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THE CONTINUOUS DUAL OF THE SEQUENCE SPACE lp(∆n),
(1 ≤ p ≤ ∞, n ∈ N)

M. IMANINEZHAD and M. MIRI

Abstract. The space lp(∆m) consisting of all sequences whose mth order differences are p-absolutely
summable was recently studied by Altay [On the space of p-summable difference sequences of order
m, (1 ≤ p < ∞), Stud. Sci. Math. Hungar. 43(4) (2006), 387–402]. Following Altay [2], we have
found the continuous dual of the spaces l1(∆n) and lP (∆n). We have also determined the norm of
the operator ∆n acting from l1 to itself and from l∞ to itself, and proved that ∆n is a bounded linear
operator on the space lp(∆n).

1. Preliminaries, Definitions and Notations

Let ω denote the space of all complex-valued sequences, i.e. ω = CN where N = {0, 1, 2, 3, . . .}.
Any vector subspace of ω which contains φ, the set of all finitely non-zero sequences, is called a
sequence space. The continuous dual of a sequence space λ which is denoted by λ∗ is the set of all
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bounded linear functionals on λ. Suppose ∆ be the difference operator with matrix representation

∆ =



1 0 0 0 0 0 · · ·
−1 1 0 0 0 0 · · ·
0 −1 1 0 0 0 · · ·
0 0 −1 1 0 0 · · ·
0 0 0 −1 1 0 · · ·
...

...
...

...
...

...
. . .



and suppose x = (xk)∞k=0 ∈ ω, then ∆x = (xk−xk−1)∞k=0 and ∆nx = ∆(∆n−1x) for all n ≥ 2 where
any x with negative index is zero. For every n ∈ N \ {0}, ∆n has a triangle matrix representation,
so it is invertible and

∆
n

=

266666666666666666666664

1 0 0 0 0 0 0 0 · · ·
−(n

1 ) 1 0 0 0 0 0 0 · · ·
(n
2 ) −(n

1 ) 1 0 0 0 0 0 · · ·
−(n

3 ) (n
2 ) −(n

1 ) 1 0 0 0 0 · · ·
.
.
.
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. · · ·

(−1)n(n
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n−1)
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. −(n
1 ) 1 0 0 · · ·

0 (−1)n(n
n) (−1)n−1( n

n−1)
.
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.

. −(n
1 ) 1 0 · · ·
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∆−n =



1 0 0 0 0 0 · · ·
(n
1 ) 1 0 0 0 0 · · ·

(n+1
2 ) (n

1 ) 1 0 0 0 · · ·
(n+2

3 ) (n+1
2 ) (n

1 ) 1 0 0 · · ·
(n+3

4 ) (n+2
3 ) (n+1

2 ) (n
1 ) 1 0 · · ·

...
...

...
...

...
...

. . .


If a normed sequence space λ contains a sequence (bn) with the property that for every x ∈ λ,
there is a unique sequence of scalars (αn) such that

lim
n→∞

‖x− (α0b0 + α1b1 + · · ·+ αnbn)‖ = 0,(1)

then (bn) is called a Schauder basis for λ. The series
∑
αkbk which has the sum x is then called

the expansion of x with respect to (bn) and written as x =
∑
αkbk.

2. The space lp(∆n)

Now we introduce an apparently new sequence space and denote it by lp(∆n) like Kizmaz who
defined and studied l∞(∆), c(∆) and c0(∆).

lp(∆n) = {x ∈ ω : ∆nx ∈ lp}(2)

‖x‖lp(∆n) = ‖∆nx‖lp(3)

Trivially lp(∆) = bvp.

Theorem 2.1. lp(∆n) is a Banach space.

Proof. Since it is a routine verification to show that lp(∆n) is a normed space with the norm
defined by (3) and coordinate-wise addition and scalar multiplication we omit the details. To prove
the theorem, we show that every Chauchy sequence in lp(∆n) has a limit. Suppose (x(m))∞m=0 is
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a Chauchy sequence in lp(∆n). So

(4) (∀ε > 0)(∃N ∈ N)(∀r, s ≥ N)(‖∆nx(r) −∆nx(s)‖lp = ‖x(r) − x(s)‖lp(∆n) < ε)

So the sequence (∆nx(m))∞m=0 in lp is Chauchy and since lp is Banach, there exists x ∈ lp such
that

‖∆nx(m) − x‖lp → 0 as m→∞(5)

But x = (∆n)(∆n)−1x, so ‖∆nx(m) −∆n(∆n)−1x‖lp = ‖x(m) − (∆n)−1x‖lp(∆n) → 0 as m → ∞.
Now, since (∆n)−1x ∈ lp(∆n) we are done. �

Theorem 2.2. lp(∆n) is isometrically isomorphic to lp.

Proof. Let

T : lp(∆n)→ lp(6)

defined by T (x) = ∆nx. Since T is bijective and norm preserving, we are done. �

Theorem 2.3. Except the case p = 2, the space lp(∆n) is not an inner product space and hence
not a Hilbert space for 1 ≤ p <∞.

Proof. First we show that l2(∆n) is a Hilbert space. It suffices to show that l2(∆n) has an inner
product. Since

‖x‖l2(∆n) = ‖∆nx‖l2 =< ∆nx,∆nx >
1
2 ,(7)

l2(∆n) is a Hilbert space. Now, we show that if p 6= 2, then lp(∆n) is not Hilbert. Let

u = (∆n−1)−1(1, 2, 2, 2, · · · )
e = (∆n−1)−1(1, 0, 0, 0, · · · ).
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Then ‖u‖lp(∆n) = ‖e‖lp(∆n) = 2
1
p and ‖u + e‖lp(∆n) = ‖u − e‖lp(∆n) = 2. So the parallelogram

equality does not satisfy. Hence the space lp(∆n) with p 6= 2 is not a Hilbert space. �

Theorem 2.4. If 1 ≤ p < q <∞, then lp(∆n) ⊆ lq(∆n) ⊆ l∞(∆n).

Proof. We only point out that if 1 ≤ p < q <∞, then lp ⊆ lq ⊆ l∞. �

Theorem 2.5. lp ⊆ lp(∆) ⊆ lp(∆2) ⊆ lp(∆3) ⊆ · · ·

Proof. Since lp ⊆ bvp, it is trivial that lp ⊆ lp(∆). Now, if x ∈ lp(∆n), then
∆nx ∈ lp ⊆ lp(∆). So

∆nx ∈ lp(∆) ⇒ ∆(∆nx) ∈ lp ⇒ ∆n+1x ∈ lp ⇒ x ∈ lp(∆n+1).

�

Theorem 2.6. ‖x‖lp(∆n) ≤ 2n‖x‖lp

Proof. Since ‖x‖lp(∆) = ‖x‖bvp ≤ 2‖x‖lp , ‖x‖lp(∆2) ≤ 2‖x‖lp(∆) ≤ 2 · 2 · ‖x‖lp = 22‖x‖lp . Now
by induction, we are done. �

3. Schauder basis for space lp(∆n)

Suppose ek is a sequence whose only nonzero term is 1 in the (k + 1)th place. The sequence
(∆−nek)∞k=0 is a sequence of elements of lp(∆n) since for all k ∈ N, ek ∈ lp. We assert that this
sequence is a Schauder basis for lp(∆n). Suppose x ∈ lp(∆n), x[m] =

∑m
k=0 (∆nx)k(∆−nek) =
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∑m
k=0 ∆−n((∆nx)ke

k). Then since x ∈ lp(∆n), we have ∆nx ∈ lp such that

( ∞∑
i=0

|(∆nx)i|p
) 1

p

= s <∞(8)

⇒(∀ε > 0)(∃m0 ∈ N)

( ∞∑
i=m

|(∆nx)i|p
) 1

p

<
ε

2
for all m ≥ m0(9)

⇒‖x− x[m]‖lp(∆n) = ‖∆nx−∆nx[m]‖lp(10)

= ‖
∞∑

k=0

(∆nx)ke
k −

m∑
k=0

(∆nx)ke
k‖lp

= ‖
∞∑

k=m+1

(∆nx)ke
k‖lp =

( ∞∑
k=m+1

|∆nx|pk

) 1
p

(11)

≤

( ∞∑
k=m0

|∆nx|pk

) 1
p

<
ε

2

So x =
∑∞

k=0 (∆nx)k(∆−nek) =
∑∞

k=0 ∆−n((∆nx)ke
k). Now, we show the uniqueness of this

representation. Suppose x =
∑∞

k=0 µk(∆−nek) =
∑∞

k=0 ∆−n(µke
k), so ∆nx =

∑∞
k=0 µke

k. On
the other hand ∆nx =

∑∞
k=0 (∆nx)ke

k. Hence µk = (∆nx)k, for all k ∈ N. So this representation
is unique.
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4. Continuous dual of lp(∆n)

Sequence space bvp is lp(∆) so lp(∆n) is an extension of this space. In [1] the continuous dual of
bvp was studied. The idea was wrong. We showed a counter example and then corrected it in [4].
Now, we introduce the continuous dual of lp(∆n).

Suppose 1 ≤ q <∞ and let

dn
q =

a ∈ ω : ‖a‖dn
q

=
∥∥∥D(n)a

∥∥∥
lq

=

 ∞∑
k=0

∣∣∣∣∣∣
∞∑

j=k

D
(n)
kj aj

∣∣∣∣∣∣
q

1
q

<∞

(12)

dn
∞ =

a ∈ ω : ‖a‖dn
∞

=
∥∥∥D(n)a

∥∥∥
l∞

= sup
k∈N

∣∣∣∣∣∣
∞∑

j=k

D
(n)
kj aj

∣∣∣∣∣∣ <∞
 ,(13)

where

D(n) =



1 (n
1 ) (n+1

2 ) (n+2
3 ) (n+3

4 ) (n+4
5 ) · · ·

0 1 (n
1 ) (n+1

2 ) (n+2
3 ) (n+3

4 ) · · ·
0 0 1 (n

1 ) (n+1
2 ) (n+2

3 ) · · ·
0 0 0 1 (n

1 ) (n+1
2 ) · · ·

0 0 0 0 1 (n
1 ) · · ·

...
...

...
...

...
...

. . .


(14)

since D(n) is triangle, then D(n)−1
exists. Trivially dn

q and dn
∞ are normed spaces with respect to

coordinate-wise addition and scalar multiplication. dn
q and dn

∞ are Banach spaces since if (x(m))∞m=0
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is a Chauchy sequence in dn
q , then

(∀ε > 0)(∃N ∈ N)(∀r, s > N)‖D(n)(x(r) − x(s))‖lq = ‖x(r) − x(s)‖dn
q
< ε(15)

so the sequence (D(n)(x(m)))∞m=0 is Chauchy in lq and since lq is Banach, there exists y in lq such
that ‖D(n)x(m) − y‖lq → 0 as m → ∞. But y = D(n)D(n)−1

y, so ‖D(n)x(m) −D(n)D(n)−1
y‖lq =

‖x(m) − D(n)−1
y‖dn

q
→ 0 as m → ∞. On the other hand D(n)−1

y ∈ dn
q . So dn

q is Banach. In a
similar way dn

∞ is Banach.

Theorem 4.1. l1(∆n)∗ is isometrically isomorphic to dn
∞.

Proof. Let

T : l1(∆n)∗ → dn
∞(16)

defined by Tf = (f(e0), f(e1), f(e2), f(e3), · · · ). Trivially T is linear and since
x =

∑∞
k=0 (∆nx)k(∆−nek) we have f(x) =

∑∞
k=0 (∆nx)kf(∆−nek). But

∆−nek = (0, 0, · · · , 0︸ ︷︷ ︸
k term

, 1, (n
1 ), (n+1

2 ), (n+2
3 ), (n+3

4 ), · · · )

= ek + (n
1 )ek+1 + (n+1

2 )ek+2 + (n+2
3 )ek+3 + · · ·

(17)

so

f(x) =
∞∑

k=0

[
(∆nx)k · (f(ek) + (n

1 )f(ek+1) + (n+1
2 )f(ek+2) + · · · )

]
(18)
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If fj = f(ej), then with respect to (14), we have

f(x) =
∞∑

k=0

[
(∆nx)k · (D(n)

kk fk +D
(n)
k(k+1)fk+1 +D

(n)
k(k+2)fk+2 + · · · )

]

=
∞∑

k=0

(∆nx)k ·
∞∑

j=k

D
(n)
kj fj


So |f(x)| ≤

∑∞
k=0 |∆nx|k · supk∈N |

∑∞
j=k D

(n)
kj fj | = ‖(f0, f1, f2, · · · )‖dn

∞
· ‖x‖l1(∆n). So ‖f‖ ≤

‖(f0, f1, f2, · · · )‖dn
∞

. So T is surjective. T is injective since T (f) = 0 implies f = 0. Finally T is
norm preserving since

|f(x)| ≤
∞∑

k=0

|∆nx|k · sup
k∈N

∣∣ ∞∑
j=k

D
(n)
kj fj

∣∣ = ‖x‖l1(∆n) · ‖Tf‖dn
∞

(19)

So

‖f‖ ≤ ‖Tf‖dn
∞

(20)

On the other hand,∣∣ ∞∑
j=k

D
(n)
kj fj

∣∣ = |f(∆−nek)| ≤ ‖f‖ · ‖∆−nek‖l1(∆n) = ‖f‖ for all k ∈ N(21)

So

‖Tf‖dn
∞

= sup
k∈N

∣∣ ∞∑
j=k

D
(n)
kj fj

∣∣ ≤ ‖f‖(22)
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From (20) and (22), we have
‖Tf‖dn

∞
= ‖f‖.

So T is norm preserving and it completes the proof. �

Theorem 4.2. If 1 < p <∞,
1
p

+
1
q

= 1, then lp(∆n)∗ is isometrically isomorphic to dn
q .

Proof. Let

T : lp(∆n)∗ → dn
q(23)

defined by Tf = (f(e0), f(e1), f(e2), f(e3), · · · ). Trivially T is linear and (18) implies that

|f(x)| =

∣∣∣∣∣∣
∞∑

k=0

[(∆nx)k ·
∞∑

j=k

D
(n)
kj fj ]

∣∣∣∣∣∣ ≤
[ ∞∑

k=0

|∆nx|pk

] 1
p

 ∞∑
k=0

∣∣∣∣∣∣
∞∑

j=k

D
(n)
kj fj

∣∣∣∣∣∣
q

1
q

= ‖x‖lp(∆n) · ‖(f0, f1, f2, · · · )‖dn
q
.

The above computations show that T is surjective. Moreover T is injective since Tf = 0 implies
f = 0. T is norm preserving since |f(x)| ≤ ‖x‖lp(∆n) · ‖(f0, f1, f2, · · · )‖dn

q
= ‖x‖lp(∆n) · ‖Tf‖dn

q
. So

‖f‖ ≤ ‖Tf‖dn
q
.(24)

On the other hand, let x(m) = (x(m)
k ) where

(∆nx(m))k =


∣∣ ∞∑

j=k

D
(n)
kj fj

∣∣q−1sgn
( ∞∑

j=k

D
(n)
kj fj

)
0 ≤ k ≤ m

0 k > m

(25)
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Then x(m) ∈ lp(∆n) since ∆nx(m) ∈ lp. So

f(x(m)) = f

( ∞∑
k=0

(∆nx(m))k · (∆−nek)
)

= f

( m∑
k=0

(∆nx(m))k · (∆−nek)
)

=
m∑

k=0

(∆nx(m))kf(∆−nek) =
m∑

k=0

(∆nx(m))k

∞∑
j=k

D
(n)
kj fj

=
m∑

k=0

∣∣∣∣ ∞∑
j=k

D
(n)
kj fj

∣∣∣∣q−1

sgn
( ∞∑

j=k

D
(n)
kj fj

)( ∞∑
j=k

D
(n)
kj fj

)

=
m∑

k=0

∣∣∣∣ ∞∑
j=k

D
(n)
kj fj

∣∣∣∣q ≤ ‖f‖ · ‖x(m)‖lp(∆n).

So

‖x(m)‖lp(∆n) = ‖∆nx(m)‖lp =
( ∞∑

k=0

|∆nx(m)|pk

) 1
p

=
( m∑

k=0

|∆nx(m)|pk

) 1
p

=
( m∑

k=0

∣∣∣∣ ∞∑
j=k

D
(n)
kj fj

∣∣∣∣p(q−1)∣∣∣∣sgn
( ∞∑

j=k

D
(n)
kj fj

)∣∣∣∣p) 1
p

=
( m∑

k=0

∣∣∣∣ ∞∑
j=k

D
(n)
kj fj

∣∣∣∣q) 1
p

So ( m∑
k=0

∣∣∣∣ ∞∑
j=k

D
(n)
kj fj

∣∣∣∣q)1

≤ ‖f‖ ·
( m∑

k=0

∣∣∣∣ ∞∑
j=k

D
(n)
kj fj

∣∣∣∣q) 1
p

.
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So

‖f‖ ≥
( m∑

k=0

∣∣∣∣ ∞∑
j=k

D
(n)
kj fj

∣∣∣∣q) 1
q

= ‖Tf‖dn
q .(26)

From (24) and (26), we have
‖Tf‖dn

q
= ‖f‖.

So T is norm preserving and this completes the proof. �

5. Continuity of ∆n on some sequence spaces

Lemma 5.1. The matrix A = (ank) gives rise to a bounded linear operator T ∈ B(l1) if and only
if the supremum of l1 norms of the columns of A is bounded. In fact, ‖A‖(l1,l1) = supn

∑∞
k=0 |ank|.

Corollary 5.2. ‖∆n‖(l1,l1) = 2n.

Lemma 5.3. The matrix A=(ank) gives rise to a bounded linear operator T ∈ B(l∞) if and only
if the supremum of l1 norms of the rows of A is bounded. In fact, ‖A‖(l∞,l∞) = supk

∑∞
n=0 |ank|.

Corollary 5.4. ‖∆n‖(l∞,l∞) = 2n.

Lemma 5.5. Let 1 < p <∞ and let A ∈ (l∞, l∞)
⋂

(l1, l1). Then A ∈ (lp, lp).

Corollary 5.6. For every integer n and 1 < p <∞ holds ∆n ∈ B(lp).

Proof. With respect to the matrix representation of ∆n and Lemma 5.1 and 5.3
∆n ∈ (l∞, l∞)

⋂
(l1, l1) and so by Lemma 5.5, ∆n ∈ (lp, lp). �

Theorem 5.7. ∆n ∈ B(lp(∆n)).
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Proof. Suppose ∆n : lp → lp and x ∈ lp. Then by Corollary 5.6, there exists Mp
n ∈ N such

that ‖∆nx‖lp ≤ Mp
n‖x‖lp . So if ∆n : lp(∆n) → lp(∆n) and x ∈ lp(∆n), then ‖∆nx‖lp(∆n) =

‖∆n(∆nx)‖lp ≤ Mp
n · ‖∆nx‖lp = Mp

n · ‖x‖lp(∆n). So ‖∆n‖(lp(∆n),lp(∆n)) ≤ Mp
n and it completes

the proof. �

In [1, Theorem 3.2] claims that the norm of operator Delta is 2 i.e. ∆ is a bounded operator
on lp(∆) which confirms Theorem 5.7 in case n = 1.
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