

ON THE OSTROWSKI TYPE INTEGRAL INEQUALITY

M. Z. SARIKAYA

ABSTRACT. In this note, we establish an inequality of Ostrowski-type involving functions of two independent variables newly by using certain integral inequalities.

1. Introduction

In [3], Ujević proved the following double integral inequality:

Theorem 1. Let $f:[a,b] \to \mathbb{R}$ be a twice differentiable mapping on (a,b) and suppose that $\gamma \leq f^{''}(t) \leq \Gamma$ for all $t \in (a,b)$. Then we have the double inequality

(1.1)
$$\frac{3S - \Gamma}{24} (b - a)^2 \le \frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_a^b f(t) dt \le \frac{3S - \gamma}{24} (b - a)^2$$

where
$$S = \frac{f'(b) - f'(a)}{b - a}$$
.

In a recent paper [2], Liu et al. have proved the following two sharp inequalities of perturbed Ostrowski-type

Received March 9, 2009; revised August 11, 2009.

2000 Mathematics Subject Classification. Primary 26D07, 26D15.

Key words and phrases. Ostrowski's inequality.

Go back

Full Screen

Close

Theorem 2. Under the assumptations of Theorem 1, we have

$$\frac{\Gamma[(x-a)^3 - (b-x)^3]}{12(b-a)} + \frac{1}{8} \left[\frac{b-a}{2} + \left| x - \frac{a+b}{2} \right| \right]^2 (S-\Gamma)$$

$$\leq \frac{1}{2} \left[f(x) + \frac{(x-a)f(a) + (b-x)f(b)}{b-a} \right] - \frac{1}{b-a} \int_a^b f(t) dt$$

$$\leq \frac{\gamma[(x-a)^3 - (b-x)^3]}{12(b-a)} + \frac{1}{8} \left[\frac{b-a}{2} + \left| x - \frac{a+b}{2} \right| \right]^2 (S-\gamma),$$
for all $x \in [a,b]$

for all $x \in [a, b]$,

where $S = \frac{f'(b) - f'(a)}{b - a}$. If γ, Γ are given by

$$\gamma = \min_{t \in [a,b]} f''(t), \qquad \Gamma = \max_{t \in [a,b]} f''(t)$$

then the inequality given by (2) is sharp in the usual sense.

In [1], Cheng has proved the following integral inequality

Theorem 3. Let $I \subset \mathbb{R}$ be an open interval, $a, b \in I$, a < b. $f : I \to \mathbb{R}$ is a differentiable function such that there exist constants $\gamma, \Gamma \in \mathbb{R}$ with $\gamma \leq f'(x) \leq \Gamma$, $x \in [a, b]$. Then we have

(1.3)
$$\left| \frac{1}{2} f(x) - \frac{(x-b)f(b) - (x-a)f(a)}{2(b-a)} - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right|$$

$$\leq \frac{(x-a)^{2} + (b-x)^{2}}{8(b-a)} (\Gamma - \gamma),$$

for all $x \in [a, b]$.

Go back

Full Screen

Close

The main purpose of this paper is to establish new inequality similar to the inequalities (1)–(3) involving functions of two independent variables.

2. Main Result

Theorem 4. Let $f:[a,b]\times[c,d]\to\mathbb{R}$ be an absolutely continuous function such that the partial derivative of order 2 exists and supposes that there exist constants $\gamma,\Gamma\in\mathbb{R}$ with $\gamma\leq\frac{\partial^2 f(t,s)}{\partial t\partial s}\leq\Gamma$ for all $(t,s)\in[a,b]\times[c,d]$. Then, we have

$$\left| \frac{1}{4} f(x,y) + \frac{1}{4} H(x,y) - \frac{1}{2(b-a)} \int_{a}^{b} f(t,y) dt - \frac{1}{2(d-c)} \int_{c}^{d} f(x,s) ds - \frac{1}{2(b-a)(d-c)} \int_{a}^{b} [(y-c)f(t,c) + (d-y)f(t,d)] dt - \frac{1}{2(b-a)(d-c)} \int_{c}^{d} [(x-a)f(a,s) + (b-x)f(b,s)] ds + \frac{1}{2(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(t,s) ds dt \right|$$

$$\leq \frac{[(x-a)^{2} + (b-x)^{2}][(y-c)^{2} + (d-y)^{2}]}{32(b-a)(d-c)} (\Gamma - \gamma),$$

Go back

Full Screen

Close

for all $(x,y) \in [a,b] \times [c,d]$ where

$$\begin{split} &H(x,y) \\ &= \frac{(x-a)[(y-c)f(a,c) + (d-y)f(a,d)] + (b-x)[(y-c)f(b,c) + (d-y)f(b,d)]}{(b-a)(d-c)} \\ &+ \frac{(x-a)f(a,y) + (b-x)f(b,y)}{b-a} + \frac{(y-c)f(x,c) + (d-y)f(x,d)}{d-c}. \end{split}$$

Proof. We define the functions: $p:[a,b]\times[a,b]\to\mathbb{R},\ q:[c,d]\times[c,d]\to\mathbb{R}$ given by

$$p(x,t) = \begin{cases} t - \frac{a+x}{2}, & t \in [a,x] \\ t - \frac{b+x}{2}, & t \in (x,b] \end{cases}$$

Go back

Full Screen

Close

Quit

and

$$q(y,s) = \begin{cases} s - \frac{c+y}{2}, & s \in [c,y] \\ s - \frac{d+y}{2}, & s \in (y,d]. \end{cases}$$

By definitions of p(x,t) and q(y,s), we have

$$\int_{a}^{b} \int_{c}^{d} p(x,t)q(y,s) \frac{\partial^{2} f(t,s)}{\partial t \partial s} ds dt = \int_{a}^{x} \int_{c}^{y} \left(t - \frac{a+x}{2}\right) \left(s - \frac{c+y}{2}\right) \frac{\partial^{2} f(t,s)}{\partial t \partial s} ds dt
+ \int_{a}^{x} \int_{y}^{d} \left(t - \frac{a+x}{2}\right) \left(s - \frac{d+y}{2}\right) \frac{\partial^{2} f(t,s)}{\partial t \partial s} ds dt
+ \int_{x}^{b} \int_{c}^{y} \left(t - \frac{b+x}{2}\right) \left(s - \frac{c+y}{2}\right) \frac{\partial^{2} f(t,s)}{\partial t \partial s} ds dt
+ \int_{x}^{b} \int_{y}^{d} \left(t - \frac{b+x}{2}\right) \left(s - \frac{d+y}{2}\right) \frac{\partial^{2} f(t,s)}{\partial t \partial s} ds dt.$$

Integrating by parts twice, we can state:

$$\int_{a}^{x} \int_{c}^{y} \left(t - \frac{a+x}{2} \right) \left(s - \frac{c+y}{2} \right) \frac{\partial^{2} f(t,s)}{\partial t \partial s} ds dt$$
(2.3)
$$= \frac{(x-a)(y-c)}{4} [f(x,y) + f(a,y) + f(x,c) + f(a,c)] - \frac{y-c}{2} \int_{a}^{x} [f(t,y) + f(t,c)] dt - \frac{x-a}{2} \int_{c}^{y} [f(x,s) + f(a,s)] ds + \int_{a}^{x} \int_{c}^{y} f(t,s) ds dt.$$

Go back

Full Screen

Close

$$\int_{a}^{x} \int_{a}^{d} \left(t - \frac{a+x}{2} \right) \left(s - \frac{d+y}{2} \right) \frac{\partial^{2} f(t,s)}{\partial t \partial s} ds dt$$

$$(2.4) = \frac{(x-a)(d-y)}{4} [f(x,y) + f(x,d) + f(a,y) + f(a,d)] - \frac{d-y}{2} \int_{a}^{x} [f(t,d) + f(t,y)] dt - \frac{x-a}{2} \int_{y}^{d} [f(x,s) + f(a,s)] ds + \int_{a}^{x} \int_{y}^{d} f(t,s) ds dt.$$

$$\int_{x}^{b} \int_{c}^{b} \left(t - \frac{b+x}{2}\right) \left(s - \frac{c+y}{2}\right) \frac{\partial^{2} f(t,s)}{\partial t \partial s} ds dt$$

$$(2.5) = \frac{(b-x)(y-c)}{4} [f(x,y) + f(b,y) + f(x,c) + f(b,c)]$$

$$- \frac{y-c}{2} \int_{c}^{b} [f(t,c) + f(t,y)] dt - \frac{b-x}{2} \int_{c}^{y} [f(x,s) + f(b,s)] ds + \int_{c}^{b} \int_{c}^{y} f(t,s) ds dt.$$

$$\int_{x}^{b} \int_{y}^{b} (t - \frac{b+x}{2})(s - \frac{d+y}{2}) \frac{\partial^{2} f(t,s)}{\partial t \partial s} ds dt$$

$$(2.6) = \frac{(b-x)(d-y)}{4} [f(x,y) + f(x,d) + f(b,y) + f(b,d)]$$

$$- \frac{d-y}{2} \int_{x}^{b} [f(t,d) + f(t,y)] dt - \frac{b-x}{2} \int_{y}^{d} [f(x,s) + f(b,s)] ds + \int_{x}^{b} \int_{y}^{d} f(t,s) ds dt.$$

Go back

Full Screen

Close

Adding (6)–(9) and rewriting, we easily deduce

$$\int_{a}^{b} \int_{c}^{d} p(x,t)q(y,s) \frac{\partial^{2} f(t,s)}{\partial t \partial s} ds dt = \frac{1}{4} \{ (b-a)(d-c)f(x,y) \\ + [(x-a)f(a,y) + (b-x)f(b,y)](d-c) \\ + [(y-c)f(x,c) + (d-y)f(x,d)](b-a) \\ + [(y-c)f(a,c) + (d-y)f(a,d)](x-a) \\ + [(y-c)f(b,c) + (d-y)f(b,d)](b-x) \}$$

$$(2.7)$$

$$-\frac{d-c}{2} \int_{a}^{b} f(t,y) dt - \frac{b-a}{2} \int_{c}^{d} f(x,s) ds$$

$$-\frac{1}{2} \int_{a}^{b} [(y-c)f(t,c) + (d-y)f(t,d)] dt$$

$$-\frac{1}{2} \int_{c}^{d} [(x-a)f(a,s) + (b-x)f(b,s)] ds + \int_{a}^{b} \int_{c}^{d} f(t,s) ds dt.$$

Full Screen

Go back

Close

Quit

We also have

(2.8)
$$\int_{a}^{b} \int_{c}^{d} p(x,t)q(y,s)ds dt = 0.$$

Let $M = \frac{\Gamma + \gamma}{2}$. From (10) and (11), it follows that

(2.9)
$$\int_{a}^{b} \int_{c}^{d} p(x,t)q(y,s) \left[\frac{\partial^{2} f(t,s)}{\partial t \partial s} - M \right] ds dt = \int_{a}^{b} \int_{c}^{d} p(x,t)q(y,s) \frac{\partial^{2} f(t,s)}{\partial t \partial s} ds dt.$$

On the other hand, we get

(2.10)
$$\left| \int_{a}^{b} \int_{c}^{d} p(x,t)q(y,s) \left[\frac{\partial^{2} f(t,s)}{\partial t \partial s} - M \right] ds dt \right|$$

$$\leq \max_{(t,s) \in [a,b] \times [c,d]} \left| \frac{\partial^{2} f(t,s)}{\partial t \partial s} - M \right| \int_{a}^{b} \int_{c}^{d} |p(x,t)q(y,s)| ds dt.$$

We also have

(2.11)
$$\max_{(t,s)\in[a,b]\times[c,d]} \left| \frac{\partial^2 f(t,s)}{\partial t \partial s} - M \right| \le \frac{\Gamma - \gamma}{2}$$

and

(2.12)
$$\int_{a}^{b} \int_{c}^{d} |p(x,t)q(y,s)| \, ds \, dt = \frac{[(x-a)^2 + (b-x)^2][(y-c)^2 + (d-y)^2]}{16}.$$

Go back

Full Screen

Close

From (13) to (15), we easily get

(2.13)
$$\left| \int_{a}^{b} \int_{c}^{d} p(x,t)q(y,s) \left[\frac{\partial^{2} f(t,s)}{\partial t \partial s} - M \right] ds dt \right|$$

$$\leq \frac{\left[(x-a)^{2} + (b-x)^{2} \right] \left[(y-c)^{2} + (d-y)^{2} \right]}{32} (\Gamma - \gamma).$$

From (12) and (16), we see that (4) holds.

 Cheng X. L., Improvement of some Ostrowski-Grüss type inequalities, Computers Math. Applic., 42 (2001), 109–114.

- 2. Liu W-J., Xue Q-L. and Wang S-F., Several new perturbed Ostrowski-like type inequalities, J. Inequal. Pure and App.Math.(JIPAM), 8(4) (2007), Article:110.
- 3. Ujević N., Some double integral inequalities and applications, Appl. math. E-Notes, 7 (2007), 93-101.

M. Z. Sarikaya, Department of Mathematics, Faculty of Science and Arts, Afyon Kocatepe University, Afyon-Turkey, e-mail: sarikaya@aku.edu.tr

Full Screen

Close