
Acta Math. Univ. Comenianae
Vol. LXXIX, 1(2010), pp. 19–29

19

FOURIER COEFFICIENTS OF HILBERT CUSP FORMS
ASSOCIATED WITH MIXED HILBERT CUSP FORMS

MIN HO LEE

Abstract. We express the Fourier coefficients of the Hilbert cusp form L∗
hf asso-

ciated with mixed Hilbert cusp forms f and h in terms of the Fourier coefficients of

a certain periodic function determined by f and h. We also obtain an expression of

each Fourier coefficient of L∗
hf as an infinite series involving the Fourier coefficients

of f and h.

1. Introduction

Mixed automorphic forms are automorphic forms defined by using an automorphy
factor associated with an equivariant holomorphic map of Hermitian symmetric
domains, and certain types of mixed automorphic forms occur as holomorphic
forms of the highest degree on a family of Abelian varieties parametrized by a
locally symmetric space (cf. [7]). When the Hermitian symmetric domains are
Cartesian products of the Poincaré upper half plane H, we obtain mixed Hilbert
modular forms which generalize the usual Hilbert modular forms (see [5]).

Let Γ be a discrete subgroup of SL(2,R)n. Assume that there are a holomorphic
map ω : Hn → Hn and a homomorphism χ : Γ → SL(2,R)n such that ω is
equivariant with respect to χ. If r = (r1, . . . , rn) ∈ Zn with ri ≥ 0 for each i,
we denote by Jr : Γ × Hn → C the automorphy factor defining Hilbert modular
forms for Γ of weight r. Then mixed Hilbert modular forms for Γ of type (r, r′) are
defined by using the automorphy factor Jr · (Jr′ ◦ (χ, ω)). Hilbert cusp forms and
mixed Hilbert cusp forms are defined with an additional condition on the cusps.

Let Sk(Γ) and Sm,r(Γ, ω, χ) be the spaces of Hilbert cusp forms of weight k
and mixed Hilbert cusp forms of type (m, r), respectively, for Γ. Given an element
h ∈ Sm,r(Γ, ω, χ), we consider the associated linear map

Lh : Sk(Γ)→ Sk+m,r(Γ, ω, χ)

defined by Lh(g) = gh for all g ∈ Sk(Γ), and denoted by

L∗h : Sk+m,r(Γ, ω, χ)→ Sk(Γ)
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corresponding adjoint linear map with respect to the Petersson inner products.
This map determines a Hilbert cusp form L∗hf ∈ Sk(Γ) associated with a mixed
Hilbert cusp form f ∈ Sk+m,r(Γ, ω, χ).

In this paper we express the Fourier coefficients of the Hilbert cusp form L∗hf as-
sociated with mixed Hilbert cusp forms f ∈ Sk+m,r(Γ, ω, χ) and h ∈ Sm,r(Γ, ω, χ)
in terms of the Fourier coefficients of some periodic function determined by f and
h. We also obtain an expression of each Fourier coefficient of L∗hf as an infinite
series involving the Fourier coefficients of f and h.

2. Mixed Hilbert modular forms

We fix a positive integer n and let Hn be the Cartesian product of n copies of the
Poincaré upper half plane H. Then the usual operation of SL(2,R) on H by linear
fractional transformations induces an action of the n-fold product SL(2,R)n of
SL(2,R) on Hn. Let F be a totally real number field with [F : Q] = n, so that
there are n embeddings

(2.1) a 7→ a(j), F ↪→ R

for 1 ≤ j ≤ n. These embeddings induce the injective homomorphism

(2.2) ι : SL(2, F )→ SL(2,R)n

defined by

(2.3) ι

(
a b
c d

)
=
((

a(1) b(1)

c(1) d(1)

)
, . . . ,

(
a(n) b(n)

c(n) d(n)

))
for all

(
a b
c d

)
∈ SL(2, F ). Throughout this paper we shall often identify an element

γ of SL(2, F ) with its image ι(γ) in SL(2,R)n under the injection ι in (2.2). Given
z = (z1, . . . , zn) ∈ Hn and γ =

(
a b
c d

)
∈ SL(2, F ) with ι(γ) as in (2.3), we set

γz =
(
a(1)z1 + b(1)

c(1)z1 + d(1)
, . . . ,

a(n)zn + b(n)

c(n)zn + d(n)

)
.

Then the map (γ, z) 7→ γz determines an action of SL(2, F ) on Hn. For the same
z ∈ Hn, γ ∈ SL(2, F ), we set

(2.4) J(γ, z) = J(γ, z)1 =
n∏
j=1

(
c(j)zj + d(j)

)
, J(γ, z)r =

n∏
j=1

(
c(j)zj + d(j)

)rj
,

where 1 = (1, . . . , 1) ∈ Zn and r = (r1, . . . , rn) ∈ Zn. Then for each r ∈ Zn we see
easily that the map

(γ, z) 7→ J(γ, z)r : SL(2, F )×Hn → C

is an automorphy factor, meaning that it satisfies the cocycle condition

(2.5) J(γγ′, z)r = J(γ, γ′z)rJ(γ′, z)r

for all z ∈ Hn and γ, γ′ ∈ SL(2, F ).
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We now consider a discrete subgroup Γ ⊂ SL(2, F ) of SL(2,R)n. Let χ : Γ →
SL(2, F ) be a homomorphism and let ω : Hn → Hn be a holomorphic map that
is equivariant with respect to χ, such that,

ω(γz) = χ(γ)ω(z)

for all γ ∈ Γ and z ∈ Hn. We assume that the image χ(Γ) of Γ under χ is also
a discrete subgroup of SL(2,R)n and the inverse image of the set of parabolic
elements of χ(Γ) coincides with the set of parabolic elements of Γ, so there is
a correspondence between parabolic elements of Γ and those of χ(Γ). Let k =
(k1, . . . , kn) and m = (m1, . . . ,mn) be elements of Zn with ki,mi ≥ 0 for each
i ∈ {1, . . . , n}. If γ ∈ Γ ⊂ SL(2, F ) and z ∈ Hn, we set

Jk,m
ω,χ (γ, z) = J(γ, z)kJ(χ(γ), ω(z))m,

where J(·, ·) is as in (2.4). Using the cocycle condition in (2.5), we see that the
resulting map Jk,m

ω,χ : Γ×Hn → C is an automorphy factor satisfying the relation

Jk,m
ω,χ (γγ′, z) = Jk,m

ω,χ (γ, γ′z) · Jk,m
ω,χ (γ′, z)

for all γ, γ′ ∈ Γ and z ∈ Hn.
Let s be a cusp of Γ and σ an element of SL(2, F ) ⊂ SL(2,R)n such that

σ(∞) = s. If we set
Γσ = σ−1Γσ ⊂ SL(2,R),

then ∞ is a cusp of Γσ. We extend the homomorphism χ : Γ → SL(2, F ) to a
map χ : Γ′ → SL(2, F ) where

Γ′ = Γ ∪ {α ∈ SL(2, F ) | α(∞) = s, s a cusp of Γ}.

We consider a holomorphic function f : Hn → C satisfying

f(γz) = Jk,m
ω,χ (γ, z)f(z)

for all γ ∈ Γ and z ∈ Hn and define the function f | σ : Hn → C by

(f | σ)(z) = Jk,m
ω,χ (σ, z)−1f(σz)

for all z ∈ Hn. Then, we have

(f | σ)(γz) = Jk,m
ω,χ (γ, z)(f | σ)(z)

for all γ ∈ Γσ and z ∈ Hn. We set

(2.6) Λ = Λ(Γσ) = {λ ∈ F | ( 1 λ
0 1 ) ∈ Γ}

which we identify with a subgroup of Rn via the natural embedding F ↪→ Rn in
(2.1) so that Λ is a lattice in Rn. Let Λ∗ be the corresponding dual lattice given
by

Λ∗ = {ξ ∈ F | Tr(ξλ) ∈ Z for all λ ∈ Λ},
where Tr(ξλ) =

∑n
j=1 ξjλj . Using the fact that ∞ is a cusp of Γσ and noting that
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χ carries parabolic elements to parabolic elements, we see that the function f | σ
has a Fourier expansion at ∞ of the form

(2.7) (f | σ)(z) =
∑
ξ∈Λ∗

Aξ exp(2π i Tr(ξz)).

This series is the Fourier expansion of f at the cusp s and the coefficients Aξ are
the Fourier coefficients of f at s.

Definition 2.1. Let Γ ⊂ SL(2, F ) be a discrete subgroup SL(2,R)n with cusp
s and let f : Hn → C be a holomorphic function satisfying

f(γz) = Jk,m
ω,χ (γ, z)f(z)

for all z ∈ Hn and γ ∈ Γ.
(i) The function f is regular at s if the Fourier coefficients of f at s satisfy the

condition that ξ ≥ 0 whenever Aξ 6= 0.
(ii) The function f vanishes at s if the Fourier coefficients of f at s satisfy the

condition that ξ > 0 whenever Aξ 6= 0.

Definition 2.2. Let Γ, χ and ω be as above and assume that the quotient
space Γ\Hn ∪ {cusps} is compact. A mixed Hilbert modular form of type (k,m)
associated with Γ, χ and ω is a holomorphic function f : Hn → C satisfying the
following conditions

(i) f(γz) = Jk,m
ω,χ (γ, z)f(z) for all γ ∈ Γ.

(ii) f is regular at the cusps of Γ.
The holomorphic function f is a mixed Hilbert cusp form of the same type if (ii)
is replaced with the following condition:

(ii)′ f vanishes at the cusps of Γ.

Remark 2.3. Mixed Hilbert modular forms of certain types occur naturally
as holomorphic forms on a family of Abelian varieties parametrized by a Hilbert
modular variety (see [5]). A special case of such a family and their connections
with Hilbert modular forms were also investigated by Kifer and Skornyakov in [3].

3. Hilbert cusp forms associated with mixed Hilbert cusp forms

Let Γ ⊂ SL(2,R)n, χ : Γ → SL(2,R)n and ω : Hn → Hn be as in Section 2. Let
Sm,r(Γ, ω, χ) for m, r ∈ Zn with nonnegative components be the space mixed of
Hilbert cusp forms of type (m, r) for Γ associated with ω and χ in the sense
of Definition 2.2. Note that a mixed Hilbert cusp form of type (m,0) with
0 = (0, . . . , 0) ∈ Zn is simply a usual Hilbert cusp form of weight m. We de-
note by Sk(Γ) the space of Hilbert cusp forms of weight k for Γ.

We fix an element h ∈ Sm,r(Γ, ω, χ). Then for each g ∈ Sk(Γ), we see that the
product gh is an element of Sk+m,r(Γ, ω, χ). Thus we obtain the linear map

Lh : Sk(Γ)→ Sk+m,r(Γ, ω, χ)

defined by
Lh(g) = gh
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for all g ∈ Sk(Γ). As it is well-known, the complex vector space Sk(Γ) is equipped
with the Petersson inner product given by

(3.1) 〈g1, g2〉 =
∫

Γ\Hn

g1(z)g2(z)(Im z)kdµ(z)

for all g1, g2 ∈ Sk(Γ), where

(Im z)k = (y1, . . . , yn)k =
n∏
j=1

y
kj

j , dµ(z) =
n∏
j=1

y−2
j dxjdyj

for k = (k1, . . . , kn) and z = x+i y ∈ Hn with x = (x1, . . . , xn), y = (y1, . . . , yn) ∈
Rn. We can also define the Petersson inner product on Sk+m,r(Γ, ω, χ) by

(3.2) 〈〈f1, f2〉〉 =
∫

Γ\Hn

f1(z)f2(z)(Im z)k+m(Imω(z))rdµ(z)

for all f1, f2 ∈ Sk+m,r(Γ, ω, χ). We denote by

(3.3) L∗h : Sk+m,r(Γ, ω, χ)→ Sk(Γ)

the adjoint linear map of Lh with respect to the Petersson inner products in (3.1)
and (3.2), so that

(3.4) 〈L∗hf, g〉 = 〈〈f,Lhg〉〉
for all f ∈ Sk+m,r(Γ, ω, χ) and g ∈ Sk(Γ).

Let o be the ring of integers in the totally real number field F with [F : Q] = n
considered in Section 2 and let n be a nonzero ideal of o. Then the principal
congruence subgroup of level n is the subgroup of SL(2, o) given by

Γ(n) = {γ ∈ SL(2, o) | γ ≡ 1 (mod n)},
which is regarded as a discrete subgroup of SL(2,R)n as usual. We set

n∗ = {r ∈ F | Tr(rn) ⊂ o},
and consider a totally positive element ν of n∗. Then the ν-th Poincaré series of
weight k with respect to Γ is given by

(3.5) Pk,ν(z) =
∑

γ∈Γ∞\Γ

J(γ, z)−k exp(2π i Tr(ν(γz)))

where J(γ, z) is as in (2.4) and Γ∞ is the subgroup of Γ consisting of the elements
of the form ( 1 ∗

0 1 ) (see [2, Section 1.13]).
We consider an element φ ∈ Sk(Γ) and write its Fourier expansion at ∞ con-

sidered in (2.7) in the form

φ(z) =
∑
ξ∈Λ∗

Aξ(φ) exp(2π i Tr(ξz))

for all z ∈ Hn. Then we have

(3.6) 〈φ, Pk,ν〉 = Aν(φ) · vol(Rn/Λ) ·
n∏
j=1

Γ(kj − 1)
(4πνj)kj−1

,



24 MIN HO LEE

where Γ is the Gamma-function and Λ is as in (2.6) (cf. [2]). In particular, the
Fourier expansion of the image L∗hf of an element f ∈ Sk+m,r(Γ, ω, χ) under the
map L∗h in (3.3) associated with h ∈ Sm,r(Γ, ω, χ) can be written in the form

(3.7) L∗hf(z) =
∑
ξ∈Λ∗

Aξ(L∗hf) exp(2π i Tr(ξz)).

For the same f and h we also set

(3.8) Φm,r
f,h (z) = f(z)h(z)(Im z)m(Imω(z))r

for all z ∈ Hn.

Lemma 3.1. If f ∈ Sk+m,r(Γ, ω, χ) and h ∈ Sm,r(Γ, ω, χ), the Fourier coeffi-
cient Aξ(L∗hf) of L∗hf ∈ Sk(Γ) in (3.7) for ξ ∈ Λ∗ is given by
(3.9)

Aξ(L∗hf) =
1

vol(Rn/Λ)

n∏
j=1

(4πξj)kj−1

Γ(kj − 1)

∫
Γ\Hn

Φm,r
f,h (z)Pk,ξ(z)(Im z)kdµ(z),

where Φm,r
f,h (z) is as in (3.8) and Pk,ξ(z) is the Poincaré series in (3.5).

Proof. Using (3.2), (3.4), (3.6) and (3.8), we see that

Aξ(L∗hf) · vol(Rn/Λ) ·
n∏
j=1

Γ(kj − 1)
(4πξj)kj−1

= 〈L∗hf, Pk,ξ〉 = 〈〈f,LhPk,ξ〉〉 = 〈〈f, hPk,ξ〉〉

=
∫

Γ\Hn

f(z)h(z)Pk,ξ(z)(Im z)k+m(Imω(z))rdµ(z)

=
∫

Γ\Hn

Φm,r
f,h (z)Pk,ξ(z)(Im z)kdµ(z);

hence the lemma follows. �

4. Fourier coefficients

Let the mixed Hilbert cusp forms h ∈ Sm,r(Γ, ω, χ), f ∈ Sk+m,r(Γ, ω, χ) and the
associated functions L∗hf , Φm,r

f,h be as in Section 3. In this section we express
the Fourier coefficients of L∗hf in terms of those of Φm,r

f,h . We also obtain an
expression of each Fourier coefficient of L∗hf as an infinite series involving the
Fourier coefficient of f and h.

Lemma 4.1. The function Φm,r
f,h in (3.8) satisfies the relation

(4.1) Φm,r
f,h (γz) = J(γ, z)kΦm,r

f,h (z)

for all z ∈ Hn and γ ∈ Γ.
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Proof. Since f ∈ Sk+m,r(Γ, ω, χ), h ∈ Sm,r(Γ, ω, χ), given z ∈ Hn and γ ∈ Γ,
we see that

Φm,r
f,h (γz) = f(γz)h(γz)(Im γz)m(Imχ(γ)ω(z))r

= J(γ, z)k+mJ(χ(γ), ω(z))rf(z)J(γ, z)mJ(χ(γ), ω(z))rh(z)

× |J(γ, z)|−2m(Im z)m|J(χ(γ), ω(z))|−2r(Imω(z))r

= J(γ, z)kf(z)h(z)(Im z)m(Imω(z))r

= J(γ, z)kΦm,r
f,h (z),

which proves the lemma. �

By Lemma 4.1 the function Φm,r
f,h satisfies

Φm,r
f,h (z + λ) = J(( 1 λ

0 1 ) , z)kΦf,h(z) = Φf,h(z)

for all z ∈ Hn and λ ∈ Λ, where Λ is as in (2.6). Thus Φm,r
f,h has a Fourier expansion

of the form

(4.2) Φm,r
f,h (z) =

∑
ξ∈Λ∗

Am,r
f,h,ξ(y) exp(2π i Tr(ξx)).

Theorem 4.2. Setting f ∈ Sk+m,r(Γ, ω, χ), the ξ-th Fourier coefficient of the
Hilbert cusp form L∗hf in the expansion (3.7) is given by

(4.3) Aξ(L∗hf) =
n∏
j=1

(4πξj)kj−1

Γ(kj − 1)

∫
Rn

+

Am,r
f,h,ξ(y) exp(−2πTr(ξy))yk−2dy,

where Am,r
f,h,ξ(y) is as in (4.2).

Proof. Using (3.5) and the relation

dµ(z) = (Im z)−2(i /2)ndz ∧ dz

with 2 = (2, . . . , 2) ∈ Zn, the integral on the right hand side of (3.9) can be written
as

(4.4)

∫
F

Φm,r
f,h (z)Pk,ξ(z)(Im z)kdµ(z)

=
∑

γ∈Γ∞\Γ

∫
F

Φm,r
f,h (z) exp(−2π i Tr(ξ(γz)))

× J(γ, z)−k(Im z)k−2(i /2)ndz ∧ dz,

where F is a fundamental domain of Γ. Given γ ∈ Γ, if we use the new variable
w = u+ i v = γz, the integral on the right-hand side of (4.4) is equal to

(4.5)

∫
γF

Φm,r
f,h (γ−1w) exp(−2π i Tr(ξ(w)))J(γ, γ−1w)−k

× (Im γ−1w)k−2(i /2)nd(γ−1w) ∧ d(γ−1w).
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However, by using the cocycle condition (2.5), we have

J(γ, γ−1w)−k = J(γ−1, w) k,

(Im γ−1w)k−2 = |J(γ−1, w)|−2(k−2)(Imw)k−2

= J(γ−1, w)−k+2J(γ−1, w)−k+2(Imw)k−2,

(i /2)nd(γ−1w) ∧ d(γ−1w) = (i /2)nJ(γ−1, w)−2dw ∧ J(γ−1, w)−2dw

= J(γ−1, w)−2J(γ−1, w)−2du ∧ dv;

Hence (4.5) can be written in the form∫
γF

J(γ−1, w)−kΦm,r
f,h (γ−1w) exp(−2π i Tr(ξ(w)))(Imw)kdµ(w)

=
∫
γF

Φm,r
f,h (w) exp(−2π i Tr(ξ(w)))(Imw)kdµ(w),

where we used (4.1). By taking the summation of this over γ ∈ Γ∞\Γ, we see that
the integral on the left-hand side of (4.4) is equal to

(4.6)
∫

eF Φm,r
f,h (z) exp(−2π i Tr(ξ(z)))(Im z)kdµ(z),

where F̃ is the subset of Hn given by

(4.7) F̃ =
⋃

γ∈Γ∞\Γ

γF .

From (4.7) we see that F̃ is a fundamental domain of Γ∞ and therefore we have

F̃ = Rn+ × [0, λ0] = Rn+ ×
n∏
j=1

[0, λ0,j ],

where λ0,j ∈ R+ is the generator of the j-th component of the lattice Λ in Rn
for each j ∈ {1, . . . , n}. Thus, using this and (4.2), the integral (4.6) can now be
written as

(4.8)

∑
ν∈Λ∗

∫
Rn

+

∫
[0,λ0]

Am,r
f,h,ν(y) exp(2π i Tr(νx))

× Φm,r
f,h (z) exp(−2π i Tr(ξ(x− iy))yk−2dxdy

=
∑
ν∈Λ∗

∫
[0,λ0]

exp(2π i Tr((ν − ξ)x))dx

×
∫

Rn
+

Am,r
f,h,ν(y) exp(−2πTr(ξy))yk−2dy

= vol(Rn/Λ)
∫

Rn
+

Am,r
f,h,ξ(y) exp(−2πTr(ξy))yk−2dy.
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Thus we obtain (4.3) by replacing the integral on the right-hand side of (3.9) with
(4.8); hence the proof of the theorem is complete. �

We now assume that the Fourier expansions of the mixed automorphic forms
f ∈ Sk+m,r(Γ, ω, χ) and h ∈ Sm,r(Γ, ω, χ) can be written in the forms

f(z) =
∑
ξ∈Λ∗

Bξ exp(2π i Tr(ξz)),(4.9)

h(z) =
∑
η∈Λ∗

Cη exp(2π i Tr(ηz)).(4.10)

Since χ carries parabolic elements to parabolic elements, we have

Imω(z + λ) = Imω(z)

for all λ ∈ Λ. Thus (Imω(z))r has a Fourier expansion as a function of x ∈ Re z
of the form

(4.11) (Imω(z))r =
∑
ν∈Λ∗

Wν(y) exp(2π i Tr(νx))

for some functions Wν(y) of y = Im z.

Theorem 4.3. Assume that the Fourier expansions of f ∈ Sk+m,r(Γ, ω, χ) and
h ∈ Sm,r(Γ, ω, χ) are as in (4.9) and (4.10), respectively. Then the α-th Fourier
coefficient of the Hilbert cusp form L∗hf in (3.7) is given by
(4.12)

Aα(L∗hf) =
n∏
j=1

(αj)kj−1

Γ(kj − 1)(4π)mj

×
∑
η,ν

Bα+η−νCη
(α+ η − ν/2)m+k−1

∫
Rn

+

Wν(t̃)tm+k−2 exp(−|t|)dt,

where t̃ = (t̃1, . . . , t̃n) with t̃j = (4π(αj + ηj − νj/2))−1tj for 1 ≤ j ≤ n and |t|
denotes the sum of the components of t ∈ Rn+.

Proof. Using (4.9), (4.10) and (4.11), the function in (3.8) Φm,r
f,h can be written

in the form

Φm,r
f,h (z) = ym

∑
ξ,η,ν

BξCηWν(y) exp(2π i Tr((ξ + ν − η)x))

× exp(−2πTr((ξ + η)y))

= ym
∑
α,η,ν

Bα+η−νCηWν(y) exp(−2πTr((α+ 2η − ν)y))

× exp(2π i Tr(αx)),

where we have introduced a new index α = ξ + ν − η so that ξ = α + η − ν. By
comparing this with the Fourier expansion of Φm,r

f,h (z) in (4.2), we obtain

Am,r
f,h,α(y) = ym

∑
η,ν

Bα+η−νCηWν(y) exp(−2πTr((α+ 2η − ν)y))
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for each α ∈ Λ∗. Substituting this into (4.3), we have

(4.13)

Aα(L∗hf) =
n∏
j=1

(4παj)kj−1

Γ(kj − 1)

∑
η,ν

Bα+η−νCη

×
∫

Rn
+

Wν(y)ym+k−2 exp(−2πTr((2α+ 2η − ν)y))dy,

=
n∏
j=1

(4παj)kj−1

Γ(kj − 1)

∑
η,ν

Bα+η−νCη

∫
y1,...,yn≥0

Wν(y)
n∏
j=1

y
mj+kj−2
j

× exp(−2π(2αj + 2ηj − νj)yj)dyj .

For 1 ≤ j ≤ n, using the new variable tj = (4π(αj + ηj − νj/2))yj , we see that∫
yj≥0

Wν(y)ymj+kj−2
j exp(−2π(2αj + 2ηj − νj)yj)dyj

=
1

(4π(αj + ηj − νj/2))mj+kj−1

∫
tj≥0

Wν(y∗)tmj+kj−2
j exp(−tj)dyj ,

where y∗ is y = (y1, . . . , yn) with yj replaced with (4π(αj + ηj − νj/2))−1tj .
Substituting this into (4.13), we obtain (4.12); hence the proof of the theorem is
complete. �

Example 4.4. We consider the result of the previous theorem in the special
case for r = 0. Then the functions f , h, and L∗hf in Theorem 4.3 are simply usual
Hilbert modular forms of weights k + m, m, and k, respectively. In this case we
can consider an analog of the Dirichlet series of Rankin type Lξf,h(s) defined by

Lξf,h(s) =
∑
η∈Λ∗

Aξ+ηBη
(ξ + η)s

for ξ ∈ Λ∗ and s ∈ Cn. When r = 0, we may set W0(y) = 1 and Wν(y) = 0 for
ν 6= 0 in the series on the right hand side of (4.11); hence (4.12) can be written as

Aα(L∗hf) =
n∏
j=1

(αj)kj−1

Γ(kj − 1)(4π)mj

×
∑
η∈Λ∗

Bα+ηCη
(α+ η)m+k−1

∫
Rn

+

tm+k−2 exp(−|t|)dt.

However, we see that∫
Rn

+

tm+k−2 exp(−|t|)dt =
n∏
j=1

Γ(mj + kj − 1).

Thus the Fourier coefficient of L∗hf in (4.12) can be written in the form

Aα(L∗hf) =
( n∏
j=1

Γ(mj + kj − 1)(αj)kj−1

Γ(kj − 1)(4π)mj

)
Lξf,h(m + k− 1)

for each α ∈ Λ∗.
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Remark 4.5. The method used in the proof of Theorem 4.3 was developed by
Kohnen [4]. Results similar to those described in this section were obtained in [8]
for modular forms of one variable and in [6] for Hilbert modular forms. The case
of Siegel modular forms was considered in [1].
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