ON THE RICCATTI DIFFERENTIAL POLYNOMIALS

A. AYAD

ABSTRACT. In this paper we present some properties of the Riccatti differential polynomial associ-
ated with a homogeneous linear ordinary differential equation. We give a complete description of the
differential Newton polygons of their derivatives and its evaluations.

1. INTRODUCTION

Many problems from quantum physics, optimal filtering and control can be modelized by Riccatti
differential equations. Grigoriev [2] (see also [3]) has used a differential version of Newton polygons
to compute formal power series solutions of Riccatti differential equations and consequently to
factorize linear ordinary differential equations.

This paper will describe some properties of the Riccatti differential polynomials associated with
homogeneous linear ordinary differential equations. First, we introduce them in Section 1. Second,
we compute their derivatives in Section 2. Section 3 describes the Newton polygons of the Riccatti
differential polynomials and their derivatives. Newton polygons of different evaluations of the
Riccatti differential polynomials are given in Section 4.
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Let K be a field and K be an algebraic closure of K. Let S(y) = 0 be a homogeneous linear
ordinary differential equation of order n with coefficients in K[z]|. This equation can be written in
the form

S(y) = suy™ + -+ 519 + sy
where s; € K[z] for all 0 < 4 < n and s, # 0. Let yo,...,yn be new variables algebraically
independent over K (z). Let (r;);>o be the following sequence of differential polynomials

ro =1, 1 = Yo, s =Yg + Y1,
s = Yo + 3yoy1 + Y2, Tiv1 = YoTi + Dry, for all i > 1,

where Dy; = y;41 for any 0 <i <n —1. Foralli > 1, r; € Z[yo, . ..,yi—1] has total degree equal
to ¢ w.r.t. yo,...,¥;—1 and the only term of r; of degree ¢ is yj.

Definition 1.1. The non-linear differential polynomial
R = sp1n + -+ 8171 + sor0 € K[z][yo, - - -, Yn]

is called the Riccatti differential polynomial associated with S(y) = 0. The equation R(y) :=
R(y, %, e %) = 0 is called the Riccatti differential equation associated with S(y) = 0.

Remark 1. The Riccatti differential equations defined in Definition 1.1 are a generalization
of the well-known first order Riccatti differential equations. Namely, for n = 2, ie., S(y) =
s2y” + s1y' + soy, the Riccatti differential equation associated with S(y) = 0 is the following first
order Riccatti differential equation

R(y) = s2y' + s2y® + 81y + s0 = 0.

Lemma 1.2. Let R be the Riccatti differential polynomial associated with
S(y) = 0. y is a solution of S(y) = 0 if and only if % is a solution of R(y) = 0.
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Proof. See page 12 of [2] (See also [4]). O

Another way to compute the Riccatti differential polynomial associated with S(y) = 0 is by

’
considering the change of variable z = £, i.e., ¥’ = 2y, one computes the successive derivatives

y )
of y and we put them in the equation S(y) = 0 to get a non-linear differential equation R(z) = 0
which satisfies the property of Lemma 1.2.

2. PARTIAL DERIVATIVES OF THE RICCATTI DIFFERENTIAL POLYNOMIAL

For each ¢ > 0 and k£ > 0, the k-th derivative of r; is the differential polynomial defined by
. 87‘1'
o
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75— 15 T =1

T(k-i-l) — (r(k))’ _ 8’6—‘:—17"1'.
) 7 ayé:-i—l

Lemma 2.1. For all i > 1, we have v, = ir;—1. Thus for all k > 0, r® =

p (4)gri—k, where
(D)o :=1 and (d) == i(i — 1) -~ (i — k +1).

Proof. We prove the first item by induction on i. For ¢ = 1, we have rf =1 =1-ry. Suppose
that this property holds for a certain ¢ and prove it for ¢ + 1. Namely,

riv1 = (ori + Dry)" = yori + r; + Dr;
= iyori—1 + i + D(iri—1) = i(yori—1 + Dri—1) + 1y
=ir;+1; = (i + 1)r;.

The second item can be easily deduced from the the first item by induction on k. ]



Definition 2.2. Let R be the Riccatti differential polynomial associated with S(y) = 0. For
any k > 0, the k-th derivative of R is defined by

O*R
R(k) = _3 o Z Sﬂ“gk).
Yo 0<i<n

Lemma 2.3. For all k > 0, we have
R(k) = Z (’l aF k‘)ksi+k7"i.

0<i<n—k
Proof. For all i < k, we have rgk) = 0, because deg, (r;) = i. Then by Lemma 2.1, we get

R®) — Z sirgk)

k<i<n
= Z $i(0)kTi—k
k<i<n
= > G+Rksirs,
0<j<n—k
where the last equality is done by the change j =1 — k. ]

Corollary 2.4. For all £ > 0, the k-th derivative of R is the Riccatti differential polynomial of
the following linear ordinary differential equation of order n — k

SW(y) = > (i +k)rsipry®.

0<i<n—k

Proof. By Definition 1.1 and Lemma 2.3. O




<>

Remark 2. If s; € K for all 0 < i < n, then S is the k-th derivative of S w.r.t. z.

3. NEWTON POLYGON OF THE RICCATTI DIFFERENTIAL POLYNOMIAL
AND ITS DERIVATIVES

Definition 3.1. Let F'(yo,.--,¥n) = X icq.aca Ci.aTy? -+ yS™ be a multivariate polynomial
in yo,...,y, with coefficients ¢, » € K, where o = (a,...,a,) belongs to a finite subset A of
N"+1. For every couple (i,a) € Q x A such that ¢i,a 7 0, we mark the point

Po=0—a—20y— - —nap,ap+o1 +---+a,) €QxN,

and we denote by P(F) the set of all the points P; ,. The convex hull of these points and the point
(+00,0) in the plane R? is denoted by N (F) and is called the Newton polygon of the differential
equation F(y) = 0 in the neighborhood of x = 0. If deg,, , (F) = m, then N(F) is located
between the two horizontal lines y = 0 and y = m.

e For any (a,b) € Q*\ {(0,0)}, we define the set
N(F,a,b) :={(u,v) € P(F), Y(u',v") € P(F), au +W > au+ bv}.

e A point P, € P(F) is a vertex of the Newton polygon N (F) if there exists (a,b) €
Q2\ {(0,0)} such that N(F,a,b) = {P; »}. We remark that N'(F) has a finite number of
vertices. We denote by V(F) the set of all vertices p of N(F) for which a > 0 and b > 0.
By the inclination of a line we mean the negative inverse of its geometric slope. If p € V(F)
and N(F,a,b) = {p} for a certain (a,b) € Q*\ {(0,0)}, then the fraction y = £ € Q is the
inclination of a straight line which intersects N (F) exactly in the vertex p.

e A pair of different vertices e = (P, o, Py o) forms an edge of N (F) if there exists (a,b) €
Q2\ {(0,0)} such that e C N(F,a,b). We denote by E(F) the set of all the edges e of N'(F)
for which @ > 0 and b > 0. It is easy to prove that if e € E(F), then there exists a unique pair



(a(e),b(e)) € Z? such that a(e) > 0, b(e) > 0 are relatively prime and e C N(F,a(e),b(e)).
If e € E(F), we can prove that the fraction p, = Z((z)) € Q is the inclination of the straight
line passing through the edge e.

e For each edge e € E(F), we define the univariate polynomial (in a new variable Z)

Hpe)(Z) = > CioZootert tan ()2 L ()2 € K[Z],
P; « EN(F,a(e),b(e))

where (pe)r := pe(pte — 1) -~ (e — k 4 1) for any positive integer k. We call H(p)(Z) the
characteristic polynomial of F associated with the edge e € E(F). Its degree is at most
m = degy(),...,yn (F)'

e For each vertex p = (u,v) € V(F), let 1 < pa be the inclinations of the adjacent edges at
pin N(F). It is easy to prove that for all rational numbers u = £, a € N*, b € N such that

a

N(F,a,b) = {p}, we have py < pu < ps. We associate with p the polynomial

hirpy () = > cia(w)i - (w3 € K,

Pi,a:p

which is called the indicial polynomial of F associated with the vertex p (here u is considered
as an indeterminate). Let Hp ) (Z) = Z"h(pp) (1) defined as above for edges e € E(F).

e Let p = (u,v) € V(F) and e be the edge of N(F) descending from p, then h(pyp)(ue) is
the coefficient of the monomial ZV in the expansion of the characteristic polynomial of F'
associated with e.

Let R be the Riccatti differential polynomial associated with S(y) = 0. We will describe the
Newton polygons of R and polynomial derivatives. For every 0 < ¢ < n, we mark the points
(deg(s;),i) and (ord(s;), i) in the plane R?, where ord(s;) is the order of multiplicity of 0 as a root of




the polynomial s;. Let N be the convex hull of these points and the two points (ming<;<p,{ord(s;)—
i+1},1) and (400,0).

Lemma 3.2. N is the Newton polygon of R, i.e., N(R) = N.

Proof. For all 0 < i < n, degyo’m,yi_l(ri) = i and the only term of r; of degree i is yj,
then lc(s;)zd%8()yi is a term of R and N' C N(R). For any other term of s;r; in the form
Qi1

badyg° -y '1", where b € K, j < deg(s;) and ag + --- + a;—1 < i, the corresponding point
(j—ay—+—(i—1Da;_1,a0 + -+ + a;_1) is in the interior of N. Thus N(R) C N. O

Lemma 3.3. For any edge e of N(R), the characteristic polynomial of R associated with e is
a non-zero polynomial. For any vertez p of N'(R), the indicial polynomial of R associated with p
is a non-zero constant. Moreover, if the ordinate of p is io, then h(gp) (1) = lc(si,) # 0, where
le(siy) € K is the leading coefficient of s;, .

Proof. By Lemma 3.2, each edge e € E(R) joints two vertices (deg(s;,),?1) and (deg(s;,),2) of
N (R). Moreover, the set N(R,a(e),b(e)) contains these two points. Then
0# Hp,e)(Z) =lc(s4,) 2" + lc(si,) 2" + t,
where ¢ is a sum of terms of degree different from 4; and iz. For any vertex p € V(R) of ordinate
i0, le(s4,)13°8(i0) gyl is the only term of R with the corresponding point p. Then

h(R,p) (:u) = lc(sio) 7é 0. O

Let 0 < k < n and R® be the k-th derivative of R which is the k-th partial derivative of R
w.r.t. yo (Definition 2.2). Then by [1, Section 2], the Newton polygon of R(*) is the translation of
that of R defined by the point (0, —k), i.e., N(R®) = N(R) +{(0, —k)}. The vertices of N'(R*))
are among the points (deg(s;+),%) for 0 < i < n — k by Lemma 2.3. Then for each edge ey of
N(R®), there are two possibilities:



e ¢, is parallel to a certain edge e of N(R), i.e., e is the translation of e by the point

{(07 _k)}

e The upper vertex of ey is the translation of the upper vertex of a certain edge e of N(R)
and the lower vertex of ey, is the translation of a certain point (deg(s;,), io) of N'(R) which
does not belong to e.

In both possibilities we say that the edge e € E(R) is associated with the edge ey € E(R®).

Lemma 3.4. Let e, € E(R®) be parallel to an edge e € E(R). Then the characteristic
polynomial of R*®) associated with ey, is the k-th derivative of that of R associated with e, i.e.,

k
Higw o) (Z) = H((R{e)(Z).

Proof. The edges e), and e have the same inclination p, = p, and N(R® a(eg),b(er)) =
N(R,a(e),b(e)) +{(0,—k)}. Then

Hpw ) (2) = > (i + k)rle(sivrn) 2"
(deg(sitx),i)EN(RM a(er),b(ex))
. i k
= > ()ale(s)) 27~ = HP, (2).

(deg(s;),5) €N (R,a(e),b(e))



4. NEWTON POLYGONS OF EVALUATIONS
OF THE RICCATTI DIFFERENTIAL POLYNOMIAL

Let 0<c€ K, u€Qand Ry(y) = R(y + cx*) be the differential polynomial obtained from R by
replacing yx by c(u)rz”F + yp for all 0 < k < n. We will describe the Newton polygon of R; for
different values of ¢ and u.

Lemma 4.1. R; is the Riccatti differential polynomial of the following linear ordinary differ-
ential equation of order less than or equal to n:

1. .
Sy (y) := Z ER(l)(cx“)y(’).
0<i<n
Proof. It is equivalent to prove the following analogy of Taylor formula
1,
Ry = Z ER(’)(cm“)ri
0<i<n

which is done in [2, Lemma 2.1]. O

Then the vertices of N(R;) are among the points (deg(R® (ca#),i) for 0<i<n. Thus the
Newton polygon of R; is given by [2, Lemma 2.2]

Lemma 4.2. If u is the inclination of an edge e of N(R), then the edges of N(Ry) situated
above e are the same as in N'(R). Moreover, if c is a root of H(g ) of multiplicity n > 1 then,
N(R1) contains an edge ey parallel to e originating from the same upper vertex as e where the
ordinate of the lower vertex of ey equals to n. If n = deg H(g,c), then N'(Ry) contains an edge with
inclination less than p originating from the same upper vertex as e.



Remark 3. If we evaluate R on cz* we get

R(czt) = Z 5 % (c'z™ + 1),

0<i<n

where t is a sum of terms of degree strictly less than iu. Then

le(R(ext)) = Zlc(si)ci = Z le(sg)ct = Hg,e)(c),

i€B (deg(sq),i)€e

where
B:={0<i<mn; deg(si) +ip = max (deg(s;) +ju; 55 # 0)}
SJIsn

= {0 <i < n; (deg(s:),i) € e and s; # 0}.

Lemma 4.3. Let p be the inclination of an edge e of N(R) and ¢ be a root of Hpe) of
multiplicity n > 1. Then

H(R1,€1)(Z) = H(Rve) (Z + C)

where e1 is the edge of N(Ry) given by Lemma 4.2. In addition, if €' is an edge of N'(R;) situated
above e (which is also an edge of N(R) by Lemma 4.2) then H(g, ¢(Z) = H(g,e)(Z).



Proof. We have

1
HpoZ+o)= > HH((R{e)(c) 7k

n<k<n

1
n<k<n
1
= Z Elc(R(k)(cac“))Zk
n<k<n
= H(Rl,el)(Z)
where the first equality is just the Taylor formula taking into account that c is a root of H(g.c)

of multiplicity 7 > 1. The second equality holds by Lemma 3.4, the third one by Remark 3, the
fourth one by Lemma 4.1 and by the definition of the characteristic polynomial. O
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