ON THE OSTROWSKI TYPE INTEGRAL INEQUALITY

M. Z. SARIKAYA

ABSTRACT. In this note, we establish an inequality of Ostrowski-type involving functions of two inde-
pendent variables newly by using certain integral inequalities.

1. INTRODUCTION

In [3], Ujevié¢ proved the following double integral inequality:
Theorem 1. Let f : [a,b]— R be a twice differentiable mapping on (a,b) and suppose that
v < f(t) <T for all t € (a,b). Then we have the double inequality
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In a recent paper [2], Liu et al. have proved the following two sharp inequalities of perturbed
Ostrowski-type
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Theorem 2. Under the assumptations of Theorem 1, we have
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for all z € [a,b],

f'(b) = f'(a)
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then the inequality given by (2) is sharp in the usual sense.
In [1], Cheng has proved the following integral inequality

Theorem 3. Let I C R be an open interval, a,b € I, a < b. f : I— R is a differentiable
function such that there exist constants v,I' € R with v < f'(xz) <T, x € [a,b]. Then we have
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for all x € [a, b].




The main purpose of this paper is to establish new inequality similar to the inequalities (1)—(3)
involving functions of two independent variables.
2. MAIN RESULT
Theorem 4. Let f : [a,b] X [¢,d]— R be an absolutely continuous fuction such that the partial

2
deriwative of order 2 exists and supposes that there exist constants v,I' € R with v < %(at;s) <T

for all (t,s) € [a,b] X [¢,d]. Then, we have
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for all (z,y) € [a,b] X [c,d] where
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Proof. We define the functions: p : [a,b] X [a,b] = R, g : [¢,d] X [¢,d] — R given by
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By definitions of p(x,t) and q(y, s), we have
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Integrating by parts twice, we can state:
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Adding (6)—(9) and rewriting, we easily deduce
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‘We also have
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Let M = . From (10) and (11), it follows that
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On the other hand, we get
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From (13) to (15), we easily get
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From (12) and (16), we see that (4) holds. O
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