf. In Proposition 2.10, we extend this fact
to retractable idempotents “e” (i.e., eR is a retractable R-module). Note that if
0 6= I ≤ (eR)R and ReR = R, then I = I(ReR) = I(eR) is non-zero and so
HomR(eR, I) 6= 0. Hence, eR is a retractable R-module. As we mentioned above,
in general, full idempotent elements of a ring form a proper subset of the set of
retractable idempotents. The following result is needed and it is stated in [8] as a
corollary of [8, Theorem 1.1], we give a direct proof for reader’s convenience.

Lemma 2.9. Any direct summand of a wcH module is a wcH module.

Proof. Let M = N ⊕ K be a direct sum of modules and let M be wcH. If
f : N → N is a monomorphism, then f ⊕ 1 : (N ⊕ K) → (N ⊕ K) is also
monomorphism. Hence by hypothesis, the image of f⊕1 is an essential submodule
of M . It follows that f(N) is an essential submodule of N , proving that N is
wcH. �

Proposition 2.10. If R is r.ssf then so is eRe for every retractable idempotent
e ∈ R.

Proof. Let n ≥ 1 , S = Mn(R) and M = (eR)(n). Since e is a retractable
idempotent, it is easy to verify that MR is retractable. Under the standard Morita
equivalence of R with S, the n-generated right R-module M corresponds to a
cyclic retractable projective right S-module N . It follows that N ' qS for some
retractable idempotent q ∈ S. Because R is r.ssf, SS is wcH by Theorem 2.2. Thus
qS is a wcH right S-module by Lemma 2.9. Now

Mn(eRe) ' EndR(M) ' EndS(N) ' EndS(qS)

is a right wcH ring by Theorem 2.1. Thus eRe is an r.ssf ring by Theorem 2.2. �

The following Proposition is needed for our main result about formal triangular
matrix rings.

Proposition 2.11.
(i) Let R ⊆ S be rings such that RS is faithfully flat. If S is an r.ssf ring, then

so is R.
(ii) Let M be a non-zero R-module and N be a submodule of MR which is

invariant under any injective endomorphism of MR. If NR is co-Hopfian
and (M/N)R is wcH then MR is wcH.

Proof. (i) Let n ≥ 1, M = R(n). We shall show that M is a wcH right R-module.
Suppose that f : MR → MR is an injective homomorphism and N ∩ f(M) = 0
for some N ≤ MR. Hence N ⊕ M embeds in MR. Since S is flat as a left
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R-module, the functor − ⊗R S : Mod-R → Mod-S preserves monomorphisms.
Thus (N⊗RS)⊕(M⊗RS) can be embedded in M⊗RS. It follows that N⊗RS = 0
by the wcH condition on S(n) ' M⊗RS. Therefore N = 0 because RS is faithfully
flat. Consequently, f(M) is essential in MR, proving that MR is wcH.

(ii) Let f : M → M be an R-module monomorphism. By hypothesis f(N) ⊆ N
and hence f(N) = N by the co-Hopfian condition on NR. It follows that the map
f̄ : M/N → M/N is an R-module monomorphism. Since M/N is wcH, the image
of f̄ = f(M)/N is an essential R-submodule of M/N . It follows that f(M) is an
essential submodule of MR, proving that MR is wcH. �

Theorem 2.12.

(i) If A and B are r.ssf rings and MB is Σ-co-Hopfian, then T is an r.ssf ring.
(ii) Let T be an r.ssf ring. Then B is an r.ssf ring. If further AM is flat, then

A is an r.ssf ring.

Proof. (i) Let I = [ 0 M
0 0 ] and let n ≥ 1. Then T/I ' A ⊕ B as rings.

By hypothesis and Theorem 2.5, T/I is an r.ssf ring. Thus (T/I)(n) is a wcH
(T/I)-module and hence as a T -module. On the other hand, (T/I)(n) ' T (n)/I(n)

as right T -modules and I(n) is a fully invariant T -submodule of T (n). Using
the hypothesis, we can also conclude that I(n) is a co-Hopfian right T -module.
Therefore, T (n) is a wcH right T -module by Proposition 2.11(ii). Proving that T
is an r.ssf ring.

(ii) First note that B ' eTe for the retractable idempotent e = [ 0 0
0 1 ], hence

B is r.ssf by Proposition 2.10. For the second part, using the unital embedding
(a, b) → [ a 0

0 b ] of A × B in T , we can regard T as a left A × B-module. Thus
in view of Proposition 2.11(i) and Theorem 2.5, it is enough to show that T is a
faithfully flat left A×B-module. Since M is flat as a left A-module, T is flat as a
left A× B-module [7, Proposition 4.7]. Now let R = A× B and N ⊗R T = 0 for
some R-module N . From [ a 0

0 b ] [ 0 m
0 0 ] = [ 0 am

0 0 ] for any a ∈ A, b ∈ B and m ∈ M ,
we see that M is a left R-submodule of T . It follows that T ' R ⊕ M as left
R-modules. Hence the condition N ⊗R T = 0 implies that N ⊗R R = 0 and so
N = 0. This shows that RT is faithfully flat, as wanted. �

Let R be a ring and n ≥ 1. The upper triangular n × n-matrix ring over R is
denoted by Tn(R).

Corollary 2.13. Consider the following statements for a ring R.

(i) For all n ≥ 1, R
(n)
R is co-Hopfian.

(ii) For all n ≥ 1, Tn(R) is an r.ssf ring.
(iii) There exists n ≥ 1 such that Tn(R) is an r.ssf ring.
(iv) R is an r.ssf ring.

Then (i) ⇒ (ii), (iii) ⇒ (iv) and all the statements are equivalent if R is right self
injective.
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Proof. By Theorem 2.12 and the fact that Tn(R) '
[

R R(n−1)

0 Tn−1(R)

]
. For the last

statement note that if R is a right self injective r.ssf ring then for all n ≥ 1,
R

(n)
R is injective and wcH and hence co-Hopfian. �

In [3], rings over which all finitely generated modules are Σ-co-Hopfian are
characterized, see also [1, Theorem 1.1]. Hence, the following result provides
extensive examples of r.ssf formal triangular matrix rings.

Theorem 2.14. Let R be any commutative ring and let M be a finitely gener-
ated Σ-co-Hopfian R-module with S = EndR(M). Then the ring [ S M

0 R ] is r.ssf.

Proof. By [8, Theorem 2.8], R is an r.ssf ring. Hence, by Theorem 2.12, it
is enough to show that S is an r.ssf ring. We use Theorem 2.2(iii). Let n ≥ 1,
we shall show that Mn(S) is a right wcH ring. Set L = M (n) and let f be a
right regular element in the ring EndR(L) ' Mn(S). We will show that f is a
unit element of EndR(L). Suppose that K = ker f is non-zero. Since f is right
regular, HomR(L,K) = 0. Now let E = E(K) be the injective hull of K. Then the
inclusion map K → L can be extended to an R-module homomorphism g from L
to E. Since L is a finitely generated R-module, we have g(L) = e1R+· · ·+emR for
some positive integer m and some ei ∈ E. On the other hand, K(n) is an essential
submodule of E

(n)
R , see for example [5, Proposition 5.6]. Thus there exists r ∈ R

such that 0 6= (e1, · · · , em)r ∈ K(n). It follows that the multiplication by r defines
a non-zero R-homomorphism from g(L) to K. Consequently, 0 6= HomR(L,K),
that is a contradiction. Therefore, K = 0 and hence f should be an isomorphism
by the Σ-co-Hopfian condition on M , as wanted. �
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