SPECIAL REPRESENTATIONS OF THE BOREL AND MAXIMAL
PARABOLIC SUBGROUPS OF Gs(q)

MARYAM GHORBANY

ABSTRACT. A square matrix over the complex field with a non-negative integral trace is called a
quasi-permutation matrix. For a finite group G, the minimal degree of a faithful representation of G
by quasi-permutation matrices over the complex numbers is denoted by ¢(G), and r(G) denotes the
minimal degree of a faithful rational valued complex character of G. In this paper ¢(G) and r(G) are
calculated for the Borel and maximal parabolic subgroups of G2(q).

1. INTRODUCTION

Let G be a finite linear group of degree m, that is, a finite group of automorphisms of an n-
dimensional complex vector space. We shall say that G is a quasi-permutation group if the trace
of every element of G is a non-negative rational integer. The reason for this terminology is that,
if G is a permutation group of degree n, its elements, considered as acting on the elements of a
basis of an n-dimensional complex vector space V', induce automorphisms of V' forming a group
isomorphic to G. The trace of the automorphism corresponding to an element x of G is equal
to the number of letters left fixed by x, and so is a non-negative integer. Thus, a permutation
group of degree n has a representation as a quasi-permutation group of degree n (See [12]). In [4]
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the authors investigated further the analogy between permutation groups and quasi-permutation
groups. They also worked over the rational field and found some interesting results.

By a quasi-permutation matrix we mean a square matrix over the complex field C' with non-
negative integral trace. Thus every permutation matrix over C'is a quasi-permutation matrix. For
a given finite group G, let ¢(G) be the minimal degree of a faithful representation of G by complex
quasi-permutation matrices. By a rational valued character we mean a complex character y of G
such that x(g) € @ for all ¢ € G. As the values of the characters of a complex representation
are algebraic numbers, a rational valued character is in fact integer valued. A quasi-permutation
representation of G is then simply a complex representation of G whose character values are rational
and non-negative. The module of such a representation will be called a quasi-permutation module.

We will call a homomorphism from G to GL(n, Q) a rational representation of G and its corre-
sponding character will be called a rational character of G. Let 7(G) denote the minimal degree
of a faithful rational valued character of G.

Finding the above quantities has been carried out in some papers, for example in [5], [6], [7]
and [10] we found them for the groups GL(2,q), SU(3,¢?), PSU(3,¢%), SL(3,q), PSL(3,q) and
G2(2™) respectively. In [3] we found the rational character table and above values for the group
PGL(2,q).

In this paper we will calculate ¢(G) and r(G) where G is a Borel subgroup or the maximal
parabolic subgroups of G3(q).

2. NOTATION AND PRELIMINARIES

Let G = G2(q) be the Chevalley group of type G2 defined over K. An excellent description of the
group can be found in [11]. We summarize some properties of the group. Let X be the set of roots
of a simple Lie algebra of type G5. In some fixed ordering the set of positive roots of ¥ can be



written as
vt ={a,b,a+b,2a +b,3a + b, 3a + 2b}

and ¥ consists of the elements of ¥ and their negatives. For each r € %, let z,.(t), z_,(t) and
w, be as in [11]. Moreover we denote the element h(x) of [11] by h(z1, 22, 23), where x(&;) = z;
with Z12223 = 1. Note that a = &, b = & — & and & + & + &3 = 0. For simplicity of notation
h(z*, 27, 27*"7) is also denoted by h, (i, j, —i — j) for & = 7,0, w, etc. Let X, = {z,.(t) | t € K} be
the one-parameter subgroup corresponding to a root r. Set

H = {h(z1,22,23) | Zg & KX’leQz?, = 1},

U =XoXoXatvX2a+6X3a+6X3a+2b

B=HU, P=<B,w,> Q=<B,w,>.
Then B = N¢(U) is a Borel subgroup and P and @ are the maximal parabolic subgroups containing
B.

By [1], [8], [9], every irreducible character of B will be defined as an induced character of some
linear character of a subgroup. This implies that B is an M-group. The character tables of the
Borel subgroup B for different ¢ are given in Tables I of [1], [8], [9].

The character tables of parabolic subgroups

P=<B,w, >= BUBw,B, Q=< B,w,>= BU Buw,B
for different ¢ are given in Tables [A.4, A.6], [III, IV], [II-2, I1I-2] of [1], [8], [9] respectively.
Now we give algorithms for calculation of 7(G) and ¢(G) .

Definition 2.1. Let x be a character of G such that, for all g € G, x(g) € Q and x(g) > 0.
Then we say that x is a non-negative rational valued character.

Let n; for 0 < i < r be Galois conjugacy classes of irreducible complex characters of G. For

0 < i < r let ¢; be a representative of the class n; with ¢, = 1g. Write ¥; = inemxi,



m; = mg(yp;) and K; = kery;. We know that K; = ker¥,. For I C {0,1,2,---,r}, put
K; = NierK;. By definition of 7(G) and ¢(G) and using the above notations we have:

r(G) = min{&(1) : £ = Zni\Ili, n; >0, Ky =1for I ={i,i#0,n; >0}}

=1

¢(G) =min{£(1) : £ = Zni\lfi, n; >0, Ky =1for I ={i,i#0,n; >0}}
i=0
where ng = —min{{(g)|g € G} in the case of ¢(G).
In [2] we defined d(x), m(x) and ¢(x) (see Definition 3.4). Here we can redefine it as follows:

Definition 2.2. Let x be a complex character of G such that kerxy =1and x = x1+ -+ Xn
for some x; € Irr(G). Then define

(1) () = LI ba(L),

0 ifX=1G,
2) mO) =14 | minf & . :
( Imin{}, ¥ x%(9):g€G} otherwise,
=1 €l (x:)

n

3) c)=> > xif+m(xlc.

i=1 o€l (x1)
So
r(G) = min{d(x) : ker x = 1}
and
¢(G) = min{e(x)(1) : ker x = 1}.



We can see all the following statements in [2].

Corollary 2.3. Let x € Irr(G), then Zael‘(x) Xx® is a rational valued character of G. Moreover
c(x) is a non-negative rational valued character of G and c(x) = d(x) + m(x).-

Lemma 2.4. Let x € Irr(G), x # lg. Then c(x)(1) > d(x) +1 > x(1) + 1.
Lemma 2.5. Let x € Irr(G). Then

> d(x) = x(1);
(2) e(x)(1) < 2d(x). Equality occurs if and only if Z(x)/ ker x is of even order.

3, QUASI-PERMUTATION REPRESENTATIONS

In this section we will calculate r(G) and ¢(G) for Borel and parabolic subgroups of Ga(q). First
we shall determine the above quantities for a Borel subgroup.

Theorem 3.1. Let B be a Borel subgroup of Ga(q), then
1) +(B) 2q(¢ — V)[L(x7(k))| ifg=3",
T =
¢*(q — V)|T(x7(k))| otherwise,

(2) ¢(B) = 2¢?|T(x7(k))| if g = 3",
| AT (R)|  otherwise,




q=2".

have
d(
d(
d(
d(
Go back d (
Full Screen
Close

Quit

d(x

d(x

X1) =

X2) =

X3) =

X4) =

5):

X6) =

7) =

Proof. Since there are similar proofs for ¢ = 2™, ¢ = p™; p # 3, we will prove only the case

In order to calculate r(B) and ¢(B), we need to determine d(x) and ¢(x)(1) for all characters
that are faithful or () kery = 1.
Now, by Corollary 2.3 and Lemmas 2.4, 2.5 and [9, Table I-1], for the Borel subgroup B we

T (xa (K, 1) |xa (k, D (1) + T(x7 (k) xz(k)(1) = ¢*(¢ — 1) + 1
(1) >q¢*+2,

IT(x2(k)Ix2(k) (1) + [T (x7 (k) Ix7(k)(1) > (¢ = 1)(¢* + 1)
and  c(x2)(1) > q(¢* +1),

IT(xs(k)Ixa(®) (1) + [T (x7 (k) Ix7(k)(1) > (¢ = 1)(¢* + 1)
and  ¢(x3)(1) > q(¢* + 1),

and  ¢(x1)(1)
(F)(
)(1)
(F)(
)(1)

T (xa (k) xa(k) (1) + [T (xr (k) Ixr (k)(1) 2 a(¢® — 1)
(1) =
(F)(1
(1) =
(F)(1
6)(1)

and  c(xa)(1) > ¢*(q+1),
IT (x5 (B) x5 (k) (1) + [0 (er (R) Ixz (B)(1) > a(q® = 1)
and  c(xs)(1) > ¢*(q+1),

T (xs ())1xs (k) (1) + [T (x7 (k) x7 (k) (1) > q(¢® — 1)
and c(xs)(1) > ¢*(g + 1),

I0(01)161(1) + T O (k) Ixr (B)(1) 2 (g = 1)(¢* + ¢ = 1)
and  c(x7)(1) 2 q(¢® +q - 1),



d(xs) = [L(6)|03(1) + [C(x7 (k) Ix7(k)(1) = g(g = 1)(2¢ = 1)

and  c(xs)(1) = ¢*(2¢ — 1),
d(x0) = IT (X005 (k, 1) (=00 (k, 1)) (1) +IT(x7(k))|x7 (k) (1) = q(g — 1)(2¢ — 1)
and  c(xo)(1) = ¢*(2¢ — 1),
A1) = IC(Ba(r, ) 10a(r,8)(1) + DG (k) e ) (1) > L= D= D)
and c(x10)(1) > @,
d(x11) = IT(Seexts(2))|(Zzexbs () (1) + IT(x7(k))Ix7(k)(1) > ¢*(¢ — 1)
and  c(x11)(1) > ¢*,
d(xa2) = [C(xa(k, 1) Ixa(k, 1) (1) + [0(62)]02(1) > ¢*(q — 1)* + 1

and  c(x12)(1) > (g —1) +2,

d(x13) = T (x2(k)Ix2(k)(1) + [T(62)[02(1) > (¢ — 1)(¢* — ¢* + 1)
and  c(x13)(1) > q(¢® — ¢ + 1),

d(x14) = T (xa(k))xs(k)(1) + [T(62)[02(1) > (¢ — 1)(¢> — ¢* + 1)
and  c(x14)(1) > q(¢® — ¢ + 1),

d(x15) = T (xa(k))xa(k)(1) + [T(62)[02(1) > g(g — 1)(¢* —q+ 1)
and  c(x15)(1) = ¢*(¢* —q+1),




d(x16) = IT(xs(k))Ixs(k)(1) + [T(62)]02(1) > g(g — 1)(¢* — g+ 1)
and  c(x16)(1) > ¢*(¢* —q+1),

d(x17) = IT(xs(k))Ixs(k)(1) + [T(62)]02(1) > g(g — 1)(¢* — g+ 1)
and  c(xa7)(1) > ¢*(¢* —q+1),

)
1
)
d(x1s) = [T(61)]61(1) + [T'(62)[02(1) > (¢ — 1)*(¢* + 1)
and  c(x18)(1) > g(g — 1)(¢* + 1),
IT( (g +1)

and  ¢(x19)(1) > ¢*(¢ — 1)(g+ 1),

|

)

)
1

d(x19) = |T'(65)]05(1) + |T'(62)]02(1) > q(q —

(Bob3(k, 1)) (1) + T(02)|02(1) > (g — 1)*(¢ + 1)
>¢*(q—1)(g+1),
d(x21) = [T'(0a(r,5))|04(r, 5)(1) + [[(62)]62(1) >

1> 2 *(g—=1D)(2¢+1)
5 ,

(
d(x20) = |T (S7005(k, 1)
and  ¢(x20)(

qlg —1)*(2¢ +1)
2

and e(x2

1)
d(x22) = |I' (Zzexbs(2)
and c(x22)
d(x7(k)) = [T (xz(k))|x7(k
and  c(x7)(k)(1) > ¢°,
d(02) = [['(62)02(1) = ¢”(q — 1)
and  ¢(62(1) = ¢°(¢ - 1),

) =

)| (Zzexbs(2)) (1) + [T(02)[02(1) > 2¢°*(q — 1)°
(1) >2¢*(qg— 1),

)(1) > ¢*(g—1)

)1

*(




An overall picture is provided by the Table I on the next page.
For the character x7(k), k € Ry as |Ro| = ¢ — 1, so [I'(x7(k))| < ¢ — 1, where I'(x7(k)) =
I'(Q(x7(k)) : Q). Therefore we have
¢*(q—1) < d(xr(k)) < ¢*(¢ — 1)*.

Now by Table I and the above equality we have

min{d(x) : ker x = 1} = d(x7(k)) = ¢*(¢ = )T (x=(k))|  and

min{e(x)(1) : kerx = 1} = c(x7(k))(1) = @D (= (k)]

)

The quasi-permutation representations of Borel subgroup of G2(3™) are constructed by the same
method. In this case by [8, Table I] we have

ker x7 (k) ﬂ ker xg(k) = 1.
Now, it is not difficult to calculate the values of d(x) and ¢(x)(1), so
min{d(x) : ker x = 1} = [I'(x7(k))[x7 (k) (1) + [T (xs (%)) |x6 (k) (1)
=2q(¢ — DIT(x7 (k)| = 2q(q — DIT(xs(k))|  and
min{c(x)(1) : kerx = 1} = 2¢*[T(x7(k))| = 2¢°|T (xs(k))|
(Since [T(x7(k))| = [T (xs(k)))-

By parts (1) and (2) we have
2

q .
L fg=3n,
o(B) q(q 5 1) n

r(B) q
q*(q—1)

otherwise.
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= 1. Therefore the result follows. O
g—o0 1(B)

The following theorem gives the quasi-permutation representations of a maximal parabolic sub-
group P.

Theorem 3.2.
A. Let P be a mazimal parabolic subgroup of Go(p™), p # 3, then

(1) r(P)=¢*(g—1),
(2) ¢(P) = ¢,

.o
(3) qll)rglo r(P)

B. Let P be a mazimal parabolic subgroup P of Go(3™), then
(1) r(P)=qlg—1)(¢+2),
(2) c(P)=¢*(g+1),

(ojplins (P)

Proof. A. Similar to the proof of Theorem 3.1, in order to calculate r(P) and ¢(P) we need to
determine d(x) and ¢(x)(1) for all characters that are faithful or (), kerx = 1.
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Table I.

| x [d) [ c(0() |
xi|[>2¢(@-1+1 >q*+2

X2 | > (g—1)(¢*+1) >q(¢® +1)

xs [ > (g—1D(¢*+1) >q(¢* +1)

xa | >q(¢® —1) >q*(g+1)

xs | >q(¢® = 1) >q¢*(g+1)

xs | >q(¢® —1) >q¢*(g+1)

x1 |2 (@=1)(@+q-1) |>q(¢+q-1)
xs | >4q(g—1)(2¢ - 1) >q¢*(2¢—1)
Xo [>qla—1)(2¢-1) [>4*(2¢—1)
x| >qlg—1)Bg—1)/2 |>¢°Bg—1)/2
x| > (g —1) >q*

X12 Zq(q—1)2+1 >q3(q—1)+2
xiz | > (q—1)(¢® — ¢ +1) | >q¢® — > +1)
xi4|> (=D - +1) | >q(¢’ —¢° +1)
xi5 | > qlg—1)(° —q+1) | > (" —q+1)
xi6|>qlg—1)(¢" —q+1) | >¢°(¢° —g+1)
xi7| > qlg—1)(¢° —q+1) | >¢°(¢° —q+1)




| x |40 [0 () |
xis |2 (@—-1D%(P+1) |>qle-1D(+1)
xio |Zqlg—1D*g+1)  |>¢(@-D(g+1)
x20 |Zq(g—1D*(g+1)  |>¢(¢—D(g+1)
x21 | >q(g—1)%(2¢+1)/2|>¢°(¢—1)(29+1)/2
x22 | >2¢%(q—1)? >2¢°(g—1)

x7(k) | > ¢°(q—1) > ¢

02 |=q¢*(¢g—1)° =q¢’(q—1)

Now, in this case, since the degrees of faithful characters are minimal, so we consider just the
faithful characters and by Corollary 2.3, Lemmas 2.4, 2.5 and [9, Table (II-2)], for the maximal

parabolic subgroup P of G5(2™) we have

d(x7(k)) = ID(x7(k)Ix7(k)(1) > ¢*(¢* = 1)  and  c(x7)(k)(1) >
d(xs(k)) = T(xs(k))Ixs(k)(1) > ¢*(¢—1)>  and  c(xs)(k)(1) >
d(07) = |(67)]67(1) = ¢*(¢ — 1) and  c(6:(1)) = ¢°,
d(0s) = [T'(6s)|0s(1) = ¢*(¢ — 1) and  ¢(0s(1)) = ¢*.
The values are set out in the following table
Table II.
| x [d 0@ |
x7(k) | > ¢*(¢° —1) | > ¢*(g+1)
0s(k) | > ¢*(q—1)*| > ¢*(¢—1)
0 |=qd’(¢—1) |=¢
0s |=¢’(¢q—1) |=¢*




Now, by Table II we have
min{d(x) : kerx =1} = d(x7(k)) = ¢*(¢—1))  and

min{e(x)(1) : ker x = 1} = e(x7(k))(1) = ¢*.

By the same method for the maximal parabolic subgroup P of G3(p™), p # 3 and by [1, Table
A.6], Table III is constructed.

Table III.
[ x [dx) [c(0() |

pxr(k) [ > (@ —1) |>¢*(q+1)
prOs(k) | > ¢*(g — 1)? >q*(g—1)

Pl |=d’(¢-1) |=¢
s |=q¢’(q—1) =q'
Py |=¢*(a—1)*/2|=¢*(a—1)/2
Pio |=¢*(¢—1)°/2|=¢*(¢—1)/2
PO |=¢*(®—1)/2|=¢*(¢+1)/2
P2 |=¢*(®—1)/2|=¢*(¢g+1)/2

Now by Table ITI we have
min{d(x) : kerx =1} = d(x7(k)) = ¢*(¢—1))  and

min{c(x)(1) : kerx = 1} = c(x7(k))(1) = ¢*.




B. The quasi-permutation representations of maximal parabolic subgroup P of G3(3™) are
constructed by the same method in Theorem 3.1. In this case, by [8, Table III |, we have

ker911 mkerxg(k) =1.

This helps us to calculate

min{d(y) : kerx =1} =q(¢—1)(¢+1)  and
min{c(x)(1) : ker y = 1} = ¢*(¢ + 1).

c(P
For the both parts, it is elementary to see that lim E ;
g—oo T

= 1. Therefore the result follows. O

In the following theorem, we construct 7(G) and ¢(G) of another parabolic subgroup @ of G3(q).
Theorem 3.3.
A. Let Q be a mazimal parabolic subgroup of G2(p™), p # 3, then

(1) 7(Q) = a(¢® = DIT (x7(k))|,

(2) c(Q) = [T (x7(k)),

CqQ
s )

B. Let Q be a mazimal parabolic subgroup of G2(3™), then
(1) r(@) =alg—1)(g+2),
(2) c(Q) =d*(g+1),




® M@=t

Proof. A) As we have mentioned before, in order to calculate r(Q) and ¢(Q) we need to deter-
mine d(x) and ¢(x)(1) for all characters that are faithful or (), ker x = 1.

Now, in this case, since the degrees of faithful characters are minimal, so we consider just the
faithful characters and by Corollary 2.3, Lemmas 2.4, 2.5 and [9, Table III-2] for the maximal
parabolic subgroup @ of G5(2™) we have

d(x7(k)) = [T (xr (k) |x7 (k) (1) > a(¢* = 1) and c(x7)(k)(1) > ¢°,
d(6) = [0(62)102(1) = q(q — 1)(¢* — 1) and c(62(1) = ¢*(¢ — 1),
(X2, 1) = |D(SEoba(k, 1)[(Siooba(k, 1))(1) = q(q — 1)(¢* — 1) and
(
(

C(El2=092(ka l)(l) > q4 q— 1)’
d(Zrex83(2)) = |0 (Zrexb3(2))|(Zaexb3(2))(1) = ¢*(g — 1)(¢° — 1) and
(Zeexb3(z))(1) = ¢* (g — 1)
The values are set out in Table IV.

For the character x7(k), k € Ry as |Ro| = ¢ — 1, so |[T'(x7(k))| < ¢ — 1, where T'(x7(k)) =
I'(Q(x7(k)) : Q). Therefore we have

a(¢* = 1) < d(x7(k)) < qlq — 1)(¢* — 1).
Now, by Table IV we have
min{d(x) : ker x = 1} = d(x7(k)) = mq(¢* =1)  and
min{c(x)(1) : ker x = 1} = e(x7(k))(1) = mq®, where m = |['(x7(k))|.



Table IV.

X d(x) c(x)(1)
xr(k) | >q(g®—1) >q°
xs(k)  [>qlq—1)(*-1) [>¢(¢g—1)
Siob2(k, 1) [> (g —1)(¢* = 1) |>¢’(g—1)
Seexts(x) = (q— 1) —1)[=q"(¢—1)

For the maximal parabolic subgroup @ of G5(p™), p # 3, by the same method and [1, Table A.6],
Table V is constructed.

Table V.
X d(x) c(x)(1)
axr(k) >q(q® — 1) > q°
Sico @fa(k,l) [>qlg—1)(¢* —1) [>¢*(g—1)
Seery @b3(z) [>q(g—1)%( —1) [ >4 (¢—1)°
Yoer, @0a(x) |=(@—1)(—1) [=q"(¢g—1)
Qs(k) +00s(k) | > ql¢—1)(¢° —1) |>4¢°(¢—1)

For the character gx7(k), k € Ry as |Ro| =q — 1, so |I'(gx7(k))| < g — 1, where I'(gx7(k)) =
I'(Q(gx7(k)) : Q). Therefore we have

q(q® — 1) < d(x7(k)) < q(qg—1)(¢* - 1).




Now, by Table V we have
min{d(x) : ker x = 1} = d(gx7(k)) = mq(¢* — 1) and
min{c(x)(1) : kerx = 1} = c(qxr(k))(1) =mg®,  where m = [T(qxr(k))I-

B. The quasi-permutation representations of maximal parabolic subgroup @ of G3(3™) are
constructed by the same method as in Theorem 3.1. In this case, by Table III of [8], we have

ker 611 ()| ker x6 (k) = 1.
This helps us to obtain
min{d(x) : kery =1} = q(q — 1)(¢ + 2) and
min{e(x)(1) : kerx = 1} = ¢*(¢ + 1).

It is obviously that also in this case lim Q)

= 1. Therefore the result follows. O
a—00 7(Q)
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