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LIMITING BEHAVIOR AND ANALYTICITY OF TWO SPECIAL
TYPES OF INFEASIBLE WEIGHTED CENTRAL PATHS

IN SEMIDEFINITE PROGRAMMING

M. TRNOVSKÁ

Abstract. The central path is the most important concept in the theory of interior

point methods. It is an analytic curve in the interior of the feasible set which tends
to an optimal point at the boundary. The analyticity properties of the paths are

connected with the analysis of the superlinear convergence of the interior point

algorithms for semidefinite programming. In this paper we study the analyticity of
two special types of weighted central paths in semidefinite programming, under the

condition of the existence of the strictly complementary solution.

1. Introduction

Denote Sn the vector space of all n × n symmetric matrices. In this paper we
consider the following primal-dual pair SDP problems in the standard form

minimize X •C

subject to Ai •X = bi, for all i = 1, . . . ,m,
X � 0,

(1)

and
maximize bT y

subject to
m∑
i=1

Aiyi + S = C,

S � 0,

(2)

where the data consists of C ∈ Sn, b ∈ Rm and Ai ∈ Sn for all i = 1, . . . ,m.
The primal variable is X ∈ Sn and the dual variable consists of (S, y) ∈ Sn×Rm.
We will denote Sn+ and Sn++ the sets of positive semidefinite and positive definite
matrices, respectively. We will write X � 0 or X � 0, if X ∈ Sn+, or X ∈ Sn++

respectively.
Given fixed W ∈ Sn++, ∆b ∈ Rm and ∆C ∈ Sn, our aim is to study two

types of weighted central path, which are implicitly defined by the µ > 0 following
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parameterized system of nonlinear equations

Ai •X = bi + µ4bi, i = 1, . . . ,m,X � 0,(3)
m∑
i=1

Aiyi + S = C + µ4C, S � 0,(4)

Φj(X,S) =
√
µW.(5)

Here Φj(X,S), j ∈ {1, 2}, is a symmetrization map Φj : Sn++ × Sn++ → Sn which
symmetrizes the product XS, defined by:

Φ1(X,S) := (X
1
2 S

1
2 + S

1
2 X

1
2 )/2,(6)

Φ2(X,S) := (US
TLX + LX

TUS)/2,(7)

where X
1
2 and LX denote the square root and the lower Cholesky factor of the

positive definite matrix X, respectively, and S
1
2 and US denote the square root

and the upper Cholesky factor of the positive definite matrix S, respectively. The
existence of these paths was established in [13] (see also [17, 18]). It was shown
that these paths are well defined for weights W ∈M 1

3
√

2
, where

M 1
3
√

2
=
{

M ∈ Sn++;∃ν : ‖M− νI‖F <
1

3
√

2

}
(‖.‖F is the Frobenius norm defined for A ∈ Rn×n as ‖A‖F =

√
tr(ATA)) and for

a suitable choice of parameters (4b,4C). It can be shown that if the condition
number κ(W) < 3

√
2n+1

3
√

2n−1
, then W ∈M 1

3
√

2
(see [18, Lemma 3.3.1 and Proposition

A.2.7(a)]). Therefore, under the mentioned conditions, the system (3)–(5) has a
unique solution pj(µ) = (X(µ), y(µ),S(µ)) for every µ > 0.

If (W,4b,4C) = (I, 0, 0), then both the paths defined in (3)–(5) are identical
to the central path associated with the problems (1), (2) (see [18, Lemma 3.4.3]).
Properties of the central path, including the limiting behavior and the analyticity,
were studied in the works [4, 6, 7, 8, 9, 16]. In linear programming, the notion of
the central path can be easily extended to the notion of the weighted central path
– by defining the weighted logarithmic barrier functions. This approach was pos-
sible only for a special type of the weighted path in SDP, associated with so-called
Cholesky type symmetrization and positive diagonal weight, see [1]. A general
approach was presented by authors of [13], where various types of weighted cen-
tral paths were defined implicitly as a solution of the system consisting of (3), (4)
and an equation of the form Φ(X,S) = φ(µ)W. Besides the paths studied in this
paper, also paths associated with symmetrizations ΦAHO(X,S) := (XS + SX)/2,
ΦSR(X,S) := X

1
2 SX

1
2 , ΦCH(X,S) := LX

TSLX were discussed. The existence
of these paths was studied in the works [13, 14, 17]. The results concerning
the limiting behavior and analyticity were obtained under the assumption of the
existence of the strictly complementary solution. (An optimal solution (X, y,S)
of the problems (1), (2) is called strictly complementary, if X + S � 0.) The
analyticity of the weighted paths at the boundary point was studied by several
authors. In the papers [12, 15] it was shown that the paths associated with the
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symmetrization ΦAHO is an analytic function of µ at µ = 0. The authors of [11]
proved that the weighted path associated with the square-root-type symmetriza-
tion ΦSR is analytic at µ = 0 as a function of

√
µ. Finally, in the work [2] it was

shown that the weighted path associated with the Cholesky-type symmetrization
ΦCH and positive diagonal weight is an analytic function of µ at µ = 0. In the
paper [10] (see also [18]) the weighted path associated with Cholesky-type sym-
metrization and a suitable symmetric positive definite weight was studied and it
was proved that this path is analytic at µ = 0 as a function of

√
µ. Moreover, it

was shown that the weighted paths (associated with both – the square-root-type
and Cholesky-type symmetrization) are analytic functions of µ (at the boundary
point) if and only if the weight matrix is block diagonal. The aim of this paper is to
complete the above results and to show that the weighted central paths associated
with symmetrizations (6) and (7) are analytic at µ = 0 as a function of

√
µ.

1.1. Notation

Denote R++ the set of all positive real numbers, i.e. R++ = (0,∞). The vector
space of all symmetric n× n matrices is denoted by Sn. We will write A � 0, or
A � 0 if A is positive semidefinite or positive definite, respectively. The cone of all
positive semidefinite (definite) matrices is denoted by Sn+ (Sn++). Similarly, we will
denote Ln and Un the vector spaces of all lower and upper triangular matrices.
The cones of all matrices from Ln with nonnegative (positive) diagonal entries
are denoted Ln+ (Ln++) and the cones of all matrices from Un with nonnegative
(positive) diagonal entries are denoted Un+ (Un++). For given matrices A,B ∈ Rp×q,
the standard inner product is defined by A•B = tr(ATB), where tr(.) denotes the
trace of a matrix. The Frobenius norm of B ∈ Rp×q is defined as ‖B‖F =

√
B •B.

The spectral norm on Rn×n is defined as ‖B‖2 = maxi{λi(BBT )}.
For a matrix function A : R++ → Rp×q we will use the standard O-notation,

that is, if f : R++ → R++ is a real function, we will write A(µ) = O(f(µ)) if
it holds ‖A(µ)‖F ≤ γf(µ) for some a positive constant γ and a small µ > 0.
Moreover, for matrix function A : R++ → Sn we will write A(µ) = Θ(f(µ)) if
there exists a constant α > 0 such that A(µ)

f(µ) −
1
αI � 0 and αI−A(µ)

f(µ) � 0. Similarly,
for matrix function A : R++ → Ln we will write A(µ) = Θ(f(µ)) if there exists
a constant α > 0 such that A(µ)

f(µ) −
1
αI ∈ Ln+ and αI − A(µ)

f(µ) ∈ L
n
+ and for matrix

function A : R++ → Un we will write A(µ) = Θ(f(µ)) if there exists a constant
α > 0 such that A(µ)

f(µ) −
1
αI ∈ Un+ and αI− A(µ)

f(µ) ∈ U
n
+.

2. Preliminaries

2.1. Assumptions

In this paper we will consider the following assumptions:

Assumption (A1): The matrices A1, . . . ,Am are linearly independent.
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Assumption (A2): The parameters 4b,4C are such that there exists W0 ∈
M 1

3
√

2
and µ0 > 0 such that the system (3)–(5) is solvable for W = W0 and

µ = µ0.

Assumption (A3): There exists a strictly complementary solution for (1),
(2), that is a triple (X∗, y∗,S∗) which is feasible and satisfies X∗S∗ = 0 and
X∗ + S∗ � 0.

Both of the assumptions (A1) and (A2), together with the assumption of the
existence of the (not necessarily complementary) solution of the problems (1),
(2) imply the welldefinedness of the central path which is stated in the following
theorem.

Theorem 2.1. Assume (A1), (A2) and that there exists a solution of the
primal-dual pair (1), (2). Then, for any µ ∈ (0, µ0〉 and any W ∈ M 1

3
√

2
, there

exists a unique solution (X(µ), y(µ),S(µ)) of the system (3)–(5). Moreover, the
path µ→ (X(µ), y(µ),S(µ)) is an analytic function for µ > 0.

For the proof see e.g. [13, 17, 18].
The Assumption (A1) ensures the one-to-one correspondence between the dual

variables y and S.
The Assumption (A2) is not restrictive – there always exist 4b,4C such that

this assumption is satisfied. We can choose W0 ∈ M 1
3
√

2
and µ0 > 0 and pick up

(X0, y0,S0) ∈ Sn++ ×Rm × Sn++ such that

Φj(X0,S0) =
√
µ0W0,

where j ∈ {1, 2}. If we set

4bi =
Ai •X0 − bi√

µ0
for all i = 1, . . . ,m

4C =
∑m
i=1 Aiy0

i + S0 −C
√
µ0

,

then the triple (X0, y0,S0) is a solution of the system (3)–(5).
The Assumption (A3) is restrictive, though it is necessary for our analysis of

the limiting behavior of the paths. It is also commonly used in the analysis of the
superlinear convergence of the interior-point algorithms. Moreover, the results of
[3] indicate that without this assumption the analytical properties of the central
paths would be very difficult to describe. In linear programming, as a special
case of semidefinite programming, the existence of an optimal solution implies the
existence of a strictly complementary solution, but in general in SDP this is not
necessarily true.

For readers convenience, we now provide an example of an (nonlinear) SDP
problem satisfying the assumptions (A1)–(A3).
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Example 2.1. Let m = n = 3, X = (xij),S = (sij) ∈ S3, y ∈ R3 be the
unknown variables and let the data be given as follows:

A1 =

 1 0 0
0 1 0
0 0 0

 , A2 =

 0 0 0
0 0 0
0 0 1

 , A3 =

 0 0 1
0 0 0
1 0 0

 ,

C =

 −1 0 0
0 0 0
0 0 0

 , b =

 2
0
0

 .

Clearly, the data matrices A1,A2,A3 are linearly independent.
The primal SDP problem is equivalent to

minimize −x11

subject to x31 = x32 = x33 = 0
x11 + x22 = 2
x11x22 − x2

12 ≥ 0.

It can be easily seen that the optimal solution of the problem is X∗=

 2 0 0
0 0 0
0 0 0

 .

The dual SDP problem is equivalent to

maximize 2y1
subject to y1 + s11 = −1

y1 + s22 = y2 + s33 = y3 + s13 = 0
s12 = s23 = 0
sii ≥ 0, i = 1, 2, 3
s11s33 − s213 ≥ 0

The optimal solution set of the problem is

D∗ =
{

(y∗,S∗)
∣∣∣∣ y∗ = (−1,−a, 0), S∗ =

 0 0 0
0 1 0
0 0 a

 ; a ≥ 0
}
.

For any a > 0 the tripple (X∗, y∗,S∗) is a strictly complementary optimal solution
of the primal-dial pair of SDP problems.

Let W0 = I, µ0 = 1. Then X0 = S0 = I satisfy the equality Φj(X0,S0) = I for
j = 1, 2. Let y0 = (0, 0, 0). The parameters

4b = (0, 1, 0), 4C =

 2 0 0
0 1 0
0 0 1


satisfy the Assumption (A2).

Let (X∗, y∗,S∗) be a strictly complementary optimal solution. Since X∗S∗ = 0,
the matrices X∗,S∗ commute and therefore there exists an orthogonal matrix Q
such that the matrices QX∗QT , QS∗QT are diagonal. Therefore, without loss of
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generality (applying an orthogonal transformation on the data, if necessary), we
may assume that

X∗ =
(

Λ∗B 0
0 0

)
, S∗ =

(
0 0
0 Λ∗N

)
,

where Λ∗B = diag(λ∗1, . . . , λ
∗
|B|) � 0, Λ∗N = diag(λ∗|B|+1, . . . , λ

∗
n) � 0.

Let (X̂, ŷ, Ŝ) be another (not necessarily strictly complementary) optimal solu-
tion of the primal-dual pair (1), (2). From the complementarity property it follows
that any optimal solution pair (X̂, Ŝ) is in the form

X̂ =
(

X̂B 0
0 0

)
, Ŝ =

(
0 0
0 ŜN

)
,

where X̂B � 0, ŜN � 0.
In what follows, we will assume that any square symmetric matrix M ∈ Sn has

the partition

(8) M =
(

MB MV

MT
V MN

)
and we will denote |B| × |B| the dimension of the square block MB and |N | × |N |
the dimension of the square block MN .

2.2. Asymptotic behavior

In the following we give results concerning the asymptotic behavior of the blocks
XB(µ), XV (µ), XN (µ), SB(µ), SV (µ), SN (µ) of the matrix functions X(µ),S(µ),
and also the asymptotic behavior of the blocks of the functions [X(µ)]

1
2 , [X(µ)]

1
2 ,

LX(µ) and US(µ) for µ→ 0. All the properties hold for both paths studied in this
paper.

The results stated in this section can be proved using the standard techniques
(see e.g. [12, 11, 15]), therefore they are omitted. For details see [18].

Proposition 2.1. For µ ∈ (0, µ0〉 sufficiently small it holds

X(µ) = O(1), y(µ) = O(1), S(µ) = O(1).

Proposition 2.2. The weighted paths posses the following asymptotic behavior:

(9) X(µ) =
(

Θ(1) O(
√
µ)

O(
√
µ) Θ(µ)

)
, S(µ) =

(
Θ(µ) O(

√
µ)

O(
√
µ) Θ(1)

)
.

Denote

(10) Y(µ) := [X(µ)]
1
2 , Z(µ) := [S(µ)]

1
2
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the square roots of the matrices X(µ) and S(µ), which exist and are uniquely
defined. Obviously

XB(µ) = Y2
B(µ) + YV (µ)YT

V (µ),

SB(µ) = Z2
B(µ) + ZV (µ)ZTV (µ),

XV (µ) = YB(µ)YV (µ) + YV (µ)YN (µ),

SV (µ) = ZB(µ)ZV (µ)] + ZV (µ)ZN (µ),

XN (µ) = Y2
N (µ) + YT

V (µ)YV (µ),

SN (µ) = Z2
N (µ) + YT

V (µ)YV (µ).

(11)

The asymptotic behavior of the square roots is stated in the following proposition.

Proposition 2.3. It holds

Y(µ) =
(

Θ(1) O(
√
µ)

O(
√
µ) Θ(

√
µ)

)
, Z(µ) =

(
Θ(
√
µ) O(

√
µ)

O(
√
µ) Θ(1)

)
.(12)

Denote L(µ) := LX(µ) ∈ Ln++ the lower Cholesky factor of the matrices X(µ)
and U(µ) := US(µ) ∈ Un++ the upper Cholesky factor of the matrices S(µ) (which
exist and are uniquely determined). It holds

X(µ) = L(µ)LT (µ), S(µ) = U(µ)UT (µ),

where we denote LT (µ) := (L(µ))T and UT (µ) := (U(µ))T . Assume that any
lower triangular matrix L and upper triangular matrix U is partitioned in the
following way:

L =
(

LB 0
LTV LN

)
, U =

(
UB UV

0 UN

)
.

Then the associated blocks satisfy the following equalities:

XB(µ) = LB(µ)LTB(µ),

SB(µ) = UB(µ)UT
B(µ) + UV (µ)UT

V (µ),

XV (µ) = LB(µ)LV (µ),

SV (µ) = UV (µ)UT
N (µ),

XN (µ) = LTV (µ)LV (µ) + LN (µ)LTN (µ),

SN (µ) = UN (µ)UT
N (µ).

(13)

The asymptotic behavior of the Cholesky factors is stated in the following propo-
sition.

Proposition 2.4. It holds

L(µ) = LX(µ) =
(

Θ(1) 0
O(
√
µ) Θ(

√
µ)

)
,

U(µ) = US(µ) =
(

Θ(
√
µ) O(

√
µ)

0 Θ(1)

)(14)
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Let ρ :=
√
µ. In the following we introduce the normalized matrices X̃(ρ), S̃(ρ),

Ỹ(ρ), Z̃(ρ), L̃(ρ), Ũ(ρ) which will be useful in the further analysis.

X̃(ρ) :=
(

XB(ρ2) XV (ρ2)/ρ
XT
V (ρ2)/ρ XN (ρ2)/ρ2

)
,

S̃(ρ) :=
(

SB(ρ2)/ρ2 SV (ρ2)/ρ
STV (ρ2)/ρ SN (ρ2)

)(15)

Ỹ(ρ) :=
(

YB(ρ2) YV (ρ2)/ρ
YT
V (ρ2)/ρ YN (ρ2)/ρ

)
,

Z̃(ρ) :=
(

ZB(ρ2)/ρ ZV (ρ2)/ρ
ZTV (ρ2)/ρ ZN (ρ2)

)(16)

L̃(ρ) :=
(

LB(ρ2) 0
LTV (ρ2)/ρ LN (ρ2)/ρ

)
,

Ũ(ρ) :=
(

UB(ρ2)/ρ UV (ρ2)/ρ
0 UN (ρ2)

)(17)

Note that from the statements in Proposition 2.2, Proposition 2.3 and Proposi-
tion 2.4 it follows that the normalized matrices satisfy:

X̃(ρ) = S̃(ρ) = Ỹ(ρ) = Z̃(ρ) = L̃(ρ) = Ũ(ρ) = O(1),

moreover, the diagonal blocks of all normalized matrices exhibit the following
behavior:

X̃B(ρ) = S̃B(ρ) = ỸB(ρ) = Z̃(ρ)B = L̃B(ρ) = Ũ(ρ)B = Θ(1),

X̃N (ρ) = S̃N (ρ) = ỸN (ρ) = Z̃N (ρ) = L̃N (ρ) = ŨN (ρ) = Θ(1).

Define ỹ(ρ) = y(µ) = O(1) (see Proposition 2.1). From the asymptotic behavior
stated above it follows that for any sequence {ρk} → 0, the matrix sequences
X̃(ρk), S̃(ρk) and the vector ỹ(ρk) are bounded, hence there exists a convergent
subsequence and we may assume that the limit

lim
k→∞

(X̃(ρk), ỹ(ρk), S̃(ρk)) = (X̃∗, ỹ∗, S̃∗)(18)

exists (though the limit point is not necessary unique). Moreover, from Proposi-
tion 2.2 it follows that the matrices X̃∗B , X̃

∗
N , S̃

∗
B , S̃

∗
N are positive definite.

3. Analyticity of the paths at the boundary point

The aim of this section is to prove the main result of this paper which is stated in
the following theorem

Theorem 3.1. The weighted paths (X(µ), y(µ),S(µ)) associated with sym-
metrization maps defined in (6), (7) are analytic functions of

√
µ for all µ ≥ 0.
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3.1. Feasibility conditions

The first step in proving Theorem 3.1 is the transformation the feasibility con-
ditions to an equivalent system with a special property which is stated in the
following theorem.

Theorem 3.2. There exists a map

Ψ : Sn ×Rm × Sn ×R→ Sn ×Rm,
such that for any ρ > 0, it holds

Ψ(X̃(ρ), ỹ(ρ), S̃(ρ), ρ) = 0

if and only if (X(µ), y(µ),S(µ), µ) satisfies the feasibility conditions (3), (4), that
is

Ai •X(µ) = bi + µ4bi, i = 1, . . . ,m,
m∑
i=1

Aiyi(µ) + S(µ) = C + µ4C.

Moreover, the condition

DΨ(X̃∗, ỹ∗, S̃∗, 0)[4X̃,4ỹ,4S̃] = 0,

where (X̃∗, ỹ∗, S̃∗) is the limit point from (18), DΨ(X̃∗, ỹ∗, S̃∗, 0) is the (partial)
Fréchet derivative of the map Ψ with respect to variables (X̃, ỹ, S̃) at the point
(X̃∗, ỹ∗, S̃∗, 0), implies 4X̃ • 4S̃ = 0.

The proof of the above theorem, including the construction of the map Ψ can
be found in all details in Section 3.2 and Section 3.3 of [10] or in Section 4.2.1 and
Section 4.2.2 of [18], therefore it is omitted. A different approach transformation
of the feasibility conditions was used in [11] or [15].

3.2. Nonsingularity of Fréchet derivatives

Consider the symmetrization map Φ1(X,S) = (X
1
2 S

1
2 + X

1
2 S

1
2 )/2. In this case,

the last condition in the system (3)-(5) is of the form

(X
1
2 S

1
2 + X

1
2 S

1
2 )/2 =

√
µW

and can be equivalently rewritten as

YZ + ZY = 2
√
µW,

Y2 = X,

Z2 = S.

Let UnBN be the vector space of all upper block triangular matrices with symmetric
diagonal blocks of dimensions |B| × |B| and |N | × |N |. Let L be the linear map1

L : UnBN → Rn×n, L :
([

MB MV

0 MN

])
=
[

0 0
MT

V 0

]
.

1The idea of defining this map was used by Lu and Monteiro in [11].
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Define

ŨY (ρ) :=
(

YB(ρ2) YV (ρ2)/ρ
0 YN (ρ2)/ρ

)
, ŨY (ρ) :=

(
ZB(ρ2)/ρ ZV (ρ2)/ρ

0 ZN (ρ2)

)
.

Lemma 3.1. For any ρ =
√
µ > 0, the systems

Y(µ)Z(µ) + Z(µ)Y(µ) = 2
√
µW

Y(µ)2 = X(µ)

Z(µ)2 = S(µ).

and
[ŨY (ρ) + ρL(ŨY (ρ))][ŨZ(ρ) + ρL(ŨZ(ρ))]

+[ŨZ(ρ) + ρL(ŨZ(ρ))]T [ŨY (ρ) + ρL(ŨY (ρ))]T = 2W

[ŨY (ρ) + ρL(ŨY (ρ))]T [ŨZ(ρ) + ρL(ŨZ(ρ))] = X̃(ρ)

[ŨZ(ρ) + ρL(ŨZ(ρ))][ŨY (ρ) + ρL(ŨY (ρ))]T = S̃(ρ)

are equivalent.

Proof. Follows from simple computation. �

From the asymptotic behavior stated in Section 2.2 it follows that the sequence

(X̃(ρk), ŨY (ρk), ỹ(ρk), S̃(ρk), ŨZ(ρk))

is bounded for any {ρk} → 0, hence there exists a convergent subsequence and we
may assume that the following limit

lim
k→∞

(X̃(ρk), ŨY (ρk), ỹ(ρk), S̃(ρk), ŨZ(ρk)) = (X̃∗, Ũ∗Y , ỹ
∗, S̃∗, Ũ∗Z)

exists. Define the map F̃ 1 as follows

F̃ 1(X̃, ŨY , ỹ, S̃, ŨZ , ρ)

=


Ψ(X̃, ỹ, S̃, ρ)
(ŨY +ρL(ŨY ))(ŨZ+ρL(ŨZ))+(ŨZ+ρL(ŨZ))T (ŨY +ρL(ŨY ))T−2W
(ŨY + ρL(ŨY ))T (ŨZ + ρL(ŨZ))− X̃
(ŨZ + ρL(ŨZ))(ŨY + ρL(ŨY ))T − S̃

 .
From Theorem 3.2 and Lemma 3.1 it follows that for any ρ =

√
µ > 0 the

system F̃ 1 = 0 is equivalent to the system (3)–(5) in the sense that

F̃ 1(X̃(ρ), ŨY (ρ), ỹ(ρ), S̃(ρ), ŨZ(ρ), ρ) = 0.

Moreover,
F̃ 1(X̃∗, Ũ∗Y , ỹ

∗, S̃∗, Ũ∗Z , 0) = 0.

The Fréchet derivative of the map F̃ 1 at the point (X̃∗, Ũ∗Y , ỹ
∗, S̃∗, Ũ∗Z , 0) with

respect to the variables (X̃, ŨY , ỹ, S̃, ŨZ) is the linear map
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DF̃ 1(X̃∗, Ũ∗Y , ỹ
∗, S̃∗, Ũ∗Z , 0)[4X̃,4ŨY ,4ỹ,4S̃,4ŨZ ]

=


DΨ(X̃∗, ỹ∗, S̃∗, 0)[4X̃,4ỹ,4S̃]
4ŨY Ũ∗Z + Ũ∗Y4ŨZ + (4ŨZ)T (Ũ∗Y )T + (Ũ∗Z)T (4ŨY )T

(4ŨY )T Ũ∗Y + (Ũ∗Y )T4ŨY −4X̃
4ŨZ(Ũ∗Z)T + Ũ∗Z(4ŨZ)T −4S̃

 .
Our goal now is to prove that

DF̃ 1(X̃∗, Ũ∗Y , ỹ
∗, S̃∗, Ũ∗Z , 0)[4X̃,4ŨY ,4ỹ,4S̃,4ŨZ ]

is a nonsingular linear map. Fot this aim we state several auxiliary lemmas. First,
denote

Un++ =
{
M ∈ UnBN ; MB � 0,MN � 0

}
.

Lemma 3.2.
a) If M ∈ Un++, then M−1 ∈ Un++.
b) If M ∈ Un++ and H ∈ UnBN are such that MH + HTMT = W for some

W ∈ Sn, then

‖MH‖F ≤
‖W‖F√

2
.

Proof. a) The statement follows from properties of block matrices and positive
definiteness.
b) It holds

tr(MHMH) = tr(MBHBMBHB) + tr(MNHNMNHN )

= tr(M
1
2
BHBMBHBM

1
2
B) + tr(M

1
2
NHNMNHNM

1
2
N ) ≥ 0.

Therefore
‖W‖2F = (MH + HTMT ) • (MH + HTMT )

= 2tr(MHHTMT ) + 2tr(MHMH) ≥ 2‖MH‖2F .
�

The next two lemmas contain simple, but usefull properties of matrix norms.

Lemma 3.3. If A ∈ Sn and B ∈ Rn×n, then ‖AB‖F ≤ ‖A‖2‖B‖F .

Lemma 3.4 (Lemma 8 of [13]). Let B ∈ Rn×n be a matrix with real eigenvalues
and let β ∈ (0, 1√

2
). Then if ‖B+BT

2 − I‖F ≤ β, then

(a) ‖B− I‖F ≤
√

2β;

(b) ‖B−1‖2 ≤
1

1−
√

2β
.

Proof. The following lemma is proved using similar techniques to those used
in the proof of Proposition 4 of [13]. (See also Lemma 3.2.3 and Lemma 3.2.4 of
[18].)
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Lemma 3.5. Let U,V ∈ Un++ be given matrices and γ ∈ (0, 1
3
√

2
). If there

exists µ > 0 such that ‖(UV + VTUT )/2− µI‖F ≤ γµ, then for 4U,4V ∈ UnBN
and 4X,4S ∈ Sn the following implication holds

4UV + U4V +4VTUT + VT4UT = 0
4UTU + UT4U = 4X
4VVT + V4VT = 4S

4X • 4S = 0


=⇒ 4U = 4V = 4X = 4S = 0.

Assume that

4UV + U4V +4VTUT + VT4UT = 0,(19)

4UTU + UT4U = 4X,(20)

4VVT + V4VT = 4S,(21)

4X • 4S = 0.(22)

Obviously, the equations (20), (21) are equivalent to

U−T4UT +4UU−1 = U−T4XU−1, 4VTV−T + V−14V = V−14SV−T .

From Lemma 3.2 it follows that

‖U−T4UT ‖F = ‖4UU−1‖F ≤
‖U−T4XU−1‖F√

2
,(23)

‖4VTV−T ‖F = ‖V−14V‖F ≤
‖V−14SV−T ‖F√

2
.(24)

Define

4X̄ := VT4XU−1, 4S̄ := V−14SUT .

It can be easily seen that the condition (22) implies 4X̄ • 4S̄ = 0 and hence

‖4X̄ +4S̄‖2F = ‖4X̄‖2F + ‖4S̄‖2F .(25)

From (20), (21) it follows, that the matrices 4X̄, 4S̄ can be also expressed as

4X̄ = VTUT4UU−1 + VT4UT , 4S̄ = 4VTUT + V−14VVTUT .

Therefore

4X̄ +4S̄ = VTUT4UU−1 + VT4UT +4VTUT + V−14VVTUT

= VTUT4UU−1+V−14VVTUT−4U(U−1U)V−U(VV−1)4V

= (VTUT − µI)4UU−1 +4UU−1(µI−UV)

+ (µI−UV)V−14V + V−14V(VTUT − µI)
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and, by using (25), we obtain

(‖4X̄‖2F + ‖4S̄‖2F )
1
2

= ‖(VTUT − µI)4UU−1 +4UU−1(µI−UV)

+ (µI−UV)V−14V + V−14V(VTUT − µI)‖F
≤ 2‖µI−UV‖F (‖4UU−1‖F + ‖V−14V‖F )

≤ 2
√

2γµ(‖4UU−1‖F + ‖V−14V‖F )

≤ 2γµ(‖U−T4XU−1‖F + ‖V−14SV−T ‖F )

≤ 2γµ‖V−1U−1‖2(‖U−T4XV‖F + ‖U4SV−T ‖F )

≤ 2γ
1−
√

2γ
(‖U−T4XV‖F + ‖U4SV−T ‖F )

≤ 2γ
1−
√

2γ
(‖4X̄‖2F + ‖4S̄‖2F )

1
2 ,

(26)

where the inequalities follow from properties of matrix norms, Lemma 3.4a), (23),
(24), Lemma 3.3 and Lemma 3.4b). Since γ ∈ (0, 1

3
√

2
), we have 2γ

1−
√

2γ
< 1 which

together with (26) imply (‖4X̄‖2F +‖4S̄‖2F )
1
2 = 0 and therefore also4X = 4S =

0. This fact, (23) and (24) give 4U = 4V = 0. �

Proposition 3.1. DF̃ 1(X̃∗, Ũ∗Y , ỹ
∗, S̃∗, Ũ∗Z , 0) is a nonsingular linear map.

Proof. Assume DF̃ 1(X̃∗, Ũ∗Y , ỹ
∗, S̃∗, Ũ∗Z , 0)[4X̃,4ŨY ,4ỹ,4S̃,4ŨZ ] = 0.

Theorem 3.2 gives 4X̃•4S̃ = 0. It holds Ũ∗Y Ũ∗Z +(Ũ∗Z)T (Ũ∗Y )T = 2W and from
the asymptotic behavior it follows that Ũ∗Y , Ũ

∗
Z ∈ Un++. Since W ∈M 1

3
√

2
, the as-

sumptions of Lemma 3.5 are satisfied. Therefore 4X̃ = 4ŨY = 4S̃ = 4ŨZ = 0.
Assumption (A1) yields 4ỹ = 0. �

Analogously, we can prove a similar result for the symmetrization map
Φ2(X,S) = (US

TLX + LX
TUS)/2. In this case, the last condition in the sys-

tem (3)–(5)
(US

TLX + LX
TUS)/2 =

√
µW

can be equivalently rewritten as

UTL + LTU = 2
√
µW,

LLT = X,

UUT = S.

The following lemma can be proved by simple computation.

Lemma 3.6. For any ρ =
√
µ > 0, the systems

U(µ)TL(µ) + L(µ)TU(µ) = 2
√
µW

L(µ)L(µ)T = X(µ)

U(µ)U(µ)T = S(µ).
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and

Ũ(ρ)T L̃(ρ) + L̃(ρ)T Ũ(ρ) = 2W

L̃(ρ)L̃(ρ)T = X̃(ρ)

Ũ(ρ)Ũ(ρ)T = S̃(ρ)

(27)

are equivalent.

From the asymptotic behavior stated in Subsection 2.2 it follows that, for any
sequence {ρk} → 0 the sequence (X̃(ρk), L̃(ρk), ỹ(ρk), S̃(ρk), Ũ(ρk)) is bounded,
hence there exists a convergent subsequence and we may assume that the limit

lim
k→∞

(X̃(ρk), L̃(ρk), ỹ(ρk), S̃(ρk), Ũ(ρk)) = (X̃∗, L̃∗, ỹ∗, S̃∗, Ũ∗)

exists. By inserting ρ = ρk in the system (27) and taking the limit {ρk} → 0, we
obtain

(Ũ∗)T L̃∗ + (L̃∗)T Ũ∗ = 2W

L̃∗(L̃∗)T = X̃∗, Ũ∗(Ũ∗)T = S̃∗.
(28)

Define the map F̃ 2 as follows

F̃ 2(X̃, L̃, ỹ, S̃, Ũ, ρ) =


Ψ(X̃, ỹ, S̃, ρ)

ŨT L̃ + L̃T Ũ− 2W
L̃L̃T − X̃,
ŨŨT − S̃

 .
From Theorem 3.2 and Lemma 3.6 it follows that, for any ρ =

√
µ > 0, the system

F̃ 2 = 0 is equivalent with the system (3)–(5) in the sense that

F̃ 2(X̃(ρ), L̃(ρ), ỹ(ρ), S̃(ρ), Ũ(ρ), ρ) = 0,

and moreover,
F̃ 2(X̃∗, L̃∗, ỹ∗, S̃∗, Ũ∗, 0) = 0.

The Fréchet derivative of the map F̃ 2 at the point (X̃∗, L̃∗, ỹ∗, S̃∗, Ũ∗, 0) with
respect to the variables (X̃, L̃, ỹ, S̃, Ũ) is the linear map

DF̃ 2(X̃∗, L̃∗,ỹ∗, S̃∗, Ũ∗, 0)[4X̃,4L̃,4ỹ,4S̃,4Ũ]

=


DΨ(X̃∗, ỹ∗, S̃∗, 0)[4X̃,4ỹ,4S̃]

(4Ũ)T L̃∗ + (Ũ∗)T4L̃ + (4L̃)T Ũ∗ + (L̃∗)T4Ũ
4L̃(L̃∗)T + L̃∗(4L̃)T −4X̃
4Ũ(Ũ∗)T + Ũ∗(4Ũ)T −4S̃

 .
The nonsingularity result follows from the next lemma. For the proof see also
Proposition 5 of [13] or Lemma 3.2.4 of [18].

Lemma 3.7. Let X,S ∈ Sn++ be given matrices and γ ∈ (0, 1
3
√

2
). If there

exists µ > 0 such that ‖(US
TLX + LX

TUS)/2 − µI‖F ≤ γµ (where LX is the
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lower Cholesky factor of X and US is the upper Cholesky factor of S), then for
4L ∈ Ln, 4U ∈ Un and 4X,4S ∈ Sn the following implication holds

4LTUS + US
T4L +4UTLX + LX

T4U = 0
4LLX

T + LX4LT = 4X
4UUS

T + US4UT = 4S
4X • 4S = 0


=⇒ 4L = 4U = 4X = 4S = 0.

Proposition 3.2. DF̃ 2(X̃∗, L̃∗, ỹ∗, S̃∗, Ũ∗, 0) is a nonsingular linear map.

Proof. Assume DF̃ 2(X̃∗, L̃∗, ỹ∗, S̃∗, Ũ∗, 0)[4X̃,4L̃,4ỹ,4S̃,4Ũ] = 0. Theo-
rem 3.2 implies 4X̃ • 4S̃ = 0. From the asymptotic behavior stated in Sub-
section 2.2 it follows that L̃∗ ∈ Ln++ and Ũ∗ ∈ Un++. The rest follows from (28),
Lemma 3.7 and Assumption (A1). �

3.3. Analyticity of the weighted paths as a function of
√
µ at µ = 0

Now we are ready to prove Theorem 3.1. The idea of the proof is analogous to the
proof of Proposition 4.2.2 of [18] or Proposition 6.1 of [10].

Proof. We will only consider the weighted path associated with the symmetriza-
tion Φ1. The proof for the path associated with the Φ2 is the same. Recall that

F̃ 1 : Sn × UnBN ×Rm × Sn × UnBN → Rm × Sn × Sn × Sn × Sn

is for an analytic function of (X̃, ŨY , ỹ, S̃, ŨZ , ρ) such that

1. there exists (X̃∗, Ũ∗Y , ỹ
∗, S̃∗, Ũ∗Z , 0) such that

F̃ 1(X̃∗, Ũ∗Y , ỹ
∗, S̃∗, Ũ∗Z , 0) = 0;

2. the Fréchet derivative of the map F̃ 2 with respect to (X̃, ŨY , ỹ, S̃, ŨZ) is
nonsingular at the point (X̃∗, Ũ∗Y , ỹ

∗, S̃∗, Ũ∗Z , 0) (see Proposition 3.1).
Now we can apply the (analytic version of) implicit function theorem (see [5])
and obtain that there exist: a neighborhood I of ρ = 0, a neighborhood U of
(X̃∗, Ũ∗Y , ỹ

∗, S̃∗, Ũ∗Z) and an analytic function

(X̂, ÛY , ŷ, Ŝ, ÛZ) : I → U

such that (X̂, ÛY , ŷ, Ŝ, ÛZ)(0) = (X̃∗, Ũ∗Y , ỹ
∗, S̃∗, Ũ∗Z) and

F̃ 1((X̂, ÛY , ŷ, Ŝ, ÛZ)(ρ)) = 0(29)

for all ρ ∈ I. There exists k̄ > 0 such that for all k ≥ k̄ it holds ρk ∈ I and
(X̃(ρk), ŨY (ρk), ỹ(ρk), S̃(ρk), ŨZ(ρk))∈U . Since (X̃(ρ), ŨY (ρ), ỹ(ρ), S̃(ρ), ŨZ(ρ))
and (X̂, ÛY , ŷ, Ŝ, ÛZ)(ρ) are solutions of (29) for ρ > 0, from the uniqueness of
the positive definite solutions it follows that

(X̃(ρ), ŨY (ρ), ỹ(ρ), S̃(ρ), ŨZ(ρ)) = (X̂, ÛY , ŷ, Ŝ, ÛZ)(ρ)

for all ρ ∈ I ∩ (0,∞). Thus the path function (X̃(ρ), ŨY (ρ), ỹ(ρ), S̃(ρ), ŨZ(ρ)) is
analytically extendable to ρ = 0 by prescription (X̃(0), ŨY (0), ỹ(0), S̃(0), ŨZ(0))=
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(X̃∗, Ũ∗Y , ỹ
∗, S̃∗, Ũ∗Z). Therefore also the function (X̃(ρ), ỹ(ρ), S̃(ρ)) is analytically

extendable to ρ = 0. �

4. Conclusion

Note that contrary to the weighted paths associated with the symmetrization maps
ΦAHO, ΦSR, ΦCH , the paths studied in this paper are parameterized by

√
µ in the

symmetrization condition (5). This parameterization causes that both the types
of paths associated with the symmetrizations (6), (7) are for (W,4b,4C) =
(I, 0, 0) identical with the central path, and moreover, these paths possess similar
asymptotic behavior like to the paths associated with symmetrizations ΦAHO,
ΦSR, ΦCH . We can also observe that the paths studied in this paper are analytic
at the boundary of the same order as the condition (5). This property is satisfied
only for the paths associated with ΦAHO – the analyticity at the boundary point
of the paths associated with ΦSR and ΦCH depends on the structure of the weight
matrix (see [10, 11, 12, 15]).

Acknowledgement. The author is grateful to the anonymous referee for the
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