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VERTEX DEGREE IN THE INTERVAL GRAPH
OF A RANDOM BOOLEAN FUNCTION

J. DAUBNER and E. TOMAN

Abstract. In the present paper we obtain an asymptotic estimate of vertex degree

in the interval graph of a random Boolean function. This substantially improves the
known upper and lower bounds of this parameter. Till now only lower and upper

bounds of this parameter were known.

1. Introduction

The concept of the interval graph of a Boolean function was introduced by Sapo-
zhenko in [5]. He obtained results about the size and the number of connected
components, and estimated the radius and diameter of this graph. These results
are directly related to so called local algorithms for minimization of disjunctive
normal forms of Boolean functions, described by Zhuravlev in [12]. Toman [9]
employed the method of good and bad vertices of a Boolean function to estimate
the vertex degree of the interval graph. This method has been applied by Toman,
Olejár, and Stanek in [8] where they have obtained an upper and a lower bound
for the average vertex degree in the interval graph of a random Boolean function.

In the present paper we analyse the probability of each edge in the interval
graph of a random Boolean function. We determine which edges have the largest
probability and which have negligible probability. By using this method we asymp-
totically estimate the vertex degree in the interval graph of a random Boolean
function. As a corollary we obtain the following simplified estimation of the ver-
tex degree

nlg log1/p n+cn+o(1),

where cn = an−2an , where an = dlg log1/p ne− lg log1/p n. Notice that an ∈ 〈0, 1)
and therefore −1 ≤ cn < −0.9.

2. Preliminaries and Notation

We use the standard notation of the Boolean function theory. An n-ary Boolean
function is a function f : {0, 1}n → {0, 1}. The symbol Booln denotes the set of all
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n-ary Boolean functions. Boolean variables and their negations are called literals.
A literal of a variable x is denoted by xα, where α ∈ {0, 1}, and we set

xα =
{
x if α = 1
¬x if α = 0.

A conjunction K = x
αi1
i1

. . . x
αir
ir

of literals of different variables is called an ele-
mentary conjunction. The number of literals (r) in K is called the rank of K. A
special case is the conjunction of rank 0; it is said to be empty and its value is set
to 1.

A formula D = K1 ∨ · · · ∨Km, the disjunction of distinct elementary conjunc-
tions, is called a disjunctive normal form (briefly d.n.f.). The parameter m (the
number of elementary conjunctions in D) is called the length of D. A d.n.f. with
m = 0 is called empty and its value is 0. A d.n.f. D represents a Boolean function
f if the truth tables of f and D coincide. Let us consider the class of all d.n.f.’s
representing an n-ary Boolean function f ; a d.n.f. with a minimal number of lit-
erals in this class is called a minimal d.n.f. of f and one with minimal length (in
this class) is called a shortest d.n.f. of f.

We use a geometric representation of Boolean functions. The Boolean n-cube is
a graph Bn with 2n vertices α̃ = (α1, . . . , αn);αi ∈ {0, 1}, in which the edges join
those pairs of vertices which differ in exactly one coordinate. For an n-ary Boolean
function f , let Nf denote the subset {α̃; f(α̃) = 1} of all vertices α̃. Notice that
there is a one-to-one correspondence between the sets Nf and Boolean functions
f . The subgraph of the Boolean n-cube induced by the set of Nf is called the
graph of f and is denoted by G(f).

The set of vertices NK ⊆ {0, 1}n corresponding to an elementary conjunction
K of rank r is called an interval of rank r. Notice that to every elementary
conjunction K = x

αi1
i1

. . . x
αir
ir

there corresponds an interval of rank r consisting
of all vertices (β1, . . . , βn) of Bn such that βij = αij for j = 1, . . . , r; the values
of other vertex coordinates can be chosen arbitrarily. In the present paper we will
often work with intervals corresponding to elementary conjunctions. To abbreviate
notation we will use the following ?-notation.

Notation 2.1. Let K = x
αi1
i1

. . . x
αir
ir

be an elementary conjunction of rank r
and let NK be an interval of rank r corresponding to K. Then we denote

NK = {(β1, β2, . . . , βn)|(∀i)βi ∈ {0, 1} and βi1 = αi1 , βi2 = αi2 , . . . , βir = αir}
briefly as

NK = (?, . . . , ?︸ ︷︷ ︸
i1−1

, αi1 , ?, . . . , ?

︸ ︷︷ ︸
i2−1...

, αi2 , ?, . . . , ?

︸ ︷︷ ︸
ir−1

, αir , ?, . . . , ?).

In the geometric model, every interval of rank r represents an (n−r)-dimensional
subcube of Bn. So we call an interval of rank r also an (n−r)-dimensional interval.
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An interval NK is called a maximal interval of a Boolean function f if NK ⊆ Nf
and there exists no interval NK′ ⊆ Nf such that NK ( NK′ . For every elementary
conjunction K from the d.n.f., D the neighbourhood of the first order of K (with
respect to the d.n.f. D) is defined as the set of all elementary conjunctions Kj

from D such that (in algebraic notation) K ∧Kj 6≡ 0 or (in our geometric model)
NK ∩ NKj 6= ∅. Since we mainly study the neighbourhood of the first order in
this paper, the term neighbourhood in the present paper means the neighbourhood
of the first order. The interval graph Γ(f) is a graph associated with a Boolean
function f as follows: its vertices correspond to maximal intervals of f and the
vertices corresponding to intervals NKi and NKj are joined by an edge in Γ(f) if
and only if Ki∧Kj 6≡ ∅. We study the vertex degree in Γ(f) and give an asymptotic
estimation of this parameter. Note that the degree of the vertex corresponding to
a maximal interval NK is equal to the number of elements in the neighbourhood
of NK .

For an arbitrary Boolean function f and each of its d.n.f.s K1 ∨K2 ∨ · · · ∨Km

we have

Nf =
m⋃
j=1

NKj .

In other words, every d.n.f. of a Boolean function f corresponds to a covering of
Nf by intervals NK1 , . . . , NKm such that NKi ⊆ Nf . Conversely, every covering
of Nf by intervals NK1 , . . . , NKm contained in Nf corresponds to a certain d.n.f.
of f d.n.f. of f . Using the geometric interpretation of d.n.f.s, we can express the
“irreducibility” of a d.n.f.: a d.n.f. D of a Boolean function f cannot be simplified
if and only if every interval NK of the covering corresponding to D contains at
least one vertex belonging to just one interval of the covering.

Let rj denote the order of an interval NKj . Then the number of literals in the
d.n.f. is r =

∑m
j=1 rj and the construction of a minimal d.n.f. can be formulated

in the geometric model as a problem of constructing a covering of Nf by intervals
NK ⊆ Nf with minimal r. On the other hand, the construction of a covering
corresponding to a shortest d.n.f. requires to minimize the number of intervals in
covering of Nf .

Various parameters of “typical” Boolean functions have been studied in the
context of minimization of Boolean functions in the class of d.n.f.s. [5, 6, 7, 10].
We use a more general model of Boolean functions, the concept of a random
Boolean function. A random Boolean function is defined on the vertices of the
Boolean n-cube in the following way

f(α1, α2, . . . , αn) =
{

1 with probability p
0 with probability 1− p,

where the value f(α̃) does not depend on the values which the Boolean function
f takess on other vertices. Recall that G(f) is the graph of f . The probability
that the graph G(f) of a random Boolean function f coincides with a subgraph G
of the Boolean n-cube is

Pr[G(f) = G] = pm · (1− p)2
n−m,
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where m denotes the number of vertices in G. Škoviera in [6] studied this proba-
bilistic model. A result from his work appears later in our paper as Theorem 3.3.

Let A be a property that a Boolean function may or may not have. If

lim
n→∞

Pr[f has property A] = 1,

we say that a random Boolean function f has the property A almost surely; equiv-
alently we say that almost all random Boolean functions have property A.

For a random variable Z let the symbols E(Z) and Var(Z) = E(Z − E(Z))2

denote the expectation and the variance of Z, respectively. In the present paper
we only use nonnegative random variables.

Theorem 2.1 (Markov’s inequality). If Z is a non-negative random variable
and ε > 0 is a positive real number, then

Pr(Z ≥ ε) ≤ E(Z)
ε

.

Theorem 2.2 (Chebyshev’s inequality). For every random variable Z and
ε > 0 the following inequality holds

Pr(|Z − E(Z)| ≥ ε) ≤ Var(Z)
ε2

.

Notation 2.2. For functions f, g : R → R we use the following asymptotic
notations:

• f ∼ g means that lim
x→∞

f(x)
g(x)

= 1

• f . g means that lim
x→∞

f(x)
g(x)

≤ 1

• f & g means that lim
x→∞

f(x)
g(x)

≥ 1

• f = o(g) means that lim
x→∞

f(x)
g(x)

= 0 .

Note that f ∼ g means that f = (1 + o(1))g and that all asymptotic notations
in this paper are used with respect to the dimension n of a random n-ary Boolean
function in question.

To estimate one falling factorial we will often use the following lemma.

Lemma 2.3. Let f and g be functions of n. If f = o(
√
g), then

gf ≡ g · (g − 1) . . . (g − f + 1) ∼ gf .

Proof. See, for example, [3]. �

The rest of this paper has the following structure. First, we asymptotically esti-
mate the probability that a random Boolean function contains a fixed
x-dimensional maximal interval and a fixed k-dimensional maximal interval whose
intersection is a t-dimensional interval. This is done in Lemma 3.5. Using this
result, we asymptotically estimate the expectation value of the random variable
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Zn,xk,t (see Definition 3.1). This is done in Lemma 3.6. Then we analyse the ex-
pectation value E(Zn,xk,t ) as a function of k and t to show that only one special
value (E(Zn,xmn,0

)) is asymptotically significant. This is done in Corollaries 3.8, 3.9,
and 3.10. As a direct consequence of these corollaries and Markov’s inequality we
obtain in Lemma 3.11 that Zn,xk,t = Zn,xmn,0

+ o(E(Zn,xmn,0
)). Then we asymptotically

estimate the variance of the random variable Zn,xmn,0
. This is done in Lemma 3.12.

Using this lemma and Chebyshev’s inequality, we show that the random variable
Zn,xmn,0

is asymptotically equal to its expectation. This is done in Corollary 3.13.
Finally, in Theorem 3.14, we use Lemma 3.11 and Corollary 3.13 to show that the
random variable Zn,x (see Definition 3.2) is asymptotically equal to E(Zn,xmn,0

).

3. Size and structure of the neighbourhood of a maximal interval

We describe the size and the structure of a neighbourhood by the following random
variables.

Definition 3.1. Let NX be a fixed x-dimensional maximal interval of a random
Boolean function f ∈ Booln. Let Zn,xk,t denote the random variable on Booln such
that Zn,xk,t is equal to the number of k-dimensional maximal intervals of f which
intersect NX in a t-dimensional interval.

Definition 3.2. Let NX be a fixed x-dimensional maximal interval of a ran-
dom Boolean function f ∈ Booln. Let Zn,x denote the random variable on Booln
such that Zn,x is equal to the number of all maximal intervals of f which have a
nonempty intersection with NX .

Notice that the random variable Zn,x is equal to the degree of the vertex νx
in the interval graph, where νx corresponds to a fixed maximal interval NX . No-
tice that the random variable Zn,xk,t is equal to the number of edges (νx, νk) in
the interval graph, where νx corresponds to a fixed maximal interval NX and νk
corresponds to any k-dimensional maximal interval NK such that NX ∩NK = NT
and NT is a t-dimensional interval.

Theorem 3.3. Let p ∈ (0, 1). Then with probability tending to 1 as n → ∞,
the dimension k of a maximal interval of a random Boolean function satisfies the
following inequalities

lg log1/p n− 1 ≤ k ≤ lg log1/p n+ lg lg log1/p n+ ε,(1)

where ε→ 0 as n→∞.

Proof. See [6]. �

Notation 3.1.

kmin = dlg log1/p n− 1e
kmax = blg log1/p n+ lg lg log1/p n+ εc
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A consequence of (1) is that for almost all random Boolean functions, the di-
mension k of a maximal interval satisfies following inequality

k < 2 lg log1/p n.(2)

Corollary 3.4. For almost all random Boolean functions we have

Zn,x =
x−1∑
t=0

kmax∑
k=t+1

Zn,xk,t .

Proof. This is a direct consequence of Theorem 3.3 and definitions 3.1 and
3.2. �

Next, we asymptotically estimate the probability that a random Boolean func-
tion contains a fixed x-dimensional maximal interval and a fixed k-dimensional
maximal interval whose intersection is a t-dimensional interval.

Lemma 3.5. Let k and x be integers satisfying (1) and let Pt(NX , NK) denote
the probability that a random Boolean function contains an x-dimensional maximal
interval NX and a k-dimensional maximal interval NK such that NX ∩ NK is a
t-dimensional interval. Then

Pt(NX , NK) ∼ p2x+2k−2t · (1− p2x − p2k + p2x+2k−2t)n−x−k+t.

Proof. Without loss of generality we assume that

NX = (?, . . . , ?︸ ︷︷ ︸
x

, 0, . . . , 0︸ ︷︷ ︸
n−x

)

NK = (0, . . . , 0︸ ︷︷ ︸
x−t

, ?, . . . , ?︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
n−x−k+t

)

NT = (0, . . . , 0︸ ︷︷ ︸
x−t

, ?, . . . , ?︸ ︷︷ ︸
t

, 0, . . . , 0︸ ︷︷ ︸
n−x

).

Next, we use the following notation

NX,i = (?, . . . , ?︸ ︷︷ ︸
x

, 0, . . . , 0︸ ︷︷ ︸
i−x−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−i

), for i = x+ 1, . . . , n

NK,i =


(0, . . . , 0︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
x−t−i

, ?, . . . , ?︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
n−x−k+t

), for i = 1, . . . , x− t

(0, . . . , 0︸ ︷︷ ︸
x−t

, ?, . . . , ?︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
i−x−k+t−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−i

), for i = x+ k − t+ 1, . . . , n

α̃i = (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−i

), for i = 1, . . . , n

Ii = NX,i ∩NK,i, for i = x+ k − t+ 1, . . . , n.

From the definition of a maximal interval we obtain

Pt(NX , NK) = Pr[NX ∪NK ⊂ Nf , (∀i)NX,i * Nf , (∀i)NK,i * Nf ].(3)
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First, we look at the case when i ≤ x+ k − t. Let P1 denote the probability that
Nf does not contain any NX,i for all i = x+1, . . . , x+k−t and it does not contain
any NK,i for all i = 1, . . . , x− t. Formally,

P1 = Pr[for each i = x+ 1, . . . , x+ k − t: NX,i − {α̃i} * Nf

and for each i = 1, . . . , x− t: NK,i − {α̃i} * Nf ].

Using inequalities (1) and (2) for dimensions k and x, we obtain

P1 ≥
x+k−t∏
i=x+1

Pr[NX,i − {α̃i} * Nf ] ·
x−t∏
i=1

Pr[NK,i − {α̃i} * Nf ]

= (1− p2x−1)k−t · (1− p2k−1)x−t

& (1− p2
lg log1/p n−1−1)2 lg log1/p n · (1− p2

lg log1/p n−1−1)2 lg log1/p n

= (1− p
1
2 log1/p n−1)4 lg log1/p n =

(
1− 1

p
√
n

)4 lg log1/p n

∼ 1,

and hence

P1 ∼ 1.

So, if we calculate Pt(NX , NK) according to (3), then we can omit all cases where
i ≤ x+ k− t. If i > x+ k− t, then some of the events are independent, therefore,

Pt(NX , NK)
∼ Pr[NX ∪NK ⊂ Nf ] · Pr[(∀i > x+ k − t)NX,i * Nf and NK,i * Nf ]

= p2x+2k−2t
n∏

i=x+k−t+1

Pr[NX,i * Nf and NK,i * Nf ]

= p2x+2k−2t
n∏

i=x+k−t+1

(
1− Pr[NX,i ⊆ Nf or NK,i ⊆ Nf ]

)
= p2x+2k−2t

n∏
i=x+k−t+1

(
1− Pr[NX,i ⊆ Nf ]− Pr[NK,i ⊆ Nf ] + Pr[Ii ⊆ Nf ]

)
= p2x+2k−2t(1− p2x − p2k + p2x+2k−2t)n−x−k+t.

�

Next, we evaluate the expectation value of Zn,xk,t .

Lemma 3.6. For almost all random Boolean functions we have

• if k < lg log1/p n, then

E(Zn,xk,t ) . cn
b

where c, b are constants satisfying c < 1 and b > 0,
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• if k = lg log1/p n, then

E(Zn,xk,t ) ∼ nk−t · p2k−2t · 2x−t
(
x

t

)
1

(k − t)!
· e−1,

• if k > lg log1/p n, then

E(Zn,xk,t ) ∼ nk−t · p2k−2t · 2x−t
(
x

t

)
1

(k − t)!
.

Proof. First, let us recall that 0 ≤ t < x and t < k and that for almost all
random Boolean functions, k and x satisfy (1) and (2).

Let f be an n-ary random Boolean function. Let NX be a maximal interval
of Nf . For every k-dimensional interval NK of the n-cube Bn we introduce the
random variable ηK (also called an indicator) defined as follows

ηK(f) =

 1 if NK is maximal interval of Nf
and NK ∩NX is t-dimensional interval

0 otherwise.

Obviously, the random variable Zn,xk,t is the sum of all indicators ηK

Zn,xk,t =
∑
NK

ηK(f),

where the summation extends over all k-dimensional intervals of Bn.
Next, for every k-dimensional interval NK and every t-dimensional interval NT

of Bn, we introduce the random variable ηK,T defined as follows

ηK,T (f) =
{

1 if NK is maximal interval of Nf and NK ∩NX = NT
0 otherwise.

Obviously, the indicator ηK is the sum of all indicators ηK,T

ηK(f) =
∑

NT⊂NX

ηK,T (f),

where the summation extends over all t-dimensional intervals of NX . Thus

Zn,xk,t =
∑

NK ,NT

ηK,T (f),

E(Zn,xk,t ) =
∑

NK ,NT

E(ηK,T ).

There are 2x−t ·
(
x
t

)
t-dimensional intervals of NX and for each such NT there are(

n−x
k−t
)
k-dimensional intervals of Nf which intersect NX in NT . Thus

E(Zn,xk,t ) =
(
n− x
k − t

)
2x−t

(
x

t

)
E(ηK,T ).

By applying Lemma 2.3 and inequalities (1) and (2) (for k and x) to
(
n−x
k−t
)
, we

obtain (
n− x
k − t

)
∼ (n− x)k−t

(k − t)!
∼ nk−t

(k − t)!
.
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Thus

E(Zn,xk,t ) ∼ nk−t

(k − t)!
2x−t

(
x

t

)
E(ηK,T ).

Now we use Lemma 3.5 to calculate the expectation value of ηK,T . We also use
the conditional probability equation Pr[A|B] = Pr[A ∩B]/Pr[B].

E(ηK,T ) = Pr[NK is a maximal interval of Nf and NX ∩NK = NT

|NX is a maximal interval of Nf ]

=
Pr[NK and NX are maximal intervals of Nf and NX ∩NK = NT ]

Pr[NX is a maximal interval of Nf ]

∼ p2x+2k−2t(1− p2x − p2k + p2x+2k−2t)n−x−k+t

p2x(1− p2x)n−x

Using inequalities (1) and (2) for the dimensions k and x of maximal intervals,
we obtain

(1− p2x − p2k + p2x+2k−2t)−x−k+t

≤ (1− p2x)−x−k . (1− p2
−1+lg log1/p n

)−4 lg log1/p n = (1− 1√
n

)−4 lg log1/p n ∼ 1,

and because (1− p2x − p2k + p2x+2k−2t)−x−k+t ≥ 1, we get

(1− p2x − p2k + p2x+2k−2t)−x−k+t ∼ 1.(4)

Using the same technique, we obtain

(1− p2x)−x ∼ 1.(5)

By applying equations (4) and (5) to E(ηK,T ), we obtain

E(ηK,T ) ∼ p2x+2k−2t(1− p2x − p2k + p2x+2k−2t)n

p2x(1− p2x)n

= p2k−2t
(

1− p2k · 1− p2x−2t

1− p2x

)n
= p2k−2t(1− p2k · (1 + o(1)))n

∼p2k−2te−n·p
2k ·(1+o(1)).

Thus

E(Zn,xk,t ) ∼ nk−t

(k − t)!
2x−t

(
x

t

)
p2k−2te−n·p

2k ·(1+o(1)).

Finally, if we compare the value of k to lg log1/p n in last the expression −n ·p2k ,
we get the desired result. �

Remark. The following expression is a negligible part of E(Zn,xk,t ) because

2x−t
(
x

t

)
1

(k − t)!
= no(1).
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Corollary 3.7. If k < lg log1/p n, then for almost all random Boolean functions
we have

Zn,xk,t = 0.

Proof. From Lemma 3.6 we obtain

lim
n→∞

E(Zn,xk,t ) = 0

and by using Markov’s inequality we obtain

lim
n→∞

Pr[Zn,xk,t = 0] = 1− lim
n→∞

Pr
[
Zn,xk,t ≥

1
2

]
≥ 1− lim

n→∞

E(Zn,xk,t )
1
2

= 1

�

We see that Zn,xk,t adds nothing to Zn,x if k < lg log1/p n. So, next we will
analyse Zn,xk,t only when k ≥ lg log1/p n.

Corollary 3.8. Suppose that t > lg log1/p n and k ≥ lg log1/p n. Then for
almost all random Boolean functions we have Zn,xk,t . n

c where c < 0 is a constant.

Proof. Let us write k as t+ y, where y ≥ 1. Then

E(Zn,xk,t ) . p2t·(2y−1)ny · no(1).

By substituting t = lg log1/p n+ τ , where τ > 0, we obtain

E(Zn,xk,t ) . n2τ ·(2y−1)ny · no(1) . n−2τ

and by using Markov’s inequality we get the desired result. �

Next, we analyse Zn,x only in the case that lg log1/p n is not an integer, so for
E(Zn,xk,t ), we can suppose that k > lg log1/p n. The case k = lg log1/p n is very
similar, so similar results can be obtained in this case with the same technique as
in the case k > lg log1/p n. We will mention these results at the end of this paper.

Notation 3.2. Set

mn = dlg log1/p ne = lg log1/p n+ an,

where an is a number satisfying 0 < an < 1.

If we analyse E(Zn,xk,t ) from Lemma 3.6 as a function of k or t, then we obtain
two following corollaries.

Corollary 3.9. Suppose that lg log1/p n is not an integer. Set Ek = E(Zn,xk,t ).
ThenEk is decreasing for k > lg log1/p n. Ek reaches the maximal value for k = mn.
Moreover, for all integers k1, k2 satisfying the inequalities mn ≤ k1 ≤ k2 ≤ kmax,
we have

k2∑
k=k1

Ek ∼ Ek1 .
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Proof. Let us consider the ratio Ek+1/Ek for k = lg log1/p n+an, where an > 0.
We obtain

Ek+1

Ek
= n ·

( 1
n

)2an

· 1
k + 1− t

= n−τ+o(1),

where τ > 0. Thus
k2∑
k=k1

Ek ≤ Ek1 +
kmax∑

k=k1+1

Ek

. Ek1 + (kmax − k1 − 1) · n−τ+o(1) · Ek1

. Ek1 + lg lg log1/p n · n−τ+o(1) · Ek1
= Ek1 + o(Ek1).

By using the trivial fact that
∑k2
k=k1

Ek ≥ Ek1 , we obtain

k2∑
k=k1

Ek ∼ Ek1 .

�

Corollary 3.10. Suppose that lg log1/p n is not an integer. Set Et = E(Zn,xk,t ).
Then Et is decreasing for t ≤ lg log1/p n. Moreover, for integers t1, t2 satisfying
the inequalities 0 ≤ t1 ≤ t2 ≤ lg log1/p n, we have

t2∑
t=t1

Et ∼ Et1 .

Proof. We get the desired result (using the same technique as in Corollary 3.9),
by considering the ratio Et+1/Et

Et+1

Et
= p−2t · n−1 · 2−1x− t

t+ 1
(k − t) = n−τ+o(1),

where τ > 0. �

Lemma 3.11. Suppose that lg log1/p n is not an integer. Then for almost all
random Boolean functions, we have

Zn,x = Zn,xmn,0
+ o(E(Zn,xmn,0

)).

Proof. From Corollary 3.4 we obtain

Zn,x =
x−1∑
t=0

kmax∑
k=t+1

Zn,xk,t

= Zn,xmn,0
+

0∑
t=0

kmax∑
k=mn+1

Zn,xk,t +
mn−1∑
t=1

kmax∑
k=mn

Zn,xk,t +
x−1∑
t=mn

kmax∑
k=t+1

Zn,xk,t + o(1)

and by using Markov’s inequality and all the previous corollaries of Lemma 3.6,
we obtain that all the sums in the previous expression are o(E(Zn,xmn,0

)). �

Next, we estimate Var(Zn,xmn,0
) to show that Zn,x ∼ E(Zn,xmn,0

).
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Lemma 3.12. Suppose that lg log1/p n is not an integer. Then for almost all
random Boolean functions, we have

Var(Zn,xmn,0
) = o(E2(Zn,xmn,0

)).

Proof. First, let us recall that

Var(Zn,xmn,0
) = E

(
(Zn,xmn,0

)2
)
− E2(Zn,xmn,0

).

We can estimate E
(
(Zn,xmn,0

)2
)

as follows. Let NK1 and NK2 be mn-dimensional
intervals of Nf . Let Pmax(NK1 , NK2) denote the conditional probability that NK1

and NK2 are maximal intervals of Nf intersecting NX in only one vertex under
the condition that NX is a maximal interval of Nf . Let P (NK1 , NK2) denote
the conditional probability that NK1 and NK2 are intervals of Nf intersecting
NX in only one vertex under the condition that NX is a maximal interval of Nf .
Obviously,

Pmax(NK1 , NK2) ≤ P (NK1 , NK2).

Thus
E
(
(Zn,xmn,0

)2
)

=
∑

NK1 ,NK2

Pmax(NK1 , NK2) ≤
∑

NK1 ,NK2

P (NK1 , NK2).

Set {α̃1} = NK1 ∩NX and {α̃2} = NK2 ∩NX . Let us consider the following two
cases:

1. α̃1 ≡ α̃2. LetNK1∩NK2 be denoted by an u-dimensional intervalNU . Then,
for a fixed x-dimensional interval NX , there are 2x

(
n−x
mn

)
mn-dimensional

intervals NK1 which intersect NX in just one vertex. For each such NX and
NK1 and a fixed u, there are

(
mn
u

)
u-dimensional intervals NU such that

NU ⊆ NK1 and NK1 ∩NX ⊆ NU . Finally, for such NX and NK1 and NU ,
there are

(
n−x−mn
mn−u

)
mn-dimensional intervals NK2 such that NK2 ∩NK1 =

NU and NK2 intersects NX in just one vertex. The probability that
(NK1 ∩NK2)−NX ⊆ Nf is p|NK1 |−1 · p|NK2 |−|NK1∩NK2 |. Thus∑
P (NK1 , NK2) .

mn∑
u=0

2x
(
n− x
mn

)
p2mn−1 ·

(
mn

u

)(
n− x−mn

mn − u

)
p2mn−2u

= o(E2(Zn,xmn,0
)).

2. α̃1 6≡ α̃2. Then NK1 ∩NK2 = ∅ and we obtain∑
P (NK1 , NK2) . 2x

(
n− x
mn

)
p2mn−1 · (2x − 1)

(
n− x
mn

)
p2mn−1

. E2(Zn,xmn,0
).

By combining these two cases, we obtain

E
(
(Zn,xmn,0

)2
)
≤ E2(Zn,xmn,0

) + o(E2(Zn,xmn,0
)).

Thus Var(Zn,xmn,0
) = o(E2(Zn,xmn,0

)).

�
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Since the following corollary is a direct consequence of Chebyshev’s inequality
and Lemma 3.12, we omit the proof.

Corollary 3.13. Suppose lg log1/p n is not an integer. Then for almost all
random Boolean functions we have

Zn,xmn,0
∼ E(Zn,xmn,0

).

Thus, we can estimate Zn,x as follows.

Theorem 3.14. Suppose that lg log1/p n is not an integer. Then for almost all
random Boolean functions we have

Zn,x ∼ E(Zn,xmn,0
) ∼ nlg log1/p n+cn · 2x · p−1

dlg log1/p ne!
,

where cn = an − 2an .

Proof. As a direct consequence of Lemma 3.11 and Corollary 3.13 we obtain

Zn,x ∼ E(Zn,xmn,0
).

Next, from Lemma 3.6 we obtain

E(Zn,xmn,0
) ∼ nmn · p2mn · 2x · p

−1

mn!

= nlg log1/p n+an−2an · 2x · p−1

dlg log1/p ne!
.

�

Corollary 3.15. Suppose lg log1/p n is not an integer. Then for almost all
random Boolean functions we have

Zn,x = nlg log1/p n+cn+o(1),

where cn = an − 2an .

Remark. For lg log1/p n an integer we get the following similar results

Zn,x ∼ E(Zn,xlg log1/p n,0
)

∼ nlg log1/p n−1 · 2x · p−1e−1

(lg log1/p n)!
.

We also get Zn,x = nlg log1/p n−1+o(1).

The above results show that the neighbourhood of a given maximal interval NX
has the following structure. Almost all maximal intervals NK from the neighbour-
hood of NX have dimension dlg log1/p ne and almost all NK intersect with NX in
only one vertex and the number of all such NK ’s is

nlg log1/p n+cn · 2x · p−1

dlg log1/p ne!
,

where cn = an − 2an , where an = dlg log1/p ne − lg log1/p n.
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4. Conclusion

In the present paper we have estimated the size of the neighbourhood of the first
order. This result can be used for analysing the complexity (and other proper-
ties) of local algorithms, that use the neighbourhood of the first order to find the
minimal or shortest d.n.f. of Boolean function.

There also exist local algorithms that use neighbourhoods of the second or
higher orders. Such algorithms can be found, for example, in [12]. The results
from this paper can be also used for analysing these neighbourhoods.
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