STARLIKE AND CONVEXITY PROPERTIES FOR p-VALENT HYPERGEOMETRIC FUNCTIONS

R. M. EL-ASHWAH, M. K. AOUF and A. O. MOUSTAFA

Abstract. Given the hypergeometric function $F(a, b ; c ; z)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}(1)_{n}} z^{n}$, we place conditions on a, b and c to guarante that $z^{p} F(a, b ; c ; z)$ will be in various subclasses of p-valent starlike and p-valent convex functions. Operators related to the hypergeometric function are also examined.

1. Introduction

Let $S(p)$ be the class of functions of the form:

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=1}^{\infty} a_{p+n} z^{p+n} \quad(p \in N=\{1,2, \ldots\}) \tag{1}
\end{equation*}
$$

which are analytic and p-valent in the unit disc $U=\{z:|z|<1\}$. A function $f(z) \in S(p)$ is called p-valent starlike of order α if $f(z)$ satisfies

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha \tag{2}
\end{equation*}
$$

for $0 \leq \alpha<p, p \in N$ and $z \in U$. By $S^{*}(p, \alpha)$ we denote the class of all p-valent starlike functions of order α. By $S_{p}^{*}(\alpha)$ denote the subclass of $S^{*}(p, \alpha)$ consisting of functions $f(z) \in S(p)$ for which

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-p\right|<p-\alpha \tag{3}
\end{equation*}
$$

for $0 \leq \alpha<p, p \in N$ and $z \in U$. Also a function $f(z) \in S(p)$ is called p-valent convex of order α if $f(z)$ satisfies

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha \tag{4}
\end{equation*}
$$

[^0]for $0 \leq \alpha<p, p \in N$ and $z \in U$. By $K(p, \alpha)$ we denote the class of all p-valent convex functions of order α. It follows from (2) and (4) that
\[

$$
\begin{equation*}
f(z) \in K(p, \alpha) \Leftrightarrow \frac{z f^{\prime}(z)}{p} \in S(p, \alpha) \tag{5}
\end{equation*}
$$

\]

Also by $K_{p}(\alpha)$ denote the subclass of $K(p, \alpha)$ consisting of functions $f(z) \in S(p)$ for which

$$
\begin{equation*}
\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-p\right|<p-\alpha \tag{6}
\end{equation*}
$$

for $0 \leq \alpha<p, p \in N$ and $z \in U$.
By $T(p)$ we denote the subclass of $S(p)$ consisting of functions of the form:

$$
\begin{equation*}
f(z)=z^{p}-\sum_{n=1}^{\infty} a_{p+n} z^{p+n} \quad\left(a_{p+n} \geq 0 ; \quad p \in N\right) \tag{7}
\end{equation*}
$$

By $T^{*}(p, \alpha), T_{p}^{*}(\alpha), C(p, \alpha)$ and $C_{p}(\alpha)$ we denote the classes obtained by taking interesctions, respectively, of the classes $S^{*}(p, \alpha), S_{p}^{*}(\alpha), K(p, \alpha)$ and $K_{p}(\alpha)$ with the class $T(p)$

$$
\begin{aligned}
T^{*}(p, \alpha) & =S^{*}(p, \alpha) \cap T(p) \\
T_{p}^{*}(\alpha) & =S_{p}^{*}(\alpha) \cap T(p) \\
C(p, \alpha) & =K(p, \alpha) \cap T(p)
\end{aligned}
$$

and

$$
C_{p}(\alpha)=K_{p}(\alpha) \cap T(p)
$$

The class $S^{*}(p, \alpha)$ was studied by Patil and Thakare [5]. The classes $T^{*}(p, \alpha)$ and $C(p, \alpha)$ were studied by Owa [4].

For $a, b, c \in C$ and $c \neq 0,-1,-2, \ldots$, the (Gaussian) hypergeometric function is defined by

$$
\begin{equation*}
F(a, b ; c ; z)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}(1)_{n}} z^{n} \quad(z \in U) \tag{8}
\end{equation*}
$$

where $(\lambda)_{n}$ is the Pochhammer symbol defined, in terms of the Gamma function Γ, by

$$
(\lambda)_{n}=\frac{\Gamma(\lambda+n)}{\Gamma(\lambda)}= \begin{cases}1 & (n=0) \tag{9}\\ \lambda(\lambda+1) \cdot \ldots \cdot(\lambda+n-1) & (n \in N)\end{cases}
$$

The series in (8) represents an analytic function in U and has an analytic continuation throughout the finite complex plane except at most for the cut $[1, \infty)$. We note that $F(a, b ; c ; 1)$ converges for $\operatorname{Re}(a-b-c)>0$ and is related to the Gamma function by

$$
\begin{equation*}
F(a, b ; c ; 1)=\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)} \tag{10}
\end{equation*}
$$

Corresponding to the function $F(a, b ; c ; z)$ we define

$$
\begin{equation*}
h_{p}(a, b ; c ; z)=z^{p} F(a, b ; c ; z) \tag{11}
\end{equation*}
$$

We observe that for a function $f(z)$ of the form (1), we have

$$
\begin{equation*}
h_{p}(a, b ; c ; z)=z^{p}+\sum_{n=p+1}^{\infty} \frac{(a)_{n-p}(b)_{n-p}}{(c)_{n-p}(1)_{n-p}} z^{n} \tag{12}
\end{equation*}
$$

In [7] Silverman gave necessary and sufficient conditions for $z F(a, b ; c ; z)$ to be in $T^{*}(1, \alpha)=T^{*}(\alpha)$ and $C(1, \alpha)=C(\alpha)$ and has also examined a linear operator acting on hypergeometric functions. For the other interesting developments for $z F(a, b ; c ; z)$ in connection with various subclasses of univalent functions, the reader can refer to the works of Carlson and Shaffer [1], Merkes and Scott [3] and Ruscheweyh and Singh [6].

In the present paper, we determine necessary and sufficient conditions for $h_{p}(a, b ; c ; z)$ to be in $T^{*}(p, \alpha)$ and $C(p, \alpha)$. Furthermore, we consider an integral operator related to the hypergeometric function.

2. Main Results

To establish our main results we shall need the following lemmas.
Lemma 1 ([4]). Let the function $f(z)$ defined by (1).
(i) A sufficient condition for $f(z) \in S(p)$ to be in the class $S_{p}^{*}(\alpha)$ is that

$$
\sum_{n=p+1}^{\infty}(n-\alpha)\left|a_{n}\right| \leq(p-\alpha)
$$

(ii) A sufficient condition for $f(z) \in S(p)$ to be in the class $K_{p}(\alpha)$ is that

$$
\sum_{n=p+1}^{\infty} \frac{n}{p}(n-\alpha)\left|a_{n}\right| \leq p-\alpha
$$

Lemma 2 ([4]). Let the function $f(z)$ be defined by (7). Then
(i) $f(z) \in T(p)$ is in the class $T^{*}(p, \alpha)$ if and only if

$$
\sum_{n=p+1}^{\infty}(n-\alpha) a_{n} \leq p-\alpha
$$

(ii) $f(z) \in T(p)$ is in the class $C(p, \alpha)$ if and only if

$$
\sum_{n=p+1}^{\infty} \frac{n}{p}(p-\alpha) a_{n} \leq p-\alpha
$$

Lemma 3 ([2]). Let $f(z) \in T(p)$ be defined by (7). Then $f(z)$ is p-valent in U if

$$
\sum_{n=1}^{\infty}(p+n) a_{p+n} \leq p
$$

In addition, $f(z) \in T_{p}^{*}(\alpha) \Leftrightarrow f(z) \in T^{*}(p, \alpha), f(z) \in K_{p}(\alpha) \Leftrightarrow f(z) \in K(p, \alpha)$ and $f(z) \in S_{p}^{*}(\alpha) \Leftrightarrow f(z) \in S^{*}(p, \alpha)$.

Theorem 1. If $a, b>0$ and $c>a+b+1$, then a sufficient condition for $h_{p}(a, b ; c ; z)$ to be in $S_{p}^{*}(\alpha), 0 \leq \alpha<p$, is that

$$
\begin{equation*}
\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)}\left[1+\frac{a b}{(p-\alpha)(c-a-p-1)}\right] \leq 2 \tag{13}
\end{equation*}
$$

Condition (13) is necessary and sufficient for F_{p} defined by $F_{p}(a, b ; c ; z)=$ $z^{p}(2-F(a, b ; c ; z))$ to be in $T^{*}(p, \alpha)\left(T_{p}^{*}(\alpha)\right)$.

Proof. Since $h_{p}(a, b ; c ; z)=z^{p}+\sum_{n=p+1}^{\infty} \frac{(a)_{n-p}(b)_{n-p}}{(c)_{n-p}(1)_{n-p}} z^{n}$, according to Lemma 1(i), we only need to show that

$$
\sum_{n=p+1}^{\infty}(n-\alpha) \frac{(a)_{n-p}(b)_{n-p}}{(c)_{n-p}(1)_{n-p}} \leq p-\alpha
$$

Now

$$
\begin{equation*}
\sum_{n=p+1}^{\infty}(n-\alpha) \frac{(a)_{n-p}(b)_{n-p}}{(c)_{n-p}(1)_{n-p}}=\sum_{n=1}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}(1)_{n-1}}+(p-\alpha) \sum_{n=1}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}(1)_{n}} \tag{14}
\end{equation*}
$$

Noting that $(\lambda)_{n}=\lambda(\lambda+1)_{n-1}$ and then applying (10), we may express (14) as

$$
\begin{aligned}
& \frac{a b}{c} \sum_{n=1}^{\infty} \frac{(a+1)_{n-1}(b+1)_{n-1}}{(c+1)_{n-1}(1)_{n-1}}+(p-\alpha) \sum_{n=1}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}(1)_{n}} \\
& \quad=\frac{a b}{c} \frac{\Gamma(c+1) \Gamma(c-a-b-1)}{\Gamma(c+a) \Gamma(c-b)}+(p-\alpha)\left[\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)}-1\right] \\
& \quad=\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)}\left[\frac{a b}{c-a-b-1}+p-\alpha\right]-(p-\alpha) .
\end{aligned}
$$

But this last expression is bounded above by $p-\alpha$ if and only if (13) holds.
Since $F_{p}(a, b ; c ; z)=z^{p}-\sum_{n=p+1}^{\infty} \frac{(a)_{n-p}(b)_{n-p}}{(c)_{n-p}(1)_{n-p}} z^{n}$, the necessity of (13) for F_{p} to be in $T_{p}^{*}(\alpha)$ and $T^{*}(p, \alpha)$ follows from Lemma 2(i).

Remark 1. Condition (13) with $\alpha=0$ is both necessary and sufficient for F_{p} to be in the class T_{p}^{*}.

In the next theorem, we find constraints on a, b and c that lead to necessary and sufficient conditions for $h_{p}(a, b ; c ; z)$ to be in the class $T^{*}(p, \alpha)$.

Theorem 2. If $a, b>-1, c>0$ and $a b<0$, then a necessary and sufficient condition for $h_{p}(a, b ; c ; z)$ to be in $T^{*}(p, \alpha)\left(T_{p}^{*}(\alpha)\right)$ is that $c \geq a+b+1-\frac{a b}{p-\alpha}$. The condition $c \geq a+b+1-\frac{a b}{p}$ is necessary and sufficient for $h_{p}(a, b ; c ; z)$ to be in T_{p}^{*}.

Proof. Since

$$
\begin{align*}
h_{p}(a, b ; c ; z) & =z^{p}+\sum_{n=p+1}^{\infty} \frac{(a)_{n-p}(b)_{n-p}}{(c)_{n-p}(1)_{n-p}} z^{n} \\
& =z^{p}+\frac{a b}{c} \sum_{n=p+1}^{\infty} \frac{(a+1)_{n-p-1}(b+1)_{n-p-1}}{(c+1)_{n-p-1}(1)_{n-p}} z^{n} \tag{15}\\
& =z^{p}-\left|\frac{a b}{c}\right| \sum_{n=p+1}^{\infty} \frac{(a+1)_{n-p-1}(b+1)_{n-p-1}}{(c+1)_{n-p-1}(1)_{n-p}} z^{n},
\end{align*}
$$

according to Lemma 2(i), we must show that

$$
\begin{equation*}
\sum_{n=p+1}^{\infty}(n-\alpha) \frac{(a+1)_{n-p-1}(b+1)_{n-p-1}}{(c+1)_{n-p-1}(1)_{n-p}} \leq\left|\frac{c}{a b}\right|(p-\alpha) . \tag{16}
\end{equation*}
$$

Note that the left side of (16) diverges if $c \leq a+b+1$. Now

$$
\begin{aligned}
\sum_{n=0}^{\infty} & (n+p+1-\alpha) \frac{(a+1)_{n}(b+1)_{n}}{(c+1)_{n}(1)_{n+1}} \\
& =\sum_{n=0}^{\infty} \frac{(a+1)_{n}(b+1)_{n}}{(c+1)_{n}(1)_{n}}+(p-\alpha) \frac{c}{a b} \sum_{n=1}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}(1)_{n}} \\
& =\frac{\Gamma(c+1) \Gamma(c-a-b-1)}{\Gamma(c-a) \Gamma(c-b)}+(p-\alpha) \frac{c}{a b}\left[\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)}-1\right]
\end{aligned}
$$

Hence, (16) is equivalent to

$$
\begin{align*}
& \frac{\Gamma(c+1) \Gamma(c-a-b-1)}{\Gamma(c-a) \Gamma(c-b)}\left[1+(p-\alpha) \frac{(c-a-b-1)}{a b}\right] \tag{17}\\
& \leq(p-\alpha)\left[\frac{c}{|a b|}+\frac{c}{a b}\right]=0 .
\end{align*}
$$

Thus, (17) is valid if and only if

$$
1+(p-\alpha) \frac{(c-a-b-1)}{a b} \leq 0
$$

or, equivalently,

$$
c \geq a+b+1-\frac{a b}{p-\alpha}
$$

Another application of Lemma 2(i) when $\alpha=0$ completes the proof of Theorem 2.

Our next theorems will parallel Theorems 1 and 2 for the p-valent convex case.

Theorem 3. If $a, b>0$ and $c>a+b+2$, then a sufficient condition for $h_{p}(a, b ; c ; z)$ to be in $K_{p}(\alpha), 0 \leq \alpha<p$, is that

$$
\begin{align*}
\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)}[1 & +\frac{(2 p+1-\alpha)}{p(p-\alpha)}\left(\frac{a b}{c-a-b-1}\right) \tag{18}\\
& \left.+\frac{(a)_{2}(b)_{2}}{p(p-\alpha)(c-a-b-2)_{2}}\right] \leq 2
\end{align*}
$$

Condition (18) is necessary and sufficient for $F_{p}(a, b ; c ; z)=z^{p}(2-F(a, b ; c ; z))$ to be in $C(p, \alpha)\left(C_{p}(\alpha)\right)$.

Proof. In view of Lemma 1(ii), we only need to show that

$$
\sum_{n=p+1}^{\infty}(n-\alpha) \frac{(a)_{n-p}(b)_{n-p}}{(c)_{n-p}(1)_{n-p}} \leq p(p-\alpha)
$$

Now

$$
\begin{align*}
& \sum_{n=0}^{\infty}(n+p+1)(n+p+1-\alpha) \frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n+1}} \\
& =\sum_{n=0}^{\infty}(n+1)^{2} \frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n+1}}+(2 p-\alpha) \sum_{n=0}^{\infty}(n+1) \frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n+1}} \\
& \quad+p(p-\alpha) \sum_{n=0}^{\infty} \frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n+1}} \\
& =\sum_{n=0}^{\infty}(n+1) \frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n}}+(2 p-\alpha) \sum_{n=0}^{\infty} \frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n}} \\
& \quad+p(p-\alpha) \sum_{n=0}^{\infty} \frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n+1}} \\
& =\sum_{n=1}^{\infty} \frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n-1}}+(2 p+1-\alpha) \sum_{n=0}^{\infty} \frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n}} \\
& \quad+p-\alpha) \sum_{n=0}^{\infty} \frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n+1}} \\
& \quad=\sum_{n=0}^{\infty} \frac{(a)_{n+2}(b)_{n+2}}{(c)_{n+2}(1)_{n}}+(2 p+1-\alpha) \sum_{n=0}^{\infty} \frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n}} \tag{19}\\
& \quad+p(p-\alpha) \sum_{n=1}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}(1)_{n}} .
\end{align*}
$$

Since $(a)_{n+k}=(a)_{k}(a+k)_{n}$, we may write (19) as

$$
\begin{aligned}
& \frac{(a)_{2}(b)_{2}}{(c)_{2}} \frac{\Gamma(c+2) \Gamma(c-a-b-2)}{\Gamma(c+a) \Gamma(c-b)}+(2 p+1-\alpha) \frac{a b}{c} \\
\cdot & \frac{\Gamma(c+1) \Gamma(c-a-b-1)}{\Gamma(c-a) \Gamma(c-b)}+p(p-\alpha)\left[\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)}-1\right] .
\end{aligned}
$$

Upon simplification, we see that this last expression is bounded above by $p(p-\alpha)$ if and only if (18) holds. That (18) is also necessary for F_{p} to be in $C(p, \alpha)\left(C_{p}(\alpha)\right)$ follows from Lemma 2(ii).

Theorem 4. If $a, b>-1, a b<0$ and $c>a+b+2$, then a necessary and sufficient condition for $h_{p}(a, b ; c ; z)$ to be in $C(p, \alpha)\left(C_{p}(\alpha)\right)$ is that

$$
\begin{equation*}
(a)_{2}(b)_{2}+(2 p+1-\alpha) a b(c-a-b-2)+p(p-\alpha)(c-a-b-2)_{2} \geq 0 \tag{20}
\end{equation*}
$$

Proof. Since $h_{p}(a, b ; c ; z)$ has the form (15), we see from Lemma 2(ii) that our conclusion is equivalent to

$$
\begin{equation*}
\sum_{n=p+1}^{\infty} n(n-\alpha) \frac{(a+1)_{n-p-1}(b+1)_{n-p-1}}{(c+1)_{n-p-1}(1)_{n-p}} \leq\left|\frac{c}{a b}\right| p(p-\alpha) . \tag{21}
\end{equation*}
$$

Note that $c>a+b+2$ if the left-hand side of (21) converges. Writing

$$
(n+p+1)(n+p+1-\alpha)=(n+1)^{2}+(2 p-\alpha)(n+1)+p(p-\alpha)
$$

we see that

$$
\begin{aligned}
& \sum_{n=p+1}^{\infty} n(n-\alpha) \frac{(a+1)_{n-p-1}(b+1)_{n-p-1}}{(c+1)_{n-p-1}(1)_{n-p}} \\
&= \sum_{n=0}^{\infty}(n+p+1)(n+p+1-\alpha) \frac{(a+1)_{n}(b+1)_{n}}{(c+1)_{n}(1)_{n+1}} \\
&= \sum_{n=0}^{\infty}(n+1) \frac{(a+1)_{n}(b+1)_{n}}{(c+1)_{n}(1)_{n}}+(2 p-\alpha) \sum_{n=0}^{\infty} \frac{(a+1)_{n}(b+1)_{n}}{(c+1)_{n}(1)_{n}} \\
&+p(p-\alpha) \sum_{n=0}^{\infty} \frac{(a+1)_{n}(b+1)_{n}}{(c+1)_{n}(1)_{n+1}} \\
&= \frac{(a+1)(b+1)}{(c+1)} \sum_{n=0}^{\infty} \frac{(a+2)_{n}(b+2)_{n}}{(c+2)_{n}(1)_{n}}+(2 p+1-\alpha) \sum_{n=0}^{\infty} \frac{(a+1)_{n}(b+1)_{n}}{(c+1)_{n}(1)_{n}} \\
& \quad+p(p-\alpha) \frac{c}{a b} \sum_{n=1}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}(1)_{n}} \\
&= \frac{\Gamma(c+1) \Gamma(c-a-b-2)}{\Gamma(c-a) \Gamma(c-b)}[(a+1)(b+1)+(2 p+1-\alpha)(c-a-b-2) \\
&\left.\quad+\frac{p(p-\alpha)}{a b}(c-a-b-2)_{2}\right]-\frac{p(p-\alpha) c}{a b} .
\end{aligned}
$$

This last expression is bounded above by $\left|\frac{c}{a b}\right| p(p-\alpha)$ if and only if

$$
(a+1)(b+1)+(2 p+1-\alpha)(c-a-b-2)+\frac{p(p-\alpha)}{a b}(c-a-b-2)_{2} \leq 0
$$

which is equivalent to (20).
Putting $p=1$ in Theorem 4, we obtain the following corollary.
Corollary 1. If $a, b>-1, a b<0$ and $c>a+b+2$, then a necessary and sufficient condition for $h_{1}(a, b ; c ; z)$ to be in $C(1, \alpha)(C(\alpha))$ is that

$$
(a)_{2}(b)_{2}+(3-\alpha) a b(c-a-b-2)+(1-\alpha)(c-a-b-2)_{2} \geq 0 .
$$

Remark 2. We note that Corollary 1 corrects the result obtained by Silverman [7, Theorem 4].

3. Integral Operator

In this section, we obtain similar results in connection with a particular integral operator $G_{p}(a, b ; c ; z)$ acting on $F(a, b ; c ; z)$ as follows

$$
\begin{align*}
G_{p}(a, b ; c ; z) & =p \int_{0}^{z} t^{p-1} F(a, b ; c ; z) \mathrm{d} t \tag{22}\\
& =z^{p}+\sum_{n=1}^{\infty}\left(\frac{p}{n+p}\right) \frac{(a)_{n}(b)_{n}}{(c)_{n}(1)_{n}} z^{n+p}
\end{align*}
$$

We note that $\frac{z G_{p}^{\prime}}{p}=h_{p}$.

Theorem 5.

(i) If $a, b>0$ and $c>a+b$, then a sufficient condition for $G_{p}(a, b ; c ; z)$ defined by (22) to be in $S^{*}(p)$ is that

$$
\begin{equation*}
\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c) \Gamma(c-b)} \leq 2 \tag{23}
\end{equation*}
$$

(ii) If $a, b>-1, c>0$, and $a b<0$, then $G_{p}(a, b ; c ; z)$ defined by (22) is in $T(p)$ or $S(p)$ if only if $c>\max \{a, b\}$.
Proof. Since

$$
G_{p}(a, b ; c ; z)=z^{p}+\sum_{n=1}^{\infty}\left(\frac{p}{n+p}\right) \frac{(a)_{n}(b)_{n}}{(c)_{n}(1)_{n}} z^{n+p}
$$

we note that

$$
\begin{aligned}
\sum_{n=1}^{\infty}(n+p)\left(\frac{p}{n+p}\right) \frac{(a)_{n}(b)_{n}}{(c)_{n}(1)_{n}} & =p \sum_{n=1}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}(1)_{n}} \\
& =p\left[\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}(1)_{n}}-1\right]
\end{aligned}
$$

is bounded above by p if and only if (23) holds.
To prove (ii), we apply Lemma 3 to

$$
G_{p}(a, b ; c ; z)=z^{p}-\frac{|a b|}{c} \sum_{n=p+1}^{\infty}\left(\frac{p}{n}\right) \frac{(a+1)_{n-p-1}(b+1)_{n-p-1}}{(c+1)_{n-p-1}(1)_{n-p}} z^{n}
$$

It suffices to show that

$$
\sum_{n=p+1}^{\infty} \frac{(a+1)_{n-p-1}(b+1)_{n-p-1}}{(c+1)_{n-p-1}(1)_{n-p}} \leq \frac{c}{|a b|}
$$

or, equivalently,

$$
\sum_{n=0}^{\infty} \frac{(a+1)_{n}(b+1)_{n}}{(c+1)_{n}(1)_{n+1}}=\frac{c}{a b} \sum_{n=1}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}(1)_{n}} \leq \frac{c}{|a b|}
$$

But this is equivalent to

$$
\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)}-1 \geq-1
$$

which is true if and only if $c>\max \{a, b\}$. This completes the proof of Theorem 5 .

Now $G_{p}(a, b ; c ; z) \in K_{p}(\alpha)(K(p, \alpha))$ if and only if

$$
\frac{z}{p} G_{p}^{\prime}(a, b ; c ; z)=h_{p}(a, b ; c ; z) \in S_{p}^{*}(\alpha)\left(S^{*}(p, \alpha)\right) .
$$

This follows upon observing that $\frac{z G_{p}^{\prime}}{p}=h_{p}, \frac{z}{p} G_{p}^{\prime \prime}=h_{p}^{\prime}-\frac{1}{p} G_{p}^{\prime}$, and so

$$
1+\frac{z G_{p}^{\prime \prime}}{G_{p}}=\frac{z h_{p}^{\prime}}{h_{p}}
$$

Thus any p-valent starlike about h_{p} leads to a p-valent convex about G_{p}. Thus from Theorems 1 and 2 , we have

Theorem 6.

(i) If $a, b>0$ and $c>a+b+1$, then a sufficient condition for $G_{p}(a, b ; c ; z)$ defined in Theorem 5 to be in $K_{p}(\alpha)(0 \leq \alpha<p)$ is that

$$
\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)}\left[1+\frac{a b}{(p-\alpha)(c-a-b-1)}\right] \leq 2
$$

(ii) If $a, b>-1, a b<0$, and $c>a+b+2$, then a necessary and sufficient condition for $G_{p}(a, b ; c ; z)$ to be in $C(p, \alpha)\left(C_{p}(\alpha)\right)$ is that

$$
c \geq a+b+1-\frac{a b}{(p-\alpha)}
$$

Remark 3. Putting $p=1$ in all the above results, we obtain the results obtained by Silverman [7].

Acknowledgment. The authors thank the referees for their valuable suggestions to improve the paper.

References

1. Carlson B. C. and Shaffer D. B., Starlike and prestarlike hypergeometric functions, J. Math. Anal. Appl. 15 (1984), 737-745.
2. Chen M.-P., Multivalent functions with negative coefficients in the unit disc, Tamkang J. Math. 17(3) (1986), 127-137.
3. Merkes E. and Scott B. T., Starlike hypergeometric functions, Proc. Amer. Math. Soc. 12 (1961), 885-888.
4. Owa S., On certain classes of p-valent functions with negative coefficients, Simon Stevin, 59 (1985), 385-402.
5. Patil D. A. and Thakare N. K., On convex hulls and extreme points of p-valent starlike and convex classes with applications, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.), 27(75) (1983), 145-160.
6. Ruscheweyh St. and Singh V., On the order of starlikeness of hypergeometric functions, J. Math. Anal. Appl. 113 (1986), 1-11.
7. Silverman H., Starlike and convexity properties for hypergeometric functions, J. Math. Anal. Appl. 172 (1993), 574-581.
R. M. El-Ashwah, Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt, e-mail: r_elashwah@yahoo.com
M. K. Aouf, Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt, e-mail: mkaouf127@yahoo.com
A. O. Moustafa, Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt, e-mail: adelaeg254@yahoo.com

[^0]: Received November 11, 2008.
 2000 Mathematics Subject Classification. Primary 30C45.
 Key words and phrases. p-valent; starlike; convex; hypergeometric function.

