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MODULUS OF LATTICE-VALUED MEASURES

S. S. KHURANA

Abstract. Let X be a completely regular Hausdorff space, E a Banach lattice,

and µ an E-valued countably additive, regular Borel measure on X. Some results

about the countable additivity and regularity of the modulus |µ| are proved. Also
in special cases, it is proved that L1(µ) = L1(|µ|).

1. Introduction and Notation

In ([13, 8]), some results are proved about the countable additivity of the modulus
of countable additive measures taking values in Banach lattices. In this paper we
prove some additional properties of the modulus.

All vector spaces are taken over reals R. For a completely regular Hausdorff
space X, Cb(X) is the space of all bounded real-valued continuous functions on
X. For f ∈ Cb(X), the set f−1(0) is called a zero-set of X and the elements of
the σ-algebra generated by zero-sets are called Baire sets ([16, 15]). B(X) and
B0(X) are the classes of Borel and Baire subsets of X and Mσ(X), Mτ (X), Mt(X)
denote the spaces of σ-additive, τ -smooth and tight Baire measures onX([15, 16]).
The elements of Mσ(X) are real-valued, countably additive measures on B0(X).
An element µ ∈ Mσ(X) is called τ -smooth if for any decreasing net {fα} ⊂
Cb(X), fα ↓ 0, we have µ(fα) → 0. Every τ -smooth measure has a unique
extension to a Borel measure which is inner regular by closed subsets and outer
regular by open subsets of X; an element µ ∈ Mσ(X) is called tight if for any
uniformly bounded net {fα} ⊂ Cb(X), fα → 0, uniformly on compact subsets of
X, we have µ(fα) → 0. Every tight measure has a unique extension to a Borel
measure which is inner regular by compact subsets and outer regular by open
subsets of X ([15, 16]).

Now we come to vector-valued measures; integrability of scalar-valued func-
tions is taken in the sense of [7] (see also [9, 10]). Suppose (E, ‖ · ‖) is a
Banach space. If A is a σ-algebra of subsets of a set X, µ : A → E a count-
ably additive vector measure, we denote the semi-variation of µ by µ̄ : A → R+,
µ̄(A) = sup{|g ◦ µ|(A) : g ∈ E′, ‖g‖ ≤ 1} ; this semi-variation can be extended to
functions in L1(µ) ([7, p. 23]). Also we consider the submeasure µ̇ : A → R+,

Received September 14, 209; revised February 5, 2010.
2000 Mathematics Subject Classification. Primary 28B15, 28C05, 28C15, 46G10;

Secondary 46B42.

Key words and phrases. moduls of a measure; τ -smooth and tight vector measures.



226 KHURANA

µ̇(A) = sup{‖µ(B)‖ : B ∈ A, B ⊂ A} ([5, 3]). It is easily verified that µ̇ is count-
ably sub-additive [3] and µ̇ ≤ µ̄ ≤ 4µ̇. A countably additive measure λ : A → R+

is called a control measure for µ if, for an A ∈ A, λ(A) = 0 implies µ(A) = 0.
This implies limλ(A)→0 µ̄(A) = 0. This control measure can be chosen such that
λ = |g ◦ µ| for some g ∈ E′ with ‖g‖ ≤ 1 ([7]) and has the properties that (i)
|f ◦ µ| << λ for every f ∈ E′ with ‖f‖ ≤ 1; (ii) if λ(A) = 0, then µ̄(A) = 0; (iii)
limλ(A)→0 µ̄(A) = 0; (iv) λ ≤ µ̄. We also have the result that if f : Y → R is a
measurable function, B ∈ A and |f | ≤ c on B, then ‖

∫
B
fdµ‖ ≤ cµ̄(B).

For locally convex spaces, notations and results of [11], [12] will be used. For a
locally convex space E with dual E′ and f ∈ E′, x ∈ E, 〈f, x〉 will stand for f(x).

Suppose E is a Hausdorff locally convex space and X is a completely regular
Hausdorff space. A countably additive measure µ : B0(X) → E is called an
E-valued Baire measure, a countably additive measure µ : B(X) → E is called
an E-valued τ -smooth Borel measure if f ◦ µ ∈ Mτ (X) for every f ∈ E′, and
a countably additive measure µ : B(X) → E is called an E-valued tight Borel
measure if f ◦ µ ∈Mt(X) for every f ∈ E′. Many other characterizations of these
measures are given in [6] (see also [9]).

Suppose E is a Dedekind complete Banach lattice, A is a σ-algebra of subsets
of a set X and µ : A → E is a order-bounded, finitely additive measure. If B(X)
is the space of all real-valued, bounded, A-measurable functions on X, then µ
can also be considered as a linear, order-bounded mapping µ : B(X) → E. The
evaluation of µ+, µ−, |µ| from µ : A → E or µ : B(X) → E are the same ([13],
[14]).

Now if E is a Dedekind complete Banach lattice and µ : A → E is a order-
bounded, countably additive measure in the norm topology of E, it is proved in
[13] that, under certain conditions, |µ| is also countably additive. Now if X is a
completely regular Hausdorff space, then there are some regularity properties like
τ -smooth or tight, associated with µ; the question arises whether these properties
are carried also by |µ| and when L1(µ) = L1(|µ|). We consider these questions in
this paper.

2. Main Results

We first prove a basic result

Theorem 1. Suppose E is a Banach lattice, A is a sigma-algebra of subsets
of a set X and µ : A → E is a countably additve measure. Assume that there is a
a countably additive measure λ : A → R+ such that µ << λ. If |µ| exists and is
countably additive, then |µ| << λ.

Proof. Fix a c > 0. We claim there is a λ-null set Ac ∈ A such that for any
λ-null set B ∈ A, B disjoint from Ac, ‖|µ|(B)‖ < c. Suppose this is not true.
We start with a λ-null set A ∈ A and take a λ-null set B1 ∈ A, disjoint from
A, such that ‖|µ|(B1)‖ > c. Now A1 = A ∪ B1 is λ-null and so there is λ-null
B2 ∈ A, disjoint from A1, such that ‖|µ|(B2)‖ > c. Continuing this process we get
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a disjoint sequence {Bn} ⊂ A such that ‖|µ|(Bn)‖ > c, for all n, which, because
of the countably additivity of |µ|, is a contradiction.

Now A = ∪A1/n is a λ-null. Define ν : A → E, ν(B) = |µ|((X \A) ∩B). Take
any C ∈ A such that λ(C) = 0. From the construction of A, |µ|(C \A) = 0 which
gives ν(C) = 0. This means ν << λ. Fix a B ∈ A and an f ∈ E′, f ≥ 0. Since A
is λ-null, ±f ◦ µ(A ∩B) = 0. Thus

±f ◦ µ(B) = ±f ◦ µ(B \A) ≤ f ◦ |µ|((X \A) ∩B) = f ◦ ν(B).

Thus ±µ ≤ ν ≤ |µ| This means ν = |µ|. This proves the result. �

Corollary 2 ([8]). Suppose E is a Banach lattice not containng a positive copy
of `∞, A a sigma-algebra of subsets of a set X and µ : A → E a countably additve
measure. Assume µ << λ for some countably additive measure λ : A → R+ and
that |µ| exists. Then |µ| is also countably additive and |µ| << λ.

Proof. The countably additivity is proved in ([8], see also [3]). The other part
follow from Theorem 1. �

We first prove a simple lemma.

Lemma 3. Let E be a Dedekind complete vector lattice, A is a σ-algebra of
subsets of a set X, and µ : A → E a order-bounded, finitely additive measure.
Then for any A,B ∈ A,

µ+(A) ≤ µ(A ∩B) + µ+(X)− µ(B).

Proof.

µ(B)− µ(A ∩B) = µ(A ∪B \A) ≤ µ+(A ∪B \A) = µ+(A ∪B)− µ+(A).

Thus µ+(A) ≤ µ(A ∩B) + µ+(X)− µ(B). �

A part of the following result is known. We give a different proof.

Theorem 4. [13, Theorem 4, Theorem 5(1)] Suppose E is a Dedekind com-
plete Banach lattice which has either an order continuous norm or is an AM
space with unit, A a sigma-algebra of subsets of a set X and µ : A → E an order
bounded, countably additve measure in norm topology. Then the modulus |µ| is
also countably additive. Also for a measurable and bounded f , f ≥ 0,

µ̄(f) ≤ ¯(|µ|)(f) ≤ 4µ̄(f).

Proof. Take a decreasing sequence {An} ⊂ A with An ↓ ∅ and take a B ∈ A.
By Lemma 3,

µ+(An) ≤ µ(An ∩B) + µ+(X)− µ(B).(1)

We first consider the case that it is an AM space with unit. Thus E = (C(S),
‖ · ‖), for some compact Stonian space S. Fix a c > 0. Since µ is countably
additive, µ̇(An) ↓ 0 and so µ̇(An) ≤ c for all n ≥ k for some k ∈ N. Fix n ≥ k.
Now ‖µ(An ∩ B)‖ ≤ µ̇(An ∩ B) ≤ µ̇(An) ≤ c. Thus µ(An ∩ B) ≤ c · 1, 1 ∈ C(S)
being the unit function. So we get µ+(An) ≤ c · 1 + µ+(X) − µ(B). Taking the
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inf on the right side as B varies in A, we get µ+(An) ≤ ·1. Thus µ+ and similarly
µ− are countably additive. This proves the result.

It is sufficient to prove the result for 0 ≤ f ≤ 1. Take two measurable f, g,
0 ≤ f ≤ 1, 0 ≤ g ≤ 1. From f + g = f ∨ g + f ∧ g we get

µ+(f) ≤ µ(f ∧ g) + µ+(1)− µ(g).

Since ‖µ(f ∧ g)‖ ≤ µ̄(f), µ(f ∧ g) ≤ µ̄(f) · 1. Thus we have

µ+(f) ≤ µ̄(f) · 1 + µ+(1)− µ(g).

Taking inf on the right side as g, 0 ≤ g ≤ 1, varies, we have µ+(f) ≤ µ̄(f) · 1.
Thus ‖µ+(f)‖ ≤ µ̄(f). From this it is easy to prove that

µ̄(f) ≤ ¯(|µ|)(f) ≤ 2µ̄(f).

Now we consider the case E has an order continuous norm. In this case E′ = E′n,
the order continous dual of E. Let inf(µ+(An)) = z ≥ 0; we have 〈h, z〉 =
lim〈h, µ+(An)〉, for all h ∈ E′. From (1)

z ≤ µ+(An) ≤ µ(An ∩B) + µ+(X)− µ(B).

Take h ∈ (E′n)+. We get

〈h, z〉 ≤ 〈h, µ+(X)〉 − 〈h, µ(B)〉+ 〈h, µ(An ∩B)〉,

for all n. Since An ∩B ↓ ∅, 〈h, µ(An ∩B)〉 → 0. Thus

〈h, z〉 ≤ 〈h, µ+(X)〉 − 〈h, µ(B)〉.

This gives z ≤ µ+(X)− µ(B). Taking the inf on the right side as B varies in A,
we get z = 0. This proves that µ+ is countably additive in the weak topology and
so is countably additive in the norm topology. In a similar way µ− is countably
additive in the norm topology and thus |µ| is countably additive.

As in the case of AM space, we take two measurable f, g, 0 ≤ f ≤ 1, 0 ≤ g ≤ 1
and proceed as in that case. We get

µ+(f) ≤ µ(f ∧ g) + µ+(1)− µ(g).

Taking h ∈ E′n, ‖h‖ ≤ 1, h ≥ 0, we get

〈h, µ+(f)〉 ≤ 〈h, µ(f ∧ g)〉+ 〈h, µ+(1)− µ(g)〉.

Using the fact 〈h, µ(f ∧ g)〉 ≤ µ̄(f), this becomes

〈h, µ+(f)〉 ≤ µ̄(f) + 〈h, µ+(1)− µ(g)〉.

Taking inf on the right side as g, 0 ≤ g ≤ 1 varies, we have 〈h, µ+(f)〉 ≤ µ̄(f).
Thus µ̄+ ≤ 2µ̄(f). So µ̄(f) ≤ ¯(|µ|)(f) ≤ 4µ̄(f). �

We use this theorem to prove the following result.

Theorem 5. Suppose E is a Dedekind complete Banach lattice which has either
an order continuous norm or is an AM space with unit, A is a sigma-algebra of
subsets of a set X and µ : A → E is an order bounded, countably additive measure
in the norm topology. Then L1(µ) = L1(|µ|).
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Proof. By Theorem 4, |µ| is countably additive. Choose x′ ∈ E′ with ‖x′‖ ≤ 1
such that λ = |x′◦µ| has the property that µ << λ. By Theorem 1, |µ| << λ. Also
it is a simple verification that |x′◦µ| ≤ |x′|◦|µ| and so λ ≤ |x′|◦|µ|. Take f ∈ L1(µ),
f ≥ 0 and put fn = f ∧n. By dominated convergence therorem, µ̄(|fn−fm|)→ 0.
By Theorem 4, |µ̄|(|fn − fm|) → 0 Since L1(|µ|) is complete, fn → f̃ ∈ L1(|µ|).
Since λ ≤ µ̄ and also λ ≤ |x′| ◦ |µ| ≤ (|µ̄|), we have

∫
|f − fn|dλ → 0 and also∫

|f̃ − fn|dλ → 0. Thus f = f̃ . Thus L1(µ) ⊂ L1(|µ|). In a very similar way
L1(|µ|) ⊂ L1(µ). This proves the result. �

Now we come to the regularity of |µ|.

Theorem 6. Suppose X is a completely regular Hausdorff space, E is a Banach
lattice, µ : B(X) → E is an order bounded, countably additive, τ -smooth (resp.
tight) Borel measure in the norm topology. If |µ| exists and is countably additive,
then it is also τ -smooth (resp. tight).

Proof. Choose measure λ, satisfying µ << λ, to be τ -smooth if µ is τ -smooth
and tight then µ is tight.

First we consider the case when µ is tight. Fix a Borel B ⊂ X and let {Cα}
be the increasing net of all compact subsets of B. Put Uα = (B \ Cα). Since λ is
tight, λ(Uα) → 0. Since, by Theorem 1, |µ| << λ, we have limλ(A)→0 |µ̄|(A) = 0.
This means |µ̄|(Uα)→ 0. This proves that |µ| is tight.

Now we consider the case when µ is τ -smooth. In this case we take an increasing
net {Vα} of open subsets of X with V = ∪Vα and Uα = χV \Vα

. As in the case of
tight measure above, we get |µ̄|(Uα)→ 0. This proves |µ| is τ -smooth. �
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