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LIMITING BEHAVIOR AND ANALYTICITY OF TWO SPECIAL TYPES OF
INFEASIBLE WEIGHTED CENTRAL PATHS

IN SEMIDEFINITE PROGRAMMING

M. TRNOVSKÁ

Abstract. The central path is the most important concept in the theory of interior point methods. It
is an analytic curve in the interior of the feasible set which tends to an optimal point at the boundary.
The analyticity properties of the paths are connected with the analysis of the superlinear convergence
of the interior point algorithms for semidefinite programming. In this paper we study the analyticity
of two special types of weighted central paths in semidefinite programming, under the condition of the
existence of the strictly complementary solution.

1. Introduction

Denote Sn the vector space of all n×n symmetric matrices. In this paper we consider the following
primal-dual pair SDP problems in the standard form

minimize X •C

subject to Ai •X = bi, for all i = 1, . . . ,m,
X � 0,

(1)
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and
maximize bT y

subject to
m∑
i=1

Aiyi + S = C,

S � 0,

(2)

where the data consists of C ∈ Sn, b ∈ Rm and Ai ∈ Sn for all i = 1, . . . ,m. The primal variable
is X ∈ Sn and the dual variable consists of (S, y) ∈ Sn × Rm. We will denote Sn+ and Sn++ the
sets of positive semidefinite and positive definite matrices, respectively. We will write X � 0 or
X � 0, if X ∈ Sn+, or X ∈ Sn++ respectively.

Given fixed W ∈ Sn++, ∆b ∈ Rm and ∆C ∈ Sn, our aim is to study two types of weighted
central path, which are implicitly defined by the µ > 0 following parameterized system of nonlinear
equations

Ai •X = bi + µ4bi, i = 1, . . . ,m,X � 0,(3)
m∑
i=1

Aiyi + S = C + µ4C, S � 0,(4)

Φj(X,S) =
√
µW.(5)

Here Φj(X,S), j ∈ {1, 2}, is a symmetrization map Φj : Sn++ × Sn++ → Sn which symmetrizes the
product XS, defined by:

Φ1(X,S) := (X
1
2 S

1
2 + S

1
2 X

1
2 )/2,(6)

Φ2(X,S) := (US
TLX + LX

TUS)/2,(7)

where X
1
2 and LX denote the square root and the lower Cholesky factor of the positive definite

matrix X, respectively, and S
1
2 and US denote the square root and the upper Cholesky factor of
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the positive definite matrix S, respectively. The existence of these paths was established in [13]
(see also [17, 18]). It was shown that these paths are well defined for weights W ∈M 1

3
√

2
, where

M 1
3
√

2
=
{

M ∈ Sn++;∃ν : ‖M− νI‖F <
1

3
√

2

}
(‖.‖F is the Frobenius norm defined for A ∈ Rn×n as ‖A‖F =

√
tr(ATA)) and for a suitable choice

of parameters (4b,4C). It can be shown that if the condition number κ(W) < 3
√

2n+1
3
√

2n−1
, then

W ∈ M 1
3
√

2
(see [18, Lemma 3.3.1 and Proposition A.2.7(a)]). Therefore, under the mentioned

conditions, the system (3)–(5) has a unique solution pj(µ) = (X(µ), y(µ),S(µ)) for every µ > 0.
If (W,4b,4C) = (I, 0, 0), then both the paths defined in (3)–(5) are identical to the central

path associated with the problems (1), (2) (see [18, Lemma 3.4.3]). Properties of the central path,
including the limiting behavior and the analyticity, were studied in the works [4, 6, 7, 8, 9, 16].
In linear programming, the notion of the central path can be easily extended to the notion of the
weighted central path – by defining the weighted logarithmic barrier functions. This approach was
possible only for a special type of the weighted path in SDP, associated with so-called Cholesky type
symmetrization and positive diagonal weight, see [1]. A general approach was presented by authors
of [13], where various types of weighted central paths were defined implicitly as a solution of the
system consisting of (3), (4) and an equation of the form Φ(X,S) = φ(µ)W. Besides the paths
studied in this paper, also paths associated with symmetrizations ΦAHO(X,S) := (XS + SX)/2,
ΦSR(X,S) := X

1
2 SX

1
2 , ΦCH(X,S) := LX

TSLX were discussed. The existence of these paths was
studied in the works [13, 14, 17]. The results concerning the limiting behavior and analyticity
were obtained under the assumption of the existence of the strictly complementary solution. (An
optimal solution (X, y,S) of the problems (1), (2) is called strictly complementary, if X + S � 0.)
The analyticity of the weighted paths at the boundary point was studied by several authors. In
the papers [12, 15] it was shown that the paths associated with the symmetrization ΦAHO is an
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analytic function of µ at µ = 0. The authors of [11] proved that the weighted path associated with
the square-root-type symmetrization ΦSR is analytic at µ = 0 as a function of

√
µ. Finally, in the

work [2] it was shown that the weighted path associated with the Cholesky-type symmetrization
ΦCH and positive diagonal weight is an analytic function of µ at µ = 0. In the paper [10] (see also
[18]) the weighted path associated with Cholesky-type symmetrization and a suitable symmetric
positive definite weight was studied and it was proved that this path is analytic at µ = 0 as a
function of

√
µ. Moreover, it was shown that the weighted paths (associated with both – the

square-root-type and Cholesky-type symmetrization) are analytic functions of µ (at the boundary
point) if and only if the weight matrix is block diagonal. The aim of this paper is to complete the
above results and to show that the weighted central paths associated with symmetrizations (6)
and (7) are analytic at µ = 0 as a function of

√
µ.

1.1. Notation

Denote R++ the set of all positive real numbers, i.e. R++ = (0,∞). The vector space of all
symmetric n × n matrices is denoted by Sn. We will write A � 0, or A � 0 if A is positive
semidefinite or positive definite, respectively. The cone of all positive semidefinite (definite) ma-
trices is denoted by Sn+ (Sn++). Similarly, we will denote Ln and Un the vector spaces of all lower
and upper triangular matrices. The cones of all matrices from Ln with nonnegative (positive)
diagonal entries are denoted Ln+ (Ln++) and the cones of all matrices from Un with nonnegative
(positive) diagonal entries are denoted Un+ (Un++). For given matrices A,B ∈ Rp×q, the standard
inner product is defined by A • B = tr(ATB), where tr(.) denotes the trace of a matrix. The
Frobenius norm of B ∈ Rp×q is defined as ‖B‖F =

√
B •B. The spectral norm on Rn×n is defined

as ‖B‖2 = maxi{λi(BBT )}.
For a matrix function A : R++ → Rp×q we will use the standard O-notation, that is, if

f : R++ → R++ is a real function, we will write A(µ) = O(f(µ)) if it holds ‖A(µ)‖F ≤ γf(µ)
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for some a positive constant γ and a small µ > 0. Moreover, for matrix function A : R++ → Sn

we will write A(µ) = Θ(f(µ)) if there exists a constant α > 0 such that A(µ)
f(µ) −

1
αI � 0 and

αI − A(µ)
f(µ) � 0. Similarly, for matrix function A : R++ → Ln we will write A(µ) = Θ(f(µ)) if

there exists a constant α > 0 such that A(µ)
f(µ) −

1
αI ∈ Ln+ and αI − A(µ)

f(µ) ∈ Ln+ and for matrix
function A : R++ → Un we will write A(µ) = Θ(f(µ)) if there exists a constant α > 0 such that
A(µ)
f(µ) −

1
αI ∈ Un+ and αI− A(µ)

f(µ) ∈ U
n
+.

2. Preliminaries

2.1. Assumptions

In this paper we will consider the following assumptions:

Assumption (A1): The matrices A1, . . . ,Am are linearly independent.

Assumption (A2): The parameters 4b,4C are such that there exists W0 ∈ M 1
3
√

2
and

µ0 > 0 such that the system (3)–(5) is solvable for W = W0 and µ = µ0.

Assumption (A3): There exists a strictly complementary solution for (1), (2), that is a triple
(X∗, y∗,S∗) which is feasible and satisfies X∗S∗ = 0 and X∗ + S∗ � 0.

Both of the assumptions (A1) and (A2), together with the assumption of the existence of the
(not necessarily complementary) solution of the problems (1), (2) imply the welldefinedness of the
central path which is stated in the following theorem.
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Theorem 2.1. Assume (A1), (A2) and that there exists a solution of the primal-dual pair (1),
(2). Then, for any µ ∈ (0, µ0〉 and any W∈M 1

3
√

2
, there exists a unique solution (X(µ), y(µ),S(µ))

of the system (3)–(5). Moreover, the path µ→ (X(µ), y(µ),S(µ)) is an analytic function for µ > 0.

For the proof see e.g. [13, 17, 18].
The Assumption (A1) ensures the one-to-one correspondence between the dual variables y and

S.
The Assumption (A2) is not restrictive – there always exist 4b,4C such that this assumption

is satisfied. We can choose W0 ∈ M 1
3
√

2
and µ0 > 0 and pick up (X0, y0,S0) ∈ Sn++ ×Rm × Sn++

such that

Φj(X0,S0) =
√
µ0W0,

where j ∈ {1, 2}. If we set

4bi =
Ai •X0 − bi√

µ0
for all i = 1, . . . ,m

4C =
∑m
i=1 Aiy0

i + S0 −C
√
µ0

,

then the triple (X0, y0,S0) is a solution of the system (3)–(5).
The Assumption (A3) is restrictive, though it is necessary for our analysis of the limiting

behavior of the paths. It is also commonly used in the analysis of the superlinear convergence of the
interior-point algorithms. Moreover, the results of [3] indicate that without this assumption the
analytical properties of the central paths would be very difficult to describe. In linear programming,
as a special case of semidefinite programming, the existence of an optimal solution implies the
existence of a strictly complementary solution, but in general in SDP this is not necessarily true.
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For readers convenience, we now provide an example of an (nonlinear) SDP problem satisfying
the assumptions (A1)–(A3).

Example 2.1. Let m = n = 3, X = (xij),S = (sij) ∈ S3, y ∈ R3 be the unknown variables
and let the data be given as follows:

A1 =

 1 0 0
0 1 0
0 0 0

 , A2 =

 0 0 0
0 0 0
0 0 1

 , A3 =

 0 0 1
0 0 0
1 0 0

 ,

C =

 −1 0 0
0 0 0
0 0 0

 , b =

 2
0
0

 .

Clearly, the data matrices A1,A2,A3 are linearly independent.
The primal SDP problem is equivalent to

minimize −x11

subject to x31 = x32 = x33 = 0
x11 + x22 = 2
x11x22 − x2

12 ≥ 0.
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It can be easily seen that the optimal solution of the problem is X∗=

 2 0 0
0 0 0
0 0 0

 . The dual

SDP problem is equivalent to

maximize 2y1
subject to y1 + s11 = −1

y1 + s22 = y2 + s33 = y3 + s13 = 0
s12 = s23 = 0
sii ≥ 0, i = 1, 2, 3
s11s33 − s213 ≥ 0

The optimal solution set of the problem is

D∗ =
{

(y∗,S∗)
∣∣∣∣ y∗ = (−1,−a, 0), S∗ =

 0 0 0
0 1 0
0 0 a

 ; a ≥ 0
}
.

For any a > 0 the tripple (X∗, y∗,S∗) is a strictly complementary optimal solution of the primal-
dial pair of SDP problems.

Let W0 = I, µ0 = 1. Then X0 = S0 = I satisfy the equality Φj(X0,S0) = I for j = 1, 2. Let
y0 = (0, 0, 0). The parameters

4b = (0, 1, 0), 4C =

 2 0 0
0 1 0
0 0 1


satisfy the Assumption (A2).

Let (X∗, y∗,S∗) be a strictly complementary optimal solution. Since X∗S∗ = 0, the matrices
X∗,S∗ commute and therefore there exists an orthogonal matrix Q such that the matrices QX∗QT ,
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QS∗QT are diagonal. Therefore, without loss of generality (applying an orthogonal transformation
on the data, if necessary), we may assume that

X∗ =
(

Λ∗B 0
0 0

)
, S∗ =

(
0 0
0 Λ∗N

)
,

where Λ∗B = diag(λ∗1, . . . , λ
∗
|B|) � 0, Λ∗N = diag(λ∗|B|+1, . . . , λ

∗
n) � 0.

Let (X̂, ŷ, Ŝ) be another (not necessarily strictly complementary) optimal solution of the primal-
dual pair (1), (2). From the complementarity property it follows that any optimal solution pair
(X̂, Ŝ) is in the form

X̂ =
(

X̂B 0
0 0

)
, Ŝ =

(
0 0
0 ŜN

)
,

where X̂B � 0, ŜN � 0.
In what follows, we will assume that any square symmetric matrix M ∈ Sn has the partition

(8) M =
(

MB MV

MT
V MN

)
and we will denote |B| × |B| the dimension of the square block MB and |N | × |N | the dimension
of the square block MN .

2.2. Asymptotic behavior

In the following we give results concerning the asymptotic behavior of the blocks XB(µ), XV (µ),
XN (µ), SB(µ), SV (µ), SN (µ) of the matrix functions X(µ),S(µ), and also the asymptotic behavior
of the blocks of the functions [X(µ)]

1
2 , [X(µ)]

1
2 , LX(µ) and US(µ) for µ → 0. All the properties

hold for both paths studied in this paper.



JJ J I II

Go back

Full Screen

Close

Quit

The results stated in this section can be proved using the standard techniques (see e.g. [12, 11,
15]), therefore they are omitted. For details see [18].

Proposition 2.1. For µ ∈ (0, µ0〉 sufficiently small it holds

X(µ) = O(1), y(µ) = O(1), S(µ) = O(1).

Proposition 2.2. The weighted paths posses the following asymptotic behavior:

(9) X(µ) =
(

Θ(1) O(
√
µ)

O(
√
µ) Θ(µ)

)
, S(µ) =

(
Θ(µ) O(

√
µ)

O(
√
µ) Θ(1)

)
.

Denote

(10) Y(µ) := [X(µ)]
1
2 , Z(µ) := [S(µ)]

1
2

the square roots of the matrices X(µ) and S(µ), which exist and are uniquely defined. Obviously

XB(µ) = Y2
B(µ) + YV (µ)YT

V (µ),

SB(µ) = Z2
B(µ) + ZV (µ)ZTV (µ),

XV (µ) = YB(µ)YV (µ) + YV (µ)YN (µ),

SV (µ) = ZB(µ)ZV (µ)] + ZV (µ)ZN (µ),

XN (µ) = Y2
N (µ) + YT

V (µ)YV (µ),

SN (µ) = Z2
N (µ) + YT

V (µ)YV (µ).

(11)

The asymptotic behavior of the square roots is stated in the following proposition.

Proposition 2.3. It holds

Y(µ) =
(

Θ(1) O(
√
µ)

O(
√
µ) Θ(

√
µ)

)
, Z(µ) =

(
Θ(
√
µ) O(

√
µ)

O(
√
µ) Θ(1)

)
.(12)
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Denote L(µ) := LX(µ) ∈ Ln++ the lower Cholesky factor of the matrices X(µ) and U(µ) :=
US(µ) ∈ Un++ the upper Cholesky factor of the matrices S(µ) (which exist and are uniquely
determined). It holds

X(µ) = L(µ)LT (µ), S(µ) = U(µ)UT (µ),
where we denote LT (µ) := (L(µ))T and UT (µ) := (U(µ))T . Assume that any lower triangular
matrix L and upper triangular matrix U is partitioned in the following way:

L =
(

LB 0
LTV LN

)
, U =

(
UB UV

0 UN

)
.

Then the associated blocks satisfy the following equalities:

XB(µ) = LB(µ)LTB(µ),

SB(µ) = UB(µ)UT
B(µ) + UV (µ)UT

V (µ),

XV (µ) = LB(µ)LV (µ),

SV (µ) = UV (µ)UT
N (µ),

XN (µ) = LTV (µ)LV (µ) + LN (µ)LTN (µ),

SN (µ) = UN (µ)UT
N (µ).

(13)

The asymptotic behavior of the Cholesky factors is stated in the following proposition.

Proposition 2.4. It holds

L(µ) = LX(µ) =
(

Θ(1) 0
O(
√
µ) Θ(

√
µ)

)
,

U(µ) = US(µ) =
(

Θ(
√
µ) O(

√
µ)

0 Θ(1)

)(14)
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Let ρ :=
√
µ. In the following we introduce the normalized matrices X̃(ρ), S̃(ρ), Ỹ(ρ), Z̃(ρ),

L̃(ρ), Ũ(ρ) which will be useful in the further analysis.

X̃(ρ) :=
(

XB(ρ2) XV (ρ2)/ρ
XT
V (ρ2)/ρ XN (ρ2)/ρ2

)
,

S̃(ρ) :=
(

SB(ρ2)/ρ2 SV (ρ2)/ρ
STV (ρ2)/ρ SN (ρ2)

)(15)

Ỹ(ρ) :=
(

YB(ρ2) YV (ρ2)/ρ
YT
V (ρ2)/ρ YN (ρ2)/ρ

)
,

Z̃(ρ) :=
(

ZB(ρ2)/ρ ZV (ρ2)/ρ
ZTV (ρ2)/ρ ZN (ρ2)

)(16)

L̃(ρ) :=
(

LB(ρ2) 0
LTV (ρ2)/ρ LN (ρ2)/ρ

)
,

Ũ(ρ) :=
(

UB(ρ2)/ρ UV (ρ2)/ρ
0 UN (ρ2)

)(17)

Note that from the statements in Proposition 2.2, Proposition 2.3 and Proposition 2.4 it follows
that the normalized matrices satisfy:

X̃(ρ) = S̃(ρ) = Ỹ(ρ) = Z̃(ρ) = L̃(ρ) = Ũ(ρ) = O(1),

moreover, the diagonal blocks of all normalized matrices exhibit the following behavior:

X̃B(ρ) = S̃B(ρ) = ỸB(ρ) = Z̃(ρ)B = L̃B(ρ) = Ũ(ρ)B = Θ(1),
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X̃N (ρ) = S̃N (ρ) = ỸN (ρ) = Z̃N (ρ) = L̃N (ρ) = ŨN (ρ) = Θ(1).
Define ỹ(ρ) = y(µ) = O(1) (see Proposition 2.1). From the asymptotic behavior stated above it
follows that for any sequence {ρk} → 0, the matrix sequences X̃(ρk), S̃(ρk) and the vector ỹ(ρk)
are bounded, hence there exists a convergent subsequence and we may assume that the limit

lim
k→∞

(X̃(ρk), ỹ(ρk), S̃(ρk)) = (X̃∗, ỹ∗, S̃∗)(18)

exists (though the limit point is not necessary unique). Moreover, from Proposition 2.2 it follows
that the matrices X̃∗B , X̃

∗
N , S̃

∗
B , S̃

∗
N are positive definite.

3. Analyticity of the paths at the boundary point

The aim of this section is to prove the main result of this paper which is stated in the following
theorem

Theorem 3.1. The weighted paths (X(µ), y(µ),S(µ)) associated with symmetrization maps
defined in (6), (7) are analytic functions of

√
µ for all µ ≥ 0.

3.1. Feasibility conditions

The first step in proving Theorem 3.1 is the transformation the feasibility conditions to an equiv-
alent system with a special property which is stated in the following theorem.

Theorem 3.2. There exists a map

Ψ : Sn ×Rm × Sn ×R→ Sn ×Rm,

such that for any ρ > 0, it holds

Ψ(X̃(ρ), ỹ(ρ), S̃(ρ), ρ) = 0
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if and only if (X(µ), y(µ),S(µ), µ) satisfies the feasibility conditions (3), (4), that is

Ai •X(µ) = bi + µ4bi, i = 1, . . . ,m,
m∑
i=1

Aiyi(µ) + S(µ) = C + µ4C.

Moreover, the condition
DΨ(X̃∗, ỹ∗, S̃∗, 0)[4X̃,4ỹ,4S̃] = 0,

where (X̃∗, ỹ∗, S̃∗) is the limit point from (18), DΨ(X̃∗, ỹ∗, S̃∗, 0) is the (partial) Fréchet derivative
of the map Ψ with respect to variables (X̃, ỹ, S̃) at the point (X̃∗, ỹ∗, S̃∗, 0), implies 4X̃ •4S̃ = 0.

The proof of the above theorem, including the construction of the map Ψ can be found in all
details in Section 3.2 and Section 3.3 of [10] or in Section 4.2.1 and Section 4.2.2 of [18], therefore
it is omitted. A different approach transformation of the feasibility conditions was used in [11] or
[15].

3.2. Nonsingularity of Fréchet derivatives

Consider the symmetrization map Φ1(X,S) = (X
1
2 S

1
2 + X

1
2 S

1
2 )/2. In this case, the last condition

in the system (3)-(5) is of the form

(X
1
2 S

1
2 + X

1
2 S

1
2 )/2 =

√
µW

and can be equivalently rewritten as

YZ + ZY = 2
√
µW,

Y2 = X,

Z2 = S.
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Let UnBN be the vector space of all upper block triangular matrices with symmetric diagonal blocks
of dimensions |B| × |B| and |N | × |N |. Let L be the linear map1

L : UnBN → Rn×n, L :
([

MB MV

0 MN

])
=
[

0 0
MT

V 0

]
.

Define

ŨY (ρ) :=
(

YB(ρ2) YV (ρ2)/ρ
0 YN (ρ2)/ρ

)
, ŨY (ρ) :=

(
ZB(ρ2)/ρ ZV (ρ2)/ρ

0 ZN (ρ2)

)
.

Lemma 3.1. For any ρ =
√
µ > 0, the systems

Y(µ)Z(µ) + Z(µ)Y(µ) = 2
√
µW

Y(µ)2 = X(µ)

Z(µ)2 = S(µ).

and
[ŨY (ρ) + ρL(ŨY (ρ))][ŨZ(ρ) + ρL(ŨZ(ρ))]

+[ŨZ(ρ) + ρL(ŨZ(ρ))]T [ŨY (ρ) + ρL(ŨY (ρ))]T = 2W

[ŨY (ρ) + ρL(ŨY (ρ))]T [ŨZ(ρ) + ρL(ŨZ(ρ))] = X̃(ρ)

[ŨZ(ρ) + ρL(ŨZ(ρ))][ŨY (ρ) + ρL(ŨY (ρ))]T = S̃(ρ)

are equivalent.

Proof. Follows from simple computation. �

1The idea of defining this map was used by Lu and Monteiro in [11].
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From the asymptotic behavior stated in Section 2.2 it follows that the sequence

(X̃(ρk), ŨY (ρk), ỹ(ρk), S̃(ρk), ŨZ(ρk))

is bounded for any {ρk} → 0, hence there exists a convergent subsequence and we may assume
that the following limit

lim
k→∞

(X̃(ρk), ŨY (ρk), ỹ(ρk), S̃(ρk), ŨZ(ρk)) = (X̃∗, Ũ∗Y , ỹ
∗, S̃∗, Ũ∗Z)

exists. Define the map F̃ 1 as follows

F̃ 1(X̃, ŨY , ỹ, S̃, ŨZ , ρ)

=


Ψ(X̃, ỹ, S̃, ρ)
(ŨY +ρL(ŨY ))(ŨZ+ρL(ŨZ))+(ŨZ+ρL(ŨZ))T (ŨY +ρL(ŨY ))T−2W
(ŨY + ρL(ŨY ))T (ŨZ + ρL(ŨZ))− X̃
(ŨZ + ρL(ŨZ))(ŨY + ρL(ŨY ))T − S̃

 .
From Theorem 3.2 and Lemma 3.1 it follows that for any ρ =

√
µ > 0 the system F̃ 1 = 0 is

equivalent to the system (3)–(5) in the sense that

F̃ 1(X̃(ρ), ŨY (ρ), ỹ(ρ), S̃(ρ), ŨZ(ρ), ρ) = 0.

Moreover,

F̃ 1(X̃∗, Ũ∗Y , ỹ
∗, S̃∗, Ũ∗Z , 0) = 0.

The Fréchet derivative of the map F̃ 1 at the point (X̃∗, Ũ∗Y , ỹ
∗, S̃∗, Ũ∗Z , 0) with respect to the

variables (X̃, ŨY , ỹ, S̃, ŨZ) is the linear map
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DF̃ 1(X̃∗, Ũ∗Y , ỹ
∗, S̃∗, Ũ∗Z , 0)[4X̃,4ŨY ,4ỹ,4S̃,4ŨZ ]

=


DΨ(X̃∗, ỹ∗, S̃∗, 0)[4X̃,4ỹ,4S̃]
4ŨY Ũ∗Z + Ũ∗Y4ŨZ + (4ŨZ)T (Ũ∗Y )T + (Ũ∗Z)T (4ŨY )T

(4ŨY )T Ũ∗Y + (Ũ∗Y )T4ŨY −4X̃
4ŨZ(Ũ∗Z)T + Ũ∗Z(4ŨZ)T −4S̃

 .
Our goal now is to prove that

DF̃ 1(X̃∗, Ũ∗Y , ỹ
∗, S̃∗, Ũ∗Z , 0)[4X̃,4ŨY ,4ỹ,4S̃,4ŨZ ]

is a nonsingular linear map. Fot this aim we state several auxiliary lemmas. First, denote

Un++ =
{
M ∈ UnBN ; MB � 0,MN � 0

}
.

Lemma 3.2.

a) If M ∈ Un++, then M−1 ∈ Un++.
b) If M ∈ Un++ and H ∈ UnBN are such that MH + HTMT = W for some W ∈ Sn, then

‖MH‖F ≤
‖W‖F√

2
.

Proof. a) The statement follows from properties of block matrices and positive definiteness.
b) It holds

tr(MHMH) = tr(MBHBMBHB) + tr(MNHNMNHN )

= tr(M
1
2
BHBMBHBM

1
2
B) + tr(M

1
2
NHNMNHNM

1
2
N ) ≥ 0.
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Therefore
‖W‖2F = (MH + HTMT ) • (MH + HTMT )

= 2tr(MHHTMT ) + 2tr(MHMH) ≥ 2‖MH‖2F .
�

The next two lemmas contain simple, but usefull properties of matrix norms.

Lemma 3.3. If A ∈ Sn and B ∈ Rn×n, then ‖AB‖F ≤ ‖A‖2‖B‖F .

Lemma 3.4 (Lemma 8 of [13]). Let B ∈ Rn×n be a matrix with real eigenvalues and let
β ∈ (0, 1√

2
). Then if ‖B+BT

2 − I‖F ≤ β, then

(a) ‖B− I‖F ≤
√

2β;

(b) ‖B−1‖2 ≤
1

1−
√

2β
.

Proof. The following lemma is proved using similar techniques to those used in the proof of
Proposition 4 of [13]. (See also Lemma 3.2.3 and Lemma 3.2.4 of [18].)

Lemma 3.5. Let U,V ∈ Un++ be given matrices and γ ∈ (0, 1
3
√

2
). If there exists µ > 0 such

that ‖(UV + VTUT )/2− µI‖F ≤ γµ, then for 4U,4V ∈ UnBN and 4X,4S ∈ Sn the following
implication holds

4UV + U4V +4VTUT + VT4UT = 0
4UTU + UT4U = 4X
4VVT + V4VT = 4S

4X • 4S = 0


=⇒ 4U = 4V = 4X = 4S = 0.
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Assume that

4UV + U4V +4VTUT + VT4UT = 0,(19)

4UTU + UT4U = 4X,(20)

4VVT + V4VT = 4S,(21)

4X • 4S = 0.(22)

Obviously, the equations (20), (21) are equivalent to

U−T4UT +4UU−1 = U−T4XU−1, 4VTV−T + V−14V = V−14SV−T .

From Lemma 3.2 it follows that

‖U−T4UT ‖F = ‖4UU−1‖F ≤
‖U−T4XU−1‖F√

2
,(23)

‖4VTV−T ‖F = ‖V−14V‖F ≤
‖V−14SV−T ‖F√

2
.(24)

Define

4X̄ := VT4XU−1, 4S̄ := V−14SUT .

It can be easily seen that the condition (22) implies 4X̄ • 4S̄ = 0 and hence

‖4X̄ +4S̄‖2F = ‖4X̄‖2F + ‖4S̄‖2F .(25)

From (20), (21) it follows, that the matrices 4X̄, 4S̄ can be also expressed as

4X̄ = VTUT4UU−1 + VT4UT , 4S̄ = 4VTUT + V−14VVTUT .
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Therefore

4X̄ +4S̄ = VTUT4UU−1 + VT4UT +4VTUT + V−14VVTUT

= VTUT4UU−1+V−14VVTUT−4U(U−1U)V−U(VV−1)4V

= (VTUT − µI)4UU−1 +4UU−1(µI−UV)

+ (µI−UV)V−14V + V−14V(VTUT − µI)

and, by using (25), we obtain

(‖4X̄‖2F + ‖4S̄‖2F )
1
2

= ‖(VTUT − µI)4UU−1 +4UU−1(µI−UV)

+ (µI−UV)V−14V + V−14V(VTUT − µI)‖F
≤ 2‖µI−UV‖F (‖4UU−1‖F + ‖V−14V‖F )

≤ 2
√

2γµ(‖4UU−1‖F + ‖V−14V‖F )

≤ 2γµ(‖U−T4XU−1‖F + ‖V−14SV−T ‖F )

≤ 2γµ‖V−1U−1‖2(‖U−T4XV‖F + ‖U4SV−T ‖F )

≤ 2γ
1−
√

2γ
(‖U−T4XV‖F + ‖U4SV−T ‖F )

≤ 2γ
1−
√

2γ
(‖4X̄‖2F + ‖4S̄‖2F )

1
2 ,

(26)

where the inequalities follow from properties of matrix norms, Lemma 3.4a), (23), (24), Lemma 3.3
and Lemma 3.4b). Since γ ∈ (0, 1

3
√

2
), we have 2γ

1−
√

2γ
< 1 which together with (26) imply
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(‖4X̄‖2F + ‖4S̄‖2F )
1
2 = 0 and therefore also 4X = 4S = 0. This fact, (23) and (24) give

4U = 4V = 0. �

Proposition 3.1. DF̃ 1(X̃∗, Ũ∗Y , ỹ
∗, S̃∗, Ũ∗Z , 0) is a nonsingular linear map.

Proof. Assume DF̃ 1(X̃∗, Ũ∗Y , ỹ
∗, S̃∗, Ũ∗Z , 0)[4X̃,4ŨY ,4ỹ,4S̃,4ŨZ ] = 0. Theorem 3.2 gives

4X̃•4S̃ = 0. It holds Ũ∗Y Ũ∗Z + (Ũ∗Z)T (Ũ∗Y )T = 2W and from the asymptotic behavior it follows
that Ũ∗Y , Ũ

∗
Z ∈ Un++. Since W ∈ M 1

3
√

2
, the assumptions of Lemma 3.5 are satisfied. Therefore

4X̃ = 4ŨY = 4S̃ = 4ŨZ = 0. Assumption (A1) yields 4ỹ = 0. �

Analogously, we can prove a similar result for the symmetrization map Φ2(X,S) = (US
TLX +

LX
TUS)/2. In this case, the last condition in the system (3)–(5)

(US
TLX + LX

TUS)/2 =
√
µW

can be equivalently rewritten as
UTL + LTU = 2

√
µW,

LLT = X,

UUT = S.

The following lemma can be proved by simple computation.

Lemma 3.6. For any ρ =
√
µ > 0, the systems

U(µ)TL(µ) + L(µ)TU(µ) = 2
√
µW

L(µ)L(µ)T = X(µ)

U(µ)U(µ)T = S(µ).
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and

Ũ(ρ)T L̃(ρ) + L̃(ρ)T Ũ(ρ) = 2W

L̃(ρ)L̃(ρ)T = X̃(ρ)

Ũ(ρ)Ũ(ρ)T = S̃(ρ)

(27)

are equivalent.

From the asymptotic behavior stated in Subsection 2.2 it follows that, for any sequence {ρk} →
0 the sequence (X̃(ρk), L̃(ρk), ỹ(ρk), S̃(ρk), Ũ(ρk)) is bounded, hence there exists a convergent
subsequence and we may assume that the limit

lim
k→∞

(X̃(ρk), L̃(ρk), ỹ(ρk), S̃(ρk), Ũ(ρk)) = (X̃∗, L̃∗, ỹ∗, S̃∗, Ũ∗)

exists. By inserting ρ = ρk in the system (27) and taking the limit {ρk} → 0, we obtain

(Ũ∗)T L̃∗ + (L̃∗)T Ũ∗ = 2W

L̃∗(L̃∗)T = X̃∗, Ũ∗(Ũ∗)T = S̃∗.
(28)

Define the map F̃ 2 as follows

F̃ 2(X̃, L̃, ỹ, S̃, Ũ, ρ) =


Ψ(X̃, ỹ, S̃, ρ)

ŨT L̃ + L̃T Ũ− 2W
L̃L̃T − X̃,
ŨŨT − S̃

 .
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From Theorem 3.2 and Lemma 3.6 it follows that, for any ρ =
√
µ > 0, the system F̃ 2 = 0 is

equivalent with the system (3)–(5) in the sense that

F̃ 2(X̃(ρ), L̃(ρ), ỹ(ρ), S̃(ρ), Ũ(ρ), ρ) = 0,

and moreover,

F̃ 2(X̃∗, L̃∗, ỹ∗, S̃∗, Ũ∗, 0) = 0.

The Fréchet derivative of the map F̃ 2 at the point (X̃∗, L̃∗, ỹ∗, S̃∗, Ũ∗, 0) with respect to the
variables (X̃, L̃, ỹ, S̃, Ũ) is the linear map

DF̃ 2(X̃∗, L̃∗,ỹ∗, S̃∗, Ũ∗, 0)[4X̃,4L̃,4ỹ,4S̃,4Ũ]

=


DΨ(X̃∗, ỹ∗, S̃∗, 0)[4X̃,4ỹ,4S̃]

(4Ũ)T L̃∗ + (Ũ∗)T4L̃ + (4L̃)T Ũ∗ + (L̃∗)T4Ũ
4L̃(L̃∗)T + L̃∗(4L̃)T −4X̃
4Ũ(Ũ∗)T + Ũ∗(4Ũ)T −4S̃

 .
The nonsingularity result follows from the next lemma. For the proof see also Proposition 5 of
[13] or Lemma 3.2.4 of [18].

Lemma 3.7. Let X,S ∈ Sn++ be given matrices and γ ∈ (0, 1
3
√

2
). If there exists µ > 0 such

that ‖(US
TLX + LX

TUS)/2 − µI‖F ≤ γµ (where LX is the lower Cholesky factor of X and US

is the upper Cholesky factor of S), then for 4L ∈ Ln, 4U ∈ Un and 4X,4S ∈ Sn the following



JJ J I II

Go back

Full Screen

Close

Quit

implication holds

4LTUS + US
T4L +4UTLX + LX

T4U = 0
4LLX

T + LX4LT = 4X
4UUS

T + US4UT = 4S
4X • 4S = 0


=⇒ 4L = 4U = 4X = 4S = 0.

Proposition 3.2. DF̃ 2(X̃∗, L̃∗, ỹ∗, S̃∗, Ũ∗, 0) is a nonsingular linear map.

Proof. Assume DF̃ 2(X̃∗, L̃∗, ỹ∗, S̃∗, Ũ∗, 0)[4X̃,4L̃,4ỹ,4S̃,4Ũ] = 0. Theorem 3.2 implies
4X̃ • 4S̃ = 0. From the asymptotic behavior stated in Subsection 2.2 it follows that L̃∗ ∈ Ln++

and Ũ∗ ∈ Un++. The rest follows from (28), Lemma 3.7 and Assumption (A1). �

3.3. Analyticity of the weighted paths as a function of
√
µ at µ = 0

Now we are ready to prove Theorem 3.1. The idea of the proof is analogous to the proof of
Proposition 4.2.2 of [18] or Proposition 6.1 of [10].

Proof. We will only consider the weighted path associated with the symmetrization Φ1. The
proof for the path associated with the Φ2 is the same. Recall that

F̃ 1 : Sn × UnBN ×Rm × Sn × UnBN → Rm × Sn × Sn × Sn × Sn

is for an analytic function of (X̃, ŨY , ỹ, S̃, ŨZ , ρ) such that

1. there exists (X̃∗, Ũ∗Y , ỹ
∗, S̃∗, Ũ∗Z , 0) such that

F̃ 1(X̃∗, Ũ∗Y , ỹ
∗, S̃∗, Ũ∗Z , 0) = 0;
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2. the Fréchet derivative of the map F̃ 2 with respect to (X̃, ŨY , ỹ, S̃, ŨZ) is nonsingular at
the point (X̃∗, Ũ∗Y , ỹ

∗, S̃∗, Ũ∗Z , 0) (see Proposition 3.1).
Now we can apply the (analytic version of) implicit function theorem (see [5]) and obtain that
there exist: a neighborhood I of ρ = 0, a neighborhood U of (X̃∗, Ũ∗Y , ỹ

∗, S̃∗, Ũ∗Z) and an analytic
function

(X̂, ÛY , ŷ, Ŝ, ÛZ) : I → U
such that (X̂, ÛY , ŷ, Ŝ, ÛZ)(0) = (X̃∗, Ũ∗Y , ỹ

∗, S̃∗, Ũ∗Z) and

F̃ 1((X̂, ÛY , ŷ, Ŝ, ÛZ)(ρ)) = 0(29)

for all ρ ∈ I. There exists k̄ > 0 such that for all k ≥ k̄ it holds ρk∈I and (X̃(ρk), ŨY (ρk), ỹ(ρk),
S̃(ρk), ŨZ(ρk))∈U . Since (X̃(ρ), ŨY (ρ), ỹ(ρ), S̃(ρ), ŨZ(ρ)) and (X̂, ÛY , ŷ, Ŝ, ÛZ)(ρ) are solutions
of (29) for ρ > 0, from the uniqueness of the positive definite solutions it follows that

(X̃(ρ), ŨY (ρ), ỹ(ρ), S̃(ρ), ŨZ(ρ)) = (X̂, ÛY , ŷ, Ŝ, ÛZ)(ρ)

for all ρ ∈ I ∩ (0,∞). Thus the path function (X̃(ρ), ŨY (ρ), ỹ(ρ), S̃(ρ), ŨZ(ρ)) is analytically ex-
tendable to ρ = 0 by prescription (X̃(0), ŨY (0), ỹ(0), S̃(0), ŨZ(0))=(X̃∗, Ũ∗Y , ỹ

∗, S̃∗, Ũ∗Z). There-
fore also the function (X̃(ρ), ỹ(ρ), S̃(ρ)) is analytically extendable to ρ = 0. �

4. Conclusion

Note that contrary to the weighted paths associated with the symmetrization maps ΦAHO, ΦSR,
ΦCH , the paths studied in this paper are parameterized by

√
µ in the symmetrization condition (5).

This parameterization causes that both the types of paths associated with the symmetrizations
(6), (7) are for (W,4b,4C) = (I, 0, 0) identical with the central path, and moreover, these paths
possess similar asymptotic behavior like to the paths associated with symmetrizations ΦAHO, ΦSR,
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ΦCH . We can also observe that the paths studied in this paper are analytic at the boundary of
the same order as the condition (5). This property is satisfied only for the paths associated with
ΦAHO – the analyticity at the boundary point of the paths associated with ΦSR and ΦCH depends
on the structure of the weight matrix (see [10, 11, 12, 15]).

Acknowledgement. The author is grateful to the anonymous referee for the comments which
helped to improve the paper.

1. Chua C. B., A New Notion of Weighted Centers for Semidefinite Programming, SIAM Journal on Optimization
16 (2006), 1092–1109.

2. Chua C. B., Analyticity of weighted central path and error bound for semidefinite programming, Mathematical
Programming 115 (2008), 239–271.

3. da Cruz Neto J. X., Ferreira O. P. and Monteiro R. D. C., Asymptotic Behavior of the Central Path for a
Special Class of Degenerate SDP Problems, Mathematical Programming 103(3) (2005), 487–514.

4. de Klerk E., Roos C. and Terlaky T., Initialization in Semidefinite Programming Via a Self-Dual Skew-
Symmetric Embedding, Operations Research Letters 20 (1998), 213–221.
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8. Halická M., de Klerk E. and Roos C., On the Convergence of the central path in Semidefinite Optimization,
SIAM Journal on Optimization 12 (2002), 1090–1099.

9. , Limiting behavior of the central path in semidefinite optimization, Optimization Methods and Software
20(1) (2005), 99–113.



JJ J I II

Go back

Full Screen

Close

Quit
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17. Trnovská M., Existence of Weighted Interior-Point Paths in Semidefinite Programming, in Mathematical Meth-
ods in Economics and Industry, Mathematical Methods in Economics and Industry, Faculty of Economics,

Technical University, Košice 2007.
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