CUBIC EDGE-TRANSITIVE GRAPHS OF ORDER $4p^2$

M. ALAEIYAN AND B. N. ONAGH

ABSTRACT. A regular graph Γ is said to be semisymmetric if its full automorphism group acts transitively on its edge-set but not on its vertex-set. It was shown by Folkman [5] that a regular edge-transitive graph of order 2p or $2p^2$ is necessarily vertex-transitive, where p is a prime. In this paper, it is proved that there is no connected semisymmetric cubic graph of order $4p^2$, where p is a prime.

1. Introduction

Throughout this paper, graphs are assumed to be finite, simple, undirected and connected. For a graph Γ , we denote by $V(\Gamma)$, $E(\Gamma)$, $A(\Gamma)$ and $\operatorname{Aut}(\Gamma)$ its vertex set, edge set, arc set and full automorphism group, respectively. For $u, v \in V(\Gamma)$, denote by uv the edge incident to u and v in Γ , and by $N_{\Gamma}(u)$ the neighborhood of u in Γ , that is, the set of vertices adjacent to u in Γ . If a subgroup G of $\operatorname{Aut}(\Gamma)$ acts transitively on $V(\Gamma)$, $E(\Gamma)$ and $A(\Gamma)$, we say that Γ is G-vertex-transitive, G-edge-transitive and G-arc-transitive, respectively. In the special case, when $G = \operatorname{Aut}(\Gamma)$ we say that Γ is vertex-transitive, edge-transitive and arc-transitive (or symmetric), respectively. A regular G-edge-transitive but not G-vertex-transitive graph, will be referred to as a G-semisymmetric graph. In particular, if $G = \operatorname{Aut}(\Gamma)$, then the graph Γ is said to be semisymmetric.

Let N be a subgroup of $\operatorname{Aut}(\Gamma)$. The quotient graph Γ/N or Γ_N of Γ relative to N is defined as the graph such that the set Σ of N-orbits in $V(\Gamma)$ is the vertex set of Γ/N and $B, C \in \Sigma$ are adjacent if and only if there exist $u \in B$ and $v \in C$ such that $uv \in E(\Gamma)$.

A graph $\widetilde{\Gamma}$ is called a *covering* of a graph Γ with projection $\wp:\widetilde{\Gamma}\to\Gamma$, if \wp is a surjection from $V(\widetilde{\Gamma})$ to $V(\Gamma)$ such that $\wp\mid_{N_{\widetilde{\Gamma}}(\widetilde{v})}:N_{\widetilde{\Gamma}}(\widetilde{v})\to N_{\Gamma}(v)$ is a bijection for any vertices $v\in V(\Gamma)$ and $\widetilde{v}\in\wp^{-1}(v)$. The *fibre* of an edge or a vertex is its preimage under \wp . If $\widetilde{\Gamma}$ is connected, then any two vertex or edge fibres are of the same cardinality n. This number is called the *fold number* of the covering and we say that \wp is an n-fold covering. A covering $\widetilde{\Gamma}$ of Γ with a projection \wp is said to be regular (or K-covering) if there is a semiregular subgroup K of the automorphism

Received December 29, 2007; revised January 13, 2009. 2000 Mathematics Subject Classification. Primary 05C25, 20B25.

Key words and phrases. semisymmetric graph; cubic graph; regular covering; solvable group.

group $\operatorname{Aut}(\widetilde{\Gamma})$ such that graph Γ is isomorphic to the quotient graph $\widetilde{\Gamma}/K$, say by h, and the quotient map $\widetilde{\Gamma} \to \widetilde{\Gamma}/K$ is the composition $\wp h$ of \wp and h.

Covering techniques have been known as a powerful tool in topology and graph theory for a long time. The study of semisymmetric graphs was initiated by Folkman [5]. There is given a classification of semisymmetric graphs of order 2pq in [4], where p and q are distinct primes. Semisymmetric cubic graphs of orders $2p^3$ and $6p^2$ are classified in [8, 7], and also in [1] it is proved that every edgetransitive cubic graph of order $8p^2$, where p is a prime, is vertex-transitive. In [3], an overview of known families of semisymmetric cubic graphs is given.

In this paper, we investigate semisymmetric cubic graphs of order $4p^2$, where p is a prime. The following is the main result of this paper.

Theorem 1.1. Let p be a prime. Then there is no connected semisymmetric cubic graph of order $4p^2$.

2. Primary Analysis

The following proposition is a special case of [7, Lemma 3.2].

Proposition 2.1. Let Γ be a connected G-semisymmetric cubic graph with bipartition sets $U(\Gamma)$ and $W(\Gamma)$, where $G \leq \operatorname{Aut}(\Gamma)$. Moreover, suppose that N is a normal subgroup of G. If N is intransitive on bipartition sets, then N acts semiregularly on both $U(\Gamma)$ and $W(\Gamma)$, and Γ is an N-regular covering of an G/N-semisymmetric graph.

We quote the following propositions.

Proposition 2.2. [8, Proposition 2.4] The vertex stabilizers of a connected G-edge-transitive cubic graph Γ have order $2^r \cdot 3$, $r \geq 0$. Moreover, if u and v are two adjacent vertices, then $|G: \langle G_u, G_v \rangle| \leq 2$ and the edge stabilizer $G_u \cap G_v$ is a common Sylow 2-subgroup of G_u and G_v .

Proposition 2.3 ([9]). Every both edge-transitive and vertex-transitive cubic graph is symmetric.

Proposition 2.4 ([2]). If $\widetilde{\Gamma}$ is a bipartite covering of a non-bipartite graph Γ , then the fold number is even.

3. Proof of Theorem 1.1

Lemma 3.1. Suppose that Γ is a connected semisymmetric cubic graph of order $4p^2$, where $p \geq 11$ is an odd prime. Set $A := \operatorname{Aut}(\Gamma)$. Moreover, suppose that $Q := O_p(A)$ is the maximal normal p-subgroup of A. Then $|Q| = p^2$.

Proof. Let Γ be a semisymmetric cubic graph of order $4p^2$ and set $A := \operatorname{Aut}(\Gamma)$. Then Γ is a bipartite graph. Denote by $U(\Gamma)$ and $W(\Gamma)$ the bipartition sets of Γ , where $|U(\Gamma)| = |W(\Gamma)| = 2p^2$. By Proposition 2.2, $|A| = 2^r 3p^2$, where $r \geq 1$ as A is transitive on the bipartition sets of Γ of size $2p^2$. We claim that A is solvable. Otherwise, by the classification of finite simple groups, its composition

factors would have to be an A_5 or PSL(2,7) (see [6]), which is a contradiction to order of A. Let $Q := O_p(A)$ be the maximal normal p-subgroup of A. We will show that $|Q| = p^2$.

First, suppose that |Q|=1. Let N be a minimal normal subgroup of A. By solvability of A, N is solvable and so N is elementary Abelian. Therefore, N is intransitive on each of the both bipartition sets $U(\Gamma)$ and $W(\Gamma)$, and hence by Proposition 2.1, N acts semiregularly on $U(\Gamma)$ (also on $W(\Gamma)$). Therefore, |N|=2. Now, we consider the quotient graph Γ_N of Γ relative to N, where Γ_N is A/N-semisymmetric. We have $|U(\Gamma_N)|=|W(\Gamma_N)|=p^2$. Let M/N is a minimal normal subgroup of A/N. Since A/N is solvable, M/N is also solvable and hence is elementary Abelian. It is easy to check that |M/N|=p or p^2 . So it follows that the order of normal subgroup M of A is equal to 2p or $2p^2$. Suppose that P is a Sylow p-subgroup of M. Then one can see that P is normal and hence is characteristic in M. Therefore, A has a normal subgroup of order p or p^2 . It is a contradiction, and thus $|Q| \neq 1$.

Now, suppose that |Q|=p. Let Γ_Q be the quotient graph of Γ relative to Q, where Γ_Q is A/Q-semisymmetric. We have $|U(\Gamma_Q)|=|W(\Gamma_Q)|=2p$. Suppose that N/Q is a minimal normal subgroup of A/N. Similar to before, N/Q is elementary Abelian. So by Proposition 2.1, N/Q is semiregular on each of the both bipartition sets $U(\Gamma_Q)$ and $W(\Gamma_Q)$ and hence |N/Q|=2. Now, suppose that Γ_N is the quotient graph Γ relative to N with $|U(\Gamma_N)|=|W(\Gamma_N)|=p$, where Γ_N is A/N-semisymmetric. Further, let M/N be a minimal normal subgroup of A/N. Then as above, we must have |M/N|=p and hence M is a normal subgroup of A of order $2p^2$. Therefore, A has a normal subgroup of order p^2 . Now we can get a contradiction. The result now follows.

Proof of Theorem 1.1. Suppose to the contrary that Γ is a (connected) semi-symmetric cubic graph of order $4p^2$. By [3], there is no semisymmetric cubic graph of order $4p^2$, where $p \leq 7$. We can assume that $p \geq 11$ is an odd prime. By Lemma 3.1, $Q := O_p(A)$ is of order p^2 . So by Proposition 2.1, Γ is a Q-covering of A/Q-semisymmetric graph Γ_Q , where Γ_Q is an edge-transitive cubic graph of order 4. But by [3] and Proposition 2.3, Γ_Q is symmetric. Hence Γ_Q is the complete graph K_4 . Since Γ is bipartite, K_4 is non-bipartite and also p^2 is odd, we come to a contradiction to Proposition 2.4. Thus the proof of Theorem 1.1 is completed. \square

By Theorem 1.1, Theorem 2 of [5], Theorem 1.1 of [1] and Proposition 2.4, we have the following corollary

Corollary 3.2. Every connected edge-transitive cubic graph of order $2^{\alpha}p^2$ is symmetric, where $\alpha \in \{1, 2, 3\}$ and p is a prime.

Now one may ask the following problem.

Problem 3.3. Classify all connected semisymmetric cubic graphs of order $2^{\alpha}p^{n}$, where p is a prime and $n, \alpha \geq 1$.

References

- 1. Alaeiyan M. and Ghasemi M., Cubic edge-transitive graphs of oredr $8p^2$, Bull. Austral. Math. Soc., 77 (2008), 315–323.
- 2. Archdeacon D., Kwak J.H., Lee J. and Sohn M.Y., *Bipartite covering graphs*, Discrete Mathematics, 214 (2000), 51–63.
- Conder M., Malnič A., Marušič D. and Potočnik P., A census of semisymmetric cubic graphs on up to 768 vertices, J. Algebr. Comb., 23 (2006), 255–294.
- 4. Du S. F. and Xu M. Y., A classification of semisymmetric graphs of order 2pq, Com. in Algebra, 28(6) (2000), 2685–2715.
- 5. Folkman J., Regular line-symmetric graphs, J. Combin. Theory, 3 (1967), 215–232.
- 6. Gorenstein D., Finite Simple Groups, New York: Plenum Press, 1982.
- Lu Z., Wang C. Q. and Xu M. Y., On semisymmetric cubic graphs of order 6p², Science in China Ser. A Mathematics, 47 (2004), 11–17.
- Malnič A., Marušič D. and Wang C. Q., Cubic edge-transitive graphs of order 2p³, Discrete Math., 274 (2004), 187–198.
- 9. Tutte W. T., Connectivity in graphs, Toronto University Press, 1966.
- M. Alaeiyan, Department of Mathematics, Iran University of Science and Technology, Narmak, Tehran 16844, Iran, *e-mail*: alaeiyan@iust.ac.ir
- B. N. Onagh, Department of Mathematics, Iran University of Science and Technology, Narmak, Tehran 16844, Iran, *e-mail*: b_onagh@iust.ac.ir