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SYMMETRIC BOOLEAN ALGEBRAS

R. DIAZ aND M. RIVAS

ABSTRACT. In order to study Boolean algebras in the category of vector spaces we
introduce a prop whose algebras in set are Boolean algebras. A probabilistic logical
interpretation for linear Boolean algebras is provided. An advantage of defining
Boolean algebras in the linear category is that we are able to study its symmetric
powers. We give an explicit formulae for products in symmetric and cyclic Boolean
algebras of various dimensions and formulate symmetric forms of the inclusion-
exclusion principle.

INTRODUCTION

Fix k a field of characteristic zero. A fundamental fact is the existence of the
functor

() :Set — Vect,

from the category of sets to the category of k-vector spaces, that sends x into T
the free k-vector space generated by z, and sends a map f : + — y to the linear
transformation f : ¥ — ¥ whose value at i € x is f(i). Notice that both Set
and Vect are symmetric monoidal categories with coproducts and that ﬁ is a
monoidal functor that respects coproducts. The monoidal structure on Set is the
Cartesian product x and the coproduct is the disjoint union LI. The monoidal
structure on Vect is the tensor product ® and the coproduct is the direct sum .
Notice also that the restricted functor ( ) : set — vect from finite sets to finite
dimensional vector spaces is such that the dimension dim(Z) of T is equal to the
cardinality |z| of . Using () one can transform (combinatorial) set theoretical
notions into (finite dimensional) linear algebra notions. For example, if z is a
monoid, then T carries the structure of an associative algebra. Similarly, if z is a
group, then T carries a structure of a Hopf algebra. Thus associative algebras and
Hopf algebras are the linear analogues of monoids and groups, respectively.

Our main goal in this work is to uncover the linear analogue for Boolean al-
gebras, i.e. we propose an answer to the question: what is the natural algebraic
structure on B if B is a Boolean algebra? Boolean algebras [5, 17, 20] has been

known at least since 1854 and constitute a cornerstone of modern mathematics.
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For most mathematicians the word algebra implies a linear structure, a property
that is not present in the traditional definition of Boolean algebras. In this work
the the presence or absence of a linear structure is the most important issue, thus
we call our objects of study linear Boolean algebras to distinguish them from
proper Boolean algebras. Thus by definition if B is a Boolean algebra, then B
is a linear Boolean algebra. Our second goal in this work is to study the sym-
metric powers of linear Boolean algebras. We compute the structural constants of
such algebras in various dimensions, and show that each symmetric function can
be used for formulating generalization of the inclusion-exclusion principle for the
symmetric powers of linear Boolean algebra. Our third goal is to propose a logical
interpretation for linear Boolean algebras.

This work is organized as follows. In Section 1 we introduce the axioms for
linear Boolean algebras and show that the linear span of a Boolean algebra is a
linear Boolean algebra. The main difficulty lies in choosing the structural opera-
tions present in linear Boolean algebras. In Section 2 we motivate our choice of
axioms for linear Boolean algebras. What we do is to construct a prop Boole such
that Boole-algebras in Vect are linear Boolean algebras. The prop Boole is the
linear span of the prop Boole in Set, and one can show that Boole-algebras in Set
are precisely Boolean algebras. Once we have a solid definition of linear Boolean
algebras we proceed to study some of the properties of this kind of mathemati-
cal entities. In Section 3 we discuss the logical interpretation of linear Boolean
algebras. We show that they are naturally related to probabilistic logic. The ad-
vantage of working in the linear category is that we can make use of many powerful
techniques available in linear algebra. In Section 4 and 5 we apply Polya functors
as defined in [10] to linear Boolean algebras, in particular, we study symmetric
and cyclic powers of linear Boolean algebras. In Section 6 we close providing an ex-
tension of the inclusion-exclusion principle that applies to the symmetric products
of Boolean algebras.

1. LINEAR BOOLEAN ALGEBRAS

We recall the definition of Boolean algebras for definiteness and for the reader
convenience, so that he or she may contrast it with the definition of linear Boolean
algebras given below. We have chosen axioms that make transparent that Boolean
algebras are a particular kind of lattices. Thus a linear analogue for lattices can
be readily obtained from the definition of linear Boolean algebras given below.
The reader should notice that while the definition of Boolean algebras involve five
structural maps, the definition of linear Boolean algebras involve seven structural
maps, including quite unexpectedly, a coproduct.
A Boolean algebra is a set B together with the following data:
1. Maps U: Bx B — B,N: Bx B — B, and ¢c: B — B called a union, an
intersection and a complement, respectively.
2. Distinguished elements e,t € B called the empty and total elements, re-
spectively.
This data should satisfy the following identities for a, b, c € B:
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e aUb=>bUa, anNnb=bnNa.

e aU(bUc)=(aUb)Uc, an®ne) =(@nb)ne

e an(bUc)=(andb)U(anNc), aU((bnec)=(aUdb)n(aUec).
e aU(anNb)=a, an(aUb) =a.

e aUe =a, anNt=a, aUa® =t, aNa®=e.

To any set x one can associate the Boolean algebra P(z) = {a | a C x} where
the total element is « and the empty element is ), aUb={i € x| i € a or i € b},
a¢={icz|id¢a}l,andanb={i€x|icaandie€b} Let[n ={1,...,n}
and S, be the group of permutations of [n]. We will always write P[n] instead
of P([n]). Algebras of the form P(x) are essentially the unique models of finite
Boolean algebras according to the following well-known result.

Proposition 1. Every finite Boolean algebra is isomorphic to P(x) for a finite
set .

Indeed let B be a Boolean algebra. Define a partial order < on B by letting
a <bif anb=a. Let x be the set of primitive elements or atoms of B, that is,
we have
r={acA|la#eandifb<athenb=ecorb=a}.

The map f : B — P(z) given by f(b) = {a € 2 | a < b} defines the desired
isomorphism.

Another interesting property of Boolean algebras is the following: if B and C
are Boolean algebras, then B x C' is also a Boolean algebra. Moreover one can
show that P(x) is isomorphic to P[l]'m‘.

For a k-vector space V' we shall use the symmetry map S : V@V - VeV
given by S(z®vy) = y®ax for 2,y € V. We denote the identity map by I : V — V.
We are ready to define the linear analogue of the notion of Boolean algebras.

Definition 2. A linear Boolean algebra is a k-vector space V' together with
the data:

1. Linear maps U: V@V -V, N: VRV - V,and c: V — V called a
union, an intersection and a complement, respectively.

2. Linear maps T : k — V, E : k — V called the empty map and the total
map, respectively.

3. Linear map A : V — V ® V called a coproduct.

4. Linear map ev : V — k called the evaluation map.

The axioms below must hold:

e U=UofS, N=nNols.
OUO(U®I)—UO I®U), No(N®I)=nNo(I®N).
e No(I®U)=Uo(N®N)o(IRS®I)o(A®IRI),
oc(IenN)=No(URU)o(I®SRI)o(ARIRI).
. o(I®U)o(A®I)fI®ev Uo(I®Mo(A®I)=1®ev.
e Uo(I®E)= No(I®T)=1,
(

I®C)OA:Eer, Uo(I®c)oA=Toeuv.

No
(A@T)oA=(I®A)oA.
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e So A =A.

Our next result guarantees the existence of infinitely many models of linear
Boolean algebras, namely those naturally associated with Boolean algebras.

Proposition 3. If B is a Boolean algebra, then B is a linear Boolean algebra.

Proof. The structural maps on B are given as follows. The intersection, the
union and the complement are the linear extensions of the corresponding maps on
B. The coproduct is given by:

A <Z vaa> =) va®a.

a€EB aceB
The empty and total maps are given for s € k by E(s) = se and T'(s) = st. Finally,

the evaluation map is given by ev(X,cpv,a) = LacBUq. O

Next result characterizes finite dimensional linear Boolean algebras of the form
P(z).

Proposition 4. IfV and W are linear Boolean algebras, then VW is a linear
Boolean algebra with the Boolean operations defined componentwise. Moreover, if
T 18 a finite set then there is a canonical isomorphism of linear Boolean algebras

P(z) ~ P[1]®Iw‘.
2. BOOLEAN PROP

In this section we provide an explanation for our choice of axioms for linear Boolean
algebras. We do so by defining a prop Boole over Vect whose algebras are linear
Boolean algebras and showing that this prop actually comes from a prop Boole over
Set whose algebras are Boolean algebras. Discovering the prop that defines a given
family of algebras is like unveiling its genetic code [1, 13, 14, 15, 19]. Despite
the fact that Boolean algebras have been extensively studied from a myriad of
viewpoints its genetic code has not been study so far. Since the theory of props is
not widely known we provide a brief overview. We define props over a symmetric
monoidal category C, but the reader should bear in mind that in this work C' is
either Set or Vect. We assume that C' is closed and that it admits finite colimits.

Definition 5. 1. A prop over C is a symmetric monoidal category P en-
riched over C' such that Ob(P) = N and the monoidal structure is the
addition of natural numbers.

2. Let PROP¢ be the category whose objects are props over C'. Morphisms
in PROP¢ are monoidal functors.

Explicitly we have that a prop P is given by the following data:

e Morphisms P(n,m) ®c P(m,k) — P(n,k) for n,m,k € N.
e Morphisms P(n,m) ®c P(k,l) — P(n+ k,m +1) for n,m,k,l € N.
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e For n € N a group morphism S,, — P(n,n) such that the following diagram
Sn X Sm Sn+m

P(n,n) ®c P(m,m) —— P(n+m,n+m)

is commutative. Notice that the map S,, — P(n,n) induces a right action
of S, on P(n,m) and a left action of S,, on P(n,m).

Let B be the category whose objects are finite sets and whose morphisms are
bijections. The actions constructed above can be used to define a functor P: B°P x
B — C given by

P(avb) = B(CL, [a]) XS P(‘a|7 |b|) XSl B([b}vb%

where for a finite set z we define [z] = {1,...,|z|}.

In order to define the free prop generated by a functor G : B? x B — C we
need some combinatorial notions. A digraph I' consists of the following data

e A pair of finite sets (V, E) called the set of vertices and edges of T', respec-
tively.

e Amap (s,t) : E— V x V. We call s(e) and t(e) the source and target of
e € V, respectively.

We use the notations in(v) = {e | t(e) = v}, i(v) = |in(v)], out(v) =
{e | s(e) = v}, and o(v) = |out(v)]. The valence of v € V is wal(v)
(i(v),0(v)) € N2, Also we introduce the notation Vi, = {v € V | i(v) = 0}
and Voot = {v € V| o(v) = 0}. An oriented cycle in T" is a sequence ey, ..., e, of
edges in I' such that t(e;) = s(e;41) for 1 <i <n—1 and t(e,) = s(e1). Digraphs
considered in this work do not have oriented cycles.

Let a and b be finite sets. An (a,b)-digraph is a triple (I', v, §) such that T" is
a digraph; a : a — Vi, is an injective map; 0 : b — Vi is an injective map.

Let DG(a,b) be the groupoid of (a,b)-digraphs. A functor G : B? x B — C
induces a functor G : DG(a,b) — C given by

GT) = ® G(in(v), out(v)),
VEVint
where I' is an object of DG(a,b) and Viyy = V' \ (a(a) U 5(b)).
Definition 6. The prop Py freely generated by G : B’ x B — C is given for

n,m € N by
Pg(n,m) = lim G(I')

where the colimit is taken over the groupoid DG([n],[m]), where [0] = ( and
[n] ={1,...,n} for n > 1. Compositions in Pg are given by gluing of digraphs.

To define props via generators and relations we need to know what is the ana-
logue of an ideal in the prop context.
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Definition 7. Let P be a prop over C. A subcategory I of P is a prop ideal
if Ob(I) = Ob(P) and for n,m,k,l € N

I(n,m)® P(m,k) — I(n,k), Pn,m)® I(m,k) — I(n,k),

I(n,m)® P(k,l) - I(nUk,mUl), Pn,m)®I(k,1) — I(nUk,mUl).

We are ready to define a prop Boole over Set. Boole is a quotient by a prop ideal
Ip, defined below, of the prop freely generated by vertices representing, respec-
tively, a union, an intersection, a complement, a coproduct, the empty element,
the total element and the valuation, respectively.

A A

The prop ideal Ip is generated by the seven relations given below. Each relation
corresponds with an axiom in the definition of linear Boolean algebras.

1. Commutativity for union and intersection

A-d A

K
2. Associativity for union and intersection

3. Distributivity laws

4
R
<

4. Properties of the empty and total elements

N
?

—0O 66—
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5. Absorption Laws

1l 1l

6. Coassociativity and cocommutativity

Given an object x of a category C we let Endf be the prop given for n,m € N

by
EndS (n,m) = C(z®", 2®™).

Let P be a prop over C. A P-algebra in C is a pair (z,r) where r : P — Endf is
a prop morphism and z is an object of C. In practice a P-algebra x is given by a
family of morphisms in C

r: P(n,m) — C(z®", 2%™)
satisfying the natural compatibility conditions.
Theorem 8. B is a Boole-algebra in Set if and only if B is a Boolean algebra.

Proof. Assume that (B, ) is a Boole-algebra in Set where r : Boole — End®
is a prop morphism. The images under r of the generators of Boole give operations
U,N, ()t e, A, ev, respectively. For example ¢t : {1} — B and e : {1} — B are
identified with elements of B. ev : B — {1} is the constant map and plays no
essential part in this story. We also get a map A : B — B x B which does seem
to fit into the definition of Boolean algebra. Assume that A is given by A(a) =
(f(a),g(a)) for a € B. We use the relations in Boole. The cocommutativity graph
implies that f = g. The coassociativity graph implies that f2 = f. One of the
absorption graphs implies the identity f(a)U (f(a) Nb) = a for a,b € B. Thus we
obtain

fa) = f(a) U (2(a) ) = F(a) U (f(@) 1b) = a.

Thus A(a) = (a,a) and it is a simple check that all other relations in Boole turn
B into a Boolean algebra. Assume that B is a Boolean algebra with operations
U,N, ()¢, and distinguished elements ¢ and e that may be thought as maps from
{1} to B. Take ev to be the constant map from B to {1} and let A be given by
A(a) = (a,a). Let r be the map assigning to each generator of the Boole prop
the corresponding map from the list above. The fact that B is a Boolean algebra
guarantees that all the relations defining Boole are satisfied and r is extending to
a prop morphism r : Boole — EndSBEt. O
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Notice that the functor ( ) : Set — Vect induces a functor ( ) : PROPge; —
PROP+vect sending P into P given by P(n,m) = P(n,m) and with the induced
compositions.

The following result follows from the fact that each generator of the prop Boole
corresponds with an operation on linear Boolean algebras and each relation in the
set of generator of the prop ideal Ig corresponds with an axiom in the definition
of linear Boolean algebras.

Theorem 9. V is a Boole-algebra in Vect if and only if V is a linear Boolean
algebra.

3. PROBABILISTIC LOGIC AND LINEAR BOOLEAN ALGEBRAS

It is hard to do any work on Boolean algebras and not to mention its relation with
classical propositional logic at all. Indeed the motivation of Boole himself was to
describe the algebraic structures underlying the laws of thought. Propositional
logic deals with the deduction relation among sets of sentences of propositions
S constructed recursively from a finite set of propositions connected by a fixed
set of connecting symbols. There are many ways [18] to describe a system of
propositional logic but in any of them one can imagine that there exists a sort of
logical agent capable of performing the following tasks:

e Recognize when a grammatical construction is an element of S. The agent
is able to translate in S expressions of the form sV ¢, s At into sentences,
and —s for sentences s and ¢ in S.

e Decide wether or not a sequence of sets of sentences ¢y, ..., ¢, is a deduction.
A sentence s is said to imply a sentence ¢ if there exists a deduction cq, ..., ¢,
such that ¢; = {s} and ¢, = {t}.

e Assign a truth-value to sentences in S when provided with an assignment
of truth values for propositions in P, i.e. construct an element of {0,1}°
given an element in {0,1}%.

The logical agent is said to be sound and complete if in addition the following
property holds:

e A sentence s implies a sentence ¢ if for any assignments of truth values to
propositions in P the truth value of ¢ is 1 if the truth value of s is 1. It
is not hard to show the existence of sound and complete logical agents, for
example, see [18].

Boolean algebras appear within the context of propositional logic as follows.
We call sentences s and t in S equivalent if s implies ¢ and ¢ implies s. Let B(S)
be the quotient of S by that equivalence relation. B(S) comes equipped with a
natural structure of Boolean algebra with operations defined by [s] U [t] = [s V ],
[s]N[t] = [s At], and [s] = [—s]. The total element is [s V —s] and the empty
element is [sA—s]. The Boolean algebra B(S) is isomorphic to the Boolean algebra
P({0,1}¢) via the map

m: B(S) — P({0,1}")
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that sends [s] € B(.S) into the set of its models:
m([s]) = {v € {0,1}F | the truth value of s according to v is 1}.

Summarizing sentences in S describes subsets of {0,1}f and two sentences
describe the same subset if and only if they are equivalent. The expressive power
of a logical description of P({0,1}%) lies in the possibility of describing the same
set in a variety of different ways. For example, the logical agent may be said
that a subset of {0,1}% is described by a sentence s, another subset of {0,1}% is
described by a sentence ¢t and be asked to provide a sentence which describes the
union of those sets. It will readily answer that sV ¢ is the sought sentence.

It is natural to wonder if any logical meaning can be ascribed to the linear
Boolean algebra B(S). We venture a possible answer: assume the logical agent is
said that a sentence s; describes an unknown subset of {0,1} with probability
p; for 1 < i < n and a sentence t; describes another unknown subset of {0,1}¢
with probability g; for 1 < j < m. If asked to find a sentence that describes the
union of those subsets the logical agent will answer: the sentence s; V t; describes
the union of the unknown sets with probability p;g;. This is the only consistent

answer with the product rules on B(.S) which is given by

<Zpi[8i}> U Z%‘[tj] = Z pigj[si V tj].

This probabilistic interpretation applies as well to the linear Boolean algebra B.
Let v and w be a couple of vectors in B given by v = Y . s vea and w = Y, vpb.
Assume that the coefficients of v and w, respectively, are positive and add to one.
This allows us to think that v, represents the probability that the unknown subset
v of x is equal to a. Similarly wy, represents the probability that w is equal to b.
Under this conditions we have that

e The probability that v Uw is equal to ¢ is given by (v Uw)e = > wvqwp.
aUb=c

e The probability that v Nw is equal to ¢ is given by (v Nw)e = > vawp.
anb=c
e The probability that v¢ is equal to a is vge.

We invite the reader to take a look at the structural coefficients of the algebras

3
Sym?P[1] and P[l]® /Zs given in Section 4 and Section 5 below, and check that
they are indeed consistent with the probabilistic interpretation just outlined.

4. SYMMETRIC POWERS OF BOOLEAN ALGEBRAS

The following ideas introduced in [10] and further applied in [7, 8, 11] are useful
for studying the symmetric powers of algebras. After a brief review of the general
theory we shall apply it to study the symmetric powers of linear Boolean algebras.

Suppose that a group G acts by automorphisms on the k-algebra A. The space
of co-invariants

A/G=A/{ga—a | g€ Gandac A}
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is a k-algebra with the product given by

For each subgroup K C S, the Polya functor Pg : k-alg— k-alg from the
category of associative k-algebras into itself is defined as follows. If A is a k-algebra
then Pk A denotes the k-algebra whose underlying vector space is

P A= A®"/<a1 Q- - Qay — Ag-1(1) & - ®ao—1(n) ta; € A,O’ S K>
The rule for the product of m elements in Px A is provided by our next result.

Theorem 10. For any {a;;};2) ;—, € A the following identity holds in Px A:

|Km_1|ﬁ @ = > é(ﬁ%#(j))‘

=1 \Jj=1 oc{id} x Km—1 j=1 \i=1

In particular for each algebra A and each positive integer m the Polya functor
Pg, yields an algebra Pg, A which we denote by S™A. Recall that P[k] denotes
the k-vector space generated by the subsets of [k]. The structural maps U, N, and

()¢ for P[k] are the linear extensions of the union, intersection, and complement
on Pk].

Definition 11. We call S™ P[k] the symmetric Boolean algebra of type (m, k).

The structural operations on S™P[k] are induced from the corresponding opera-
tions on P[k].

The group S, acts by automorphisms on P(x) for any finite set . The next

result gives a characterization of the algebra of co-invariants P(x)/S,.

Proposition 12. We have that P(x)/S, ~ SI*IP[1] and therefore
dim(P(z)/S;) = |z| + 1.

A basis for P[k]/Sk is given by O,...,k where i denotes the equivalence
class of [i] C [k]. Let us study the operation of union, intersection, and

complements on the space P[k]/S in details. Below we use the notation P(x, k) =
{c€ P(z) | |c| = k} for any set x.

Theorem 13. For 0 < a,b, < k, the following identities hold in P[k]/Sk. Let
m = min(k — a,b), then

an%i(bal)<kla>(a+l).
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Also we have that a° =k — a.

Proof. For the first identity we have that

=
C
)
Il
| =
=3
2
C
)
o

co€P([k]\[a],l) co€P([k]\[a],l)
b) cieP(la],b—1) b/ cieP([a],b—1)
1 & a k—a
k (b—l)( ! >(a+l)

=0
b

The second identity follows from the fact that the number of permutations
o € Sk, such |[a] No[b]| =1 is given by

()=

The third identity is obvious. O

Let # = {by,...,br} be a partition of z and S; C S, the Young subgroup
consisting of block preserving permutations of x. Our next result characterizes
algebras of the form P(z)/S.

Proposition 14. There is an isomorphism P(x)/Sy ~ ®f:1 SIb:IP[1], thus we
have that

k

dim(P(2)/S,) = [[(Ibi] + 1).

i=1
5. CycLIC BOOLEAN ALGEBRAS

In this section we consider another application of Polya functors in the context of
linear Boolean algebra, namely, we consider the cyclic powers of the linear Boolean

algebra P[1], i.e. the algebras

QKM

PO L.

——®2
For m = 2 one gets the space P[1]® /Zy which has a basis given by (0,0), (1,0)
and (1,1).
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The union map U : S2P[1] ® S?P[1] — S?P[1] is given by

v [0 do [TD]
(0,0) | 1,0,0 | 0,1,0 |0,0,1
(1,0) 10,1,0 |0,3,%0,0,1
(1,1) | 0,0,1 | 0,0,1 |0,0,1

The intersection N : S2P[1] ® S?P[1] — S2P[1] is given by

0 oo [0.1]

(0,0) | 1,0,0 | 1,0,0 |1,0,0
(1,0) 1 1,0,0 | 3,3,0{0,1,0

(1,1) [ 1,0,0 | 0,1,0 |0,0,1

The complement ( )¢ : S?P[1] — S2P[1] is given by

n[[.0]@0| D]
| o0 fo10]100]

Although the algebra S?P[1] P[1] does not satisfy all the axioms required to make
it into a linear Boolean algebra (the absorption laws fail!) it does share many
properties of linear Boolean algebras, and i 1n any case it is a mathematical object

of great interest. For m = 3 the space P[1] ] / Z3 has the basis

(0,0,0), (1,0,0), (1,1,0) and (1,1,1).

The union map U : P[ } /Z3 ®P[ ] /Zg — P[ ] /Z3 is given by

[ v Jooo[mooy [Lo [TLD]
(0,0,0) || 1,0,0,0 |0,1,0,0 |0,0,1,0, |0,0,0,1
1 2 2 1
(1,0,0) || 0,1,0,0 |0,4,%,0]0,0,2,1]0,0,0,1
2 1 1 2
(1,1,0) || 0,0,1,0 | 0,0,2,%10,0,%,210,0,0,1
(1,1,1)](0,0,0,1 {0,0,0,1 |0,0,0,1 |0,0,0,1
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The intersection map N : P[3] ] /Zg ® P[3] } /Zg — P[3] ] /Zg is given by

| 0 JEoo]Too Lo [TLD]
(0,0,0) | 1,0,0,0 |1,0,0,0 |1,0,0,0 |1,0,0,0
(1,0,0) |/ 1,0,00 | 2,£,0,0(%,2,0,0/0,1,0,0

373>

1 2 2 1
(1,1,0) || 1,0,0,0 5,5,0,010,%,5,0/0,0,1,0
(1,1,1) || 1,0,0,0 |0,1,0,0 0,0,1,0 0,0,0,1

The complement map ( )¢: P[3]®3/Zg — P[3]®3/Z3 is given by

L ()e][10,0,0) | (1,0,0) | (1,1,0) | (1,1,1) |
| 0001 0010 [01,00 [1,000 |

6. SYMMETRIC INCLUSION-EXCLUSION PRINCIPLES

Perhaps the most fundamental elementary result concerning Boolean algebras is
the inclusion-exclusion principle. In this section we consider the extensions of this
principle for linear Boolean algebras. The reader will find interesting information
on the inclusion-exclusion principle and its generalizations in several works by
Rota and his collaborators [16]. We use the inclusion-exclusion principle in the
following form:

Proposition 15. Let aq,...,a, € P(zx), then

_ Z (_1)\I\+1

IC[n]

n

U

i=1

M|

i€l

In this section we consider vector spaces over the complex numbers and we write
{a1,...,an} for the basis element

G @ Dan €SP =P /S

The following result follows from Theorem 10.

Theorem 16. Let {a},...,a’ } be in the basis of S™P[k] for 1 <i <n. The
union map on S™P[k] is given by

noo 1 no no
U{azla"w m}_(m')”l Z {Uafﬂ;u)""vua;i(m)}'
=1 =1

ce{1}xsn—b i=1

For example for m,n = 2, one gets
1 1
{a,b} U{c,d} = §{aUc,bUd}+ §{aud,bUc}.

Recall that a measure on a finite set x is a map p : P(x) — C such that

p(a U b) = p(a) + pu(b)
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for a,b C z disjoint. Let us fix a measure p on [k]. An element {a1,...,a,,} in the
basis of S™P[k] determines a vector (u(a1),..., i(an)) € C™/S,,. Functions on
C™/S,, are known as symmetric functions. There are many interesting examples
of polynomial symmetric functions such as the power functions, the elementary
symmetric functions, the homogeneous functions, the Schur functions and so on.
For example, the polynomial 2} + -+ 2! is S,,-invariant. Each symmetric func-
tion can be used to obtain a symmetric form of the inclusion-exclusion principle.
We consider explicitly the symmetric inclusion-exclusion principles derived from
the power, elementary, and homogeneous symmetric functions; other symmetric
functions may be considered as well but we shall not do so here. Notice that
Gessel [12] uses the name symmetric inclusion-exclusion to refer to a different
mathematical gadget.
The power function p; : S™P[k] — C is given on the basis elements by:

p({a1,...,am}) = Z ,u(ai)l.

We use the power functions p; to get a symmetric form of the inclusion-exclusion
principle.

Theorem 17. Let {d},...,a’ } be in the basis of S P[k] for 1 <i <n. Then

no ) 1 l )
pz(g{aﬁ, ce G }) = W Z ({Cl}> I];n](_l)(1|+l)01u(ﬂ a;i(j))w

oe{1} xS iel

J€{L,....m}
Yer=l

Proof.

n

pl(g{aia“'v m} (m')” 1 Z M(Uafnu))l

UE{I}XS("fl) i=1

je{1,..., m}
l
- (ml (mh)n—L Z <Z (—1)'”““(“%@9)
oe{1}xs{r—1 MCn] i€l
je{l .,m}

e (S )

0'6{1}><S<” D ey i€l
36{1 m}
l .
- m' T 2 <{c }> [T Do ag, )
ce{1}xs—Y R i€l
je{1,....m}
ZC]ZZ
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For example, for [ = 1, one gets

U{al,..., m} (Tn')% Z (*1)|I\+1u(ﬂ af”(j)).

oe{1}x8{n~Y iel
JE{1,....m}
IC[n]

Forl=1,n =2, we get

pl({a%,...,a}n}u{a%,..., Z {M 0(] ﬂaf’(])

UES
j€[m]

Next we consider a generalized inclusion-exclusion principle using the elemen-
tary symmetric functions

1
el(z1,...,&m) = Z H{,Ctj.

1<t <to<--<t;<m j=1

Theorem 18. Let {a},...,a’,} be in the basis of S™P[k] for 1 <i <n. Then
l
1 ,
f +1 1
U{a17~"7 m} ( ) —1 Z H ‘ (J)l ﬂ affi(tj))'
ce{i}xsnt =1 i€f(7)
1<t1<ta<---<t;<m
f:ll]—=P([n])

For n =2, m =2 and [ = 2, the map ey : S>P[k] — R is given by ey({a,b}) =
p(a)u(b) and Theorem 18 implies that
2e2({a, b} U{c,d}) = 2u(a)u(b) + 2u(c)u(d) + pla)p(d) + p(c)u(b)
+ pla)u(e) + p(d)p(d) — pla)pu(d N
+ pb)ulanc) +p(du(anc
d)pubNe) + pd)uand

Next we describe the generalization of the inclusion-exclusion principle using
the homogenous symmetric functions

!
hi(z1,...,xm) = Z thj.

1<t <to <<ty <m j=1

Theorem 19. Let {d},...,a’ } be in the basis of S P[k] for 1 <i <n. Then
o i 1 i
hl(U{alv"'vam}) :W Z H If(J Hl ﬂ an(tj))'
i=1 se{l}xsn-t =1 i€f(5)

1<t;<ta<---<t;<m
f:l—=P([n])
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For n =2, m =2 and [ = 2, the map hy : S?P[k] — R is given by
ha({a,b}) = u(a)® + p(a)p(b) + p(b)*.

Theorem 19 implies that
2hs({a,b} U {c.d}) = [u(a) + p(c) — pla o) + [u(b) + pu(d) — u(b N d)]?

+ [u(a) + u(d) — pland)]? + [u(b) + p(c) — p(bNe)?

+ 2u(a)p(b)+2u(c)pu(a)+p(a)u(d) +pu(c) u(b) +p(a) u(c)
u(d)p(a) — pla)u(dbNd) + p(e)p(d N d) + pb)p(ane)

+ p(d)p(ane)+p(a)u(dne)+p(d)ubne)+pd)uand)

+ we)p(and).

Notice that the structural constants of the symmetric and cyclic powers of Boolean
algebras are rational numbers. It would be interesting to study the combinatorics
of those numbers along the lines of [2, 3, 4, 9].
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