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ON FAIL-ROLLE POLYNOMIALS WITH FEW ROOTS

L. H. GALLARDO

Abstract. A splitting polynomial in one variable over a field is Fail-Rolle if its

formal derivative does not split over the same field. It is known that the finite fields

with more than four elements are exactly the finite fields for which there are Fail-
Rolle polynomials. We describe all Fail-Rolle polynomials with at most five roots

over a finite field of even characteristic.

1. Introduction

Let Fq be a finite field of characteristic p and with q elements. For a splitting
polynomial A ∈ Fq[x] we let ω(A) denote the number of distinct roots of A in
F. We denote also by Nq(d) (see [4, Theorem 3.25, p. 93]) the number of prime
(irreducible) polynomials of degree d in Fq[x].

Craven [2] answering the question of Kaplansky [3] proved that the only finite
fields in which the set of splitting polynomials S ∈ Fq[x] is invariant under formal
derivatives S′ are F2 and F4. Later Ballantine and Roberts [1] reproved the same
result. Assuming p is odd they considered a Fail-Rolle polynomial with 4 roots. In
his MR-review of the latter paper Steve Cohen observed that in order to complete
the proof when p is odd we can use the Fail-Rolle polynomial with only 3 roots
R = xp−1(x+1)(x+a) where a is a non-square in Fq. On the other hand in the case
p = 2 they considered a Fail-Rolle polynomial with 6 roots. We become curious
to know if we can find Fail-Rolle polynomials with fewer roots when q is even.

Take q even. Clearly, without loss of generality, we may assume that a Fail-
Rolle polynomial A is monic, has a root at 0 and is square-free. Since, for even q,
the formal derivative of C2A is C2A′ for any polynomials A,C ∈ Fq[x].

The answer is contained in our main result that follows.

Theorem 1. Let F be a finite field with an even number q of elements. Let
A ∈ F[x] be a monic square-free Fail-Rolle polynomial with A(0) = 0 and at most
5 roots. Then, either

(a) ω(A) = 4 and A = x(x−a)(x−b)(x−c) for some non-zero pairwise distinct,
a, b, c ∈ F, such that a + b + c = 0. So, there are, up to permutations, at
least (q − 1)(q − 2) such polynomials,
or
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(b) ω(A) = 5 and A = x(x−a)(x− b)(x− c)(x−d) for some non-zero pairwise
distinct a, b, c, d ∈ F such that ab+ac+ad+bc+bd+cd = p1 and abcd = p0,
where the polynomial P = x2 + p1x + p0 is a prime polynomial in Fq[x].
Moreover, the map M : F4

q → F2
q that takes (a, b, c, d) into (ab+ ac+ ad+

bc + bd + cd, abcd) is onto. Thus, up to permutations, there are at least
Nq(2) = (q2 − q)/2 such polynomials.

The only difficulty is to be sure that for even q > 4 the map M : F4
q → F2

q

that takes (a, b, c, d) into (ab+ ac+ ad+ bc+ bd+ cd, abcd) is onto. This was first
checked by a computer program for q = 8. And then proved in general, by using
essentially, the classification of quadratic forms in four variables over Fq.

By α we denote an element in a fixed algebraic closure of F2 such that α2 = α+1.
So that F4 = F2[α].

2. Proof of the theorem in the cases ω(A) < 5.

When ω(A) = 2 such that A = x(x − a) for some non-zero a ∈ F, there is no
Fail-Rolle polynomial since

A′

A
=

1
x

+
1

x− a
=
a

A
.

Assume ω(A) = 3. We set A = x(x − a)(x − b) for non-zero pairwise distinct
a, b ∈ F. We get

A′

A
=

1
x

+ · · · = x2 + ab

A
.

Thus, there is no Fail-Rolle polynomial since ab is a square in F.
Assume ω(A) = 4. We set A = x(x − a)(x − b)(x − c) for non-zero pairwise

distinct a, b, c ∈ F. We get

A′

A
=

1
x

+ · · · = (a+ b+ c)x2 + abc

A
.

Since abc and a + b + c are squares in F, the numerator splits in F[x] if and only
if a+ b+ c 6= 0. This proves (a).

3. Main lemma in the case ω(A) = 5.

Assume ω(A) = 5. We set A = x(x− a)(x− b)(x− c)(x− d) for non-zero pairwise
distinct a, b, c, d ∈ F. We get

A′

A
=

1
x

+ · · · = x4 + (ab+ ac+ ad+ bc+ bd+ cd)x2 + abcd

A
.

Since all elements of F are squares it suffices to consider the possible roots in F of
P = x2+(ab+ac+ad+bc+bd+cd)x+abcd depending on the values of a, b, c, d ∈ F.

The following observation can be checked by a simple computation.

Proposition 1. Consider the quadratic form of rank 4 over F,
Q(a, b, c, d) = ab+ ac+ ad+ bc+ bd+ cd.
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a) If F does not contain the field F4, then Q is equivalent to the quadratic
form Q1(x1, y1, x2, y2) = x2

1 + x1y1 + sy2
1 + x2y2 where s = 1 and has trace

Tr(s) = 1. More precisely we have

Q(a, b, c, d) = c2 + cd+ 1 · d2 + (a+ c+ d)(b+ c+ d).

So, Q(a, b, c, d) = Q1(x1, y1, x2, y2) for

x1 = c, y1 = d, x2 = a+ c+ d, y2 = b+ c+ d.

And also equivalently for

c = x1, d = y1, b = y2 + x1 + y1, a = x2 + x1 + y1.

b) If F does contain the field F4, then Q is equivalent to the quadratic form
Q1(x1, y1, x2, y2) = x1y1 + x2y2. More precisely we have

Q(a, b, c, d) = (c+ dα)(c+ dα2) + (a+ c+ d)(b+ c+ d).

So, in this case Q(a, b, c, d) = Q1(x1, y1, x2, y2) for

x1 = c+ dα, y1 = c+ dα2, x2 = a+ c+ d, y2 = b+ c+ d.

And also equivalently for

d = x1 + y1, c = x1α
2 + y1α, b = y2 + x1α+ y1α

2, a = x2 + x1α+ y1α
2.

We have the crucial lemma.

Lemma 1. Let F be a finite field with an even number q of elements. Then the
map M : F4 → F2 that takes (a, b, c, d) into (ab + ac + ad + bc + bd + cd, abcd) is
onto.

Proof. Let R,S be given elements of F. We shall prove the existence of a, b, c, d ∈
F such that M(a, b, c, d) = (R,S).

3.1. Case in which F does not contain F4.

If R = 0, let choose y2 = 1 and x1 = y1 = t ∈ F to determine. So, from the
equations 0 = R = x2

1 +x1y1 +y2
1 +x2y2 and S = x1y1(y2 +x1 +y1)(x2 +x1 +y1),

we get t2 = x2 and t4 = S. Since S is a fourth power, this system has a solution.
Then the Proposition 1 gives us the corresponding a, b, c, d. Assume now that
R 6= 0. Multiplying by a square, if necessary, we may also assume that R 6= 1
and Tr(R) = 1. Indeed, if δ ∈ F is an element such that δ 6= 1 and Tr(δ) = 1,
then we multiply R by δ/R. So, by Hilbert’s 90 theorem R + 1 = y2

1 + y1 for
some non-zero y1 ∈ F such that y1 6= 1. Take also x1 = 1 and x2 = 0. We get
R = x2

1 + x1y1 + y2
1 + x2y2. For S we have S = y1(y2 + 1 + y1)(1 + y1) a linear

equation in y2 that has a solution since y2
1 +y1 6= 0. As before, Proposition 1 gives

us the corresponding a, b, c, d.
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3.2. Case in which F does contain F4.

Without loss of generality we can take R /∈ {1, α, α2}. If R 6= 0 just multiply by
ε/R where ε ∈ F satisfies ε3 6= 1. Thus, we take x2 = 0, x1 = R, y1 = 1. We
get R = x1y1 + x2y2. The other equation S = (x1 + y1)(x1α

2 + y1α)(y2 + x1α +
y1α

2)(x2 + x1α+ y1α
2) becomes

S = (R+ 1)(Rα2 + α)(Rα+ α2)(y2 +Rα+ α2).

This a linear equation is y2 that has a solution y2 ∈ F since the coefficient R3 +1 of
y2 in the equation in non-zero. As before, Proposition 1 gives us the corresponding
a, b, c, d.

This proves the lemma. �

4. Proof of the Theorem in the case ω(A) = 5.

We have already seen in the previous section that A is Fail-Rolle if and only if
A′ = x4 +(ab+ac+ad+bc+bd+cd)x2 +abcd is a square P 2 of a prime polynomial
P ∈ F[x] of degree 2. By Lemma 1 there exist such (a, b, c, d) for each choice of such
P. So there are, up to permutations, at least Nq(2) = (q2− q)/2 such polynomials.
This proves (b) thereby, proving the Theorem.
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