ON SOLUTIONS OF A SYSTEM OF RATIONAL DIFFERENCE EQUATIONS

YU YANG, LI CHEN and YONG-GUO SHI

Abstract. In this paper we investigate the system of rational difference equations

$$
x_{n}=\frac{a}{y_{n-p}}, \quad y_{n}=\frac{b y_{n-p}}{x_{n-q} y_{n-q}}, \quad n=1,2, \ldots,
$$

where q is a positive integer with $p<q, p \nmid q, p$ is an odd number and $p \geq 3$, both a and b are nonzero real constants and the initial values $x_{-q+1}, x_{-q+2}, \ldots$, $x_{0}, y_{-q+1}, y_{-q+2}, \ldots, y_{0}$ are nonzero real numbers. We show all real solutions of the system are eventually periodic with period $2 p q$ (resp. $4 p q$) when $(a / b)^{q}=1$ (resp. $\left.(a / b)^{q}=-1\right)$ and characterize the asymptotic behavior of the solutions when $a \neq b$, which generalizes Özban's results [Appl. Math. Comput. 188 (2007), 833-837].

1. Introduction

Consider the system of rational difference equations

$$
\begin{equation*}
x_{n}=\frac{a}{y_{n-p}}, \quad y_{n}=\frac{b y_{n-p}}{x_{n-q} y_{n-q}}, \quad n=1,2, \ldots \tag{1}
\end{equation*}
$$

where q is a positive integer with $p<q, p$ is a positive integer, both a and b are nonzero real constants and the initial values $x_{-q+1}, x_{-q+2}, \ldots, x_{0}, y_{-q+1}$, y_{-q+2}, \ldots, y_{0} are nonzero real numbers.

The system of equations (1) is equivalent to the single rational equation of order $p+q$

$$
\begin{equation*}
x_{n}=\frac{c x_{n-p} x_{n-p-q}}{x_{n-q}}, \quad c=\frac{a}{b} \tag{2}
\end{equation*}
$$

This is obtained by eliminating the variable $y_{n}=a / x_{n+p}$ as follows:

$$
\frac{a}{x_{n+p}}=\frac{a b / x_{n}}{x_{n-q}\left(a / x_{x_{n+p-q}}\right)}=\frac{b x_{n+p-q}}{x_{n} x_{n-q}}
$$

Taking the reciprocal and shifting all indices back p units gives (2). Equations (1) belong to a class of "homogeneous equations of degree one" (cf. [9,10] and

[^0]

Figure 1. A positive solution of (1) is eventually periodic with period 24 where $a=b=1$, $p=3, q=4$. This result is given in [7].
references therein). By the substitution $t_{n}=x_{n} / x_{n-p}$, system (1) can be written as a "triangular vector map or system" where one equation is independent of the other:

$$
t_{n}=\frac{c}{t_{n-q}}, \quad s_{n}=t_{n} s_{n-p}
$$

Dynamics of triangular maps have been studied by several other people (see a nice survey $[\mathbf{1 2}]$ and a beautiful result [1]).

In particular, Çinar in [3] proved that all positive solutions of the system of rational difference equations

$$
x_{n}=\frac{1}{y_{n-1}}, \quad y_{n}=\frac{y_{n-1}}{x_{n-2} y_{n-2}}, \quad n=1,2, \ldots
$$

with the period four. That such a nonlinear rational system has a period so simple as 4 is surprising. Later, Yang et al in [15] generalized his result and obtained all positive solutions of system (1) with $p \mid q$ and $a=b$ have period $2 q$. For the case $p \mid q$ and $a \neq b$, they also investigated the behavior of positive solutions. Similar nonlinear systems of rational difference equations were investigated, for instance, by Clark and Kulenovic [4], Özban [6], Papaschinopoulos and Schinas [8], Camouzis and Papaschinopoulos [2], Iričanin and Stević [5], Shojaei et al [11], and Yang $[\mathbf{1 3}, \mathbf{1 4}]$. Recently, Özban $[\mathbf{7}]$ investigated the behavior of the positive solutions of system (1) where $p=3, p \nmid q$. For the case $b=a \in \mathbb{R}^{+}, p=3$, $q>3, p \nmid q$, the author obtained all positive solutions of the system of difference equations (1) that are eventually periodic (see the definition below and Figure 1) with period $6 q$. For the case $b \neq a \in \mathbb{R}^{+}, p=3, q>3, p \nmid q$, he also characterized the asymptotic behavior of the positive solutions of system (1).

In this paper we study the behavior of the real solutions of system (1) where p is odd with $p<q, p \nmid q$, and so we generalize Özban's results of [7]. Before stating our main results, we set the following definition used in this paper.

Definition 1 ([16]). A solution $\left\{\left(x_{n}, y_{n}\right)\right\}_{n=-(q-1)}^{\infty}$ of (1) is eventually periodic if there exist an integer $n_{0} \geq-q+1$ and a positive integer w such that

$$
\left(x_{n+n_{0}+w}, y_{n+n_{0}+w}\right)=\left(x_{n+n_{0}}, y_{n+n_{0}}\right), \quad n=1,2, \ldots,
$$

and w is called a period.
An eventually periodic sequence such as $\{1,1,2,3,2,3,2,3,2,3, \ldots\}$ that is periodic from some point onwards can serve as an example.

2. Main Results

Lemma 1. Let $\left\{\left(x_{n}, y_{n}\right)\right\}_{n=-(q-1)}^{\infty}$ be an arbitrary solution of (1). Then

$$
x_{n} y_{n}=x_{n+2 q} y_{n+2 q}, \quad n=-q+1,-q+2, \ldots
$$

Proof. From (1) we have

$$
\begin{equation*}
x_{n+2 q} y_{n+2 q}=\frac{a}{y_{n+2 q-p}} \frac{b y_{n+2 q-p}}{x_{n+q} y_{n+q}}=\frac{a b}{x_{n+q} y_{n+q}} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{n+q} y_{n+q}=\frac{a}{y_{n+q-p}} \frac{b y_{n+q-p}}{x_{n} y_{n}}=\frac{a b}{x_{n} y_{n}} \tag{4}
\end{equation*}
$$

Then substituting (4) into (3), we get

$$
x_{n+2 q} y_{n+2 q}=x_{n} y_{n}, \quad n=-q+1,-q+2, \ldots
$$

Theorem 1. Let p be odd, $c:=a / b$ and $\left\{\left(x_{n}, y_{n}\right)\right\}_{n=-(q-1)}^{\infty}$ be an arbitrary solution of (1).
(i) If $|c|<1$, then for each integer l with $1 \leq l \leq 2 p q$, the subsequence $\left\{x_{2 p q j+l-p}\right\}_{j=0}^{\infty}$ converges to zero exponentially and the subsequence $\left\{y_{2 p q j+l-p}\right\}_{j=0}^{\infty}$ tends to infinity exponentially.
(ii) If $c^{q}=1$, then all solutions of the system of difference equations (1) are eventually periodic with period $2 p q$; If $c^{q}=-1$, then all solutions of the system of difference equations (1) are eventually periodic with period $4 p q$.
(iii) If $|c|>1$, then for each integer l with $1 \leq l \leq 2 p q$, the subsequence $\left\{x_{2 p q j+l-p}\right\}_{j=0}^{\infty}$ tends to infinity exponentially and the subsequence $\left\{y_{2 p q j+l-p}\right\}_{j=0}^{\infty}$ converges to zero exponentially.

Proof. For each $n \geq 1$, substituting $x_{n}=a / y_{n-p}$ into $y_{n+q}=b y_{n+q-p} /\left(x_{n} y_{n}\right)$, we get

$$
\begin{equation*}
y_{n} y_{n+q}=\frac{1}{c} y_{n-p} y_{n+q-p} \tag{5}
\end{equation*}
$$

Repeated application of (5) yields

$$
y_{n-p} y_{n+q-p}=c^{2} y_{n+p} y_{n+q+p}=c^{3} y_{n+2 p} y_{n+q+2 p}=\ldots
$$

or
(6) $\quad y_{n-p} y_{n+q-p}=c^{t+1} y_{n+p t} y_{n+q+p t}, \quad t=0,1, \ldots, \quad n=1,2, \ldots$

Since $q>p$ and $p \nmid q$, it follows that $q=p k+m$ for some positive integer k where $m<p$. Hence the last equation turns into
(7) $y_{n-p} y_{n+(p k+m)-p}=c^{t+1} y_{n+p t} y_{n+(p k+m)+p t}, \quad t=0,1, \ldots, \quad n=1,2, \ldots$

For $t=k-1$, we have
(8) $y_{n-p} y_{n+(p k+m)-p}=c^{k} y_{n+p k-p} y_{n+(2 p k+m)-p}, \quad k=1,2, \ldots, \quad n=1,2, \ldots$

Multiplying both sides of Eq. (8) by $\prod_{i=2}^{p} y_{n+i(p k+m)-p}$, we obtain
(9) $y_{n-p} \prod_{i=1}^{p} y_{n+i(p k+m)-p}=c^{k} y_{n+p k-p} y_{n+(2 p k+m)-p} \prod_{i=2}^{p} y_{n+i(p k+m)-p}$.

Then, by taking $n=n+p k$ and $t=(p-1) k+m-1$ in (7), we get

$$
\begin{equation*}
y_{n+p k-p} y_{n+(2 p k+m)-p}=c^{(p-1) k+m} \prod_{i=p}^{p+1} y_{n+i(p k+m)-p} \tag{10}
\end{equation*}
$$

which combined with (9), leads to

$$
\begin{equation*}
y_{n-p} \prod_{i=1}^{p-1} y_{n+i(p k+m)-p}=c^{p k+m} \prod_{i=2}^{p+1} y_{n+i(p k+m)-p} \tag{11}
\end{equation*}
$$

Moreover, taking $n=n+j(p k+m), j=1,2, \ldots, m-1$ and $t=p k+m-1$ in (7), we get

$$
\begin{equation*}
\prod_{i=j}^{1+j} y_{n+i(p k+m)-p}=c^{p k+m} \prod_{i=p+j}^{p+j+1} y_{n+i(p k+m)-p} \tag{12}
\end{equation*}
$$

When p is odd, it follows that

$$
\begin{aligned}
& \prod_{i=1}^{p-1} y_{n+i(p k+m)-p}=c^{\frac{(p k+m)(p-1)}{2}} \prod_{i=p+1}^{2 p-1} y_{n+i(p k+m)-p} \\
& \prod_{i=2}^{p+1} y_{n+i(p k+m)-p}=c^{\frac{(p k+m)(p-1)}{2}}\left(\prod_{i=p+2}^{2 p} y_{n+i(p k+m)-p}\right) y_{n+(p+1)(p k+m)-p}
\end{aligned}
$$

These together with (11) imply that

$$
y_{n-p}=c^{p k+m} y_{n+2 p(p k+m)-p}
$$

or

$$
\begin{equation*}
y_{n-p}=c^{q} y_{n+2 p q-p}, \quad n=1,2, \ldots \tag{13}
\end{equation*}
$$

since $q=p k+m$. It is clear that repeated application of (13) yields

$$
\begin{equation*}
y_{n+2 p q j-p}=c^{q j} y_{n-p}, \quad j=1,2, \ldots, \quad n=1,2, \ldots \tag{14}
\end{equation*}
$$

Moreover from $x_{n}=a / y_{n-p}$ and $y_{n-p}=c^{q} y_{n+2 p q-p}$, it follows that

$$
x_{n}=c^{q} a / y_{n+2 p q-p} \quad \text { or } \quad x_{n}=c^{q} x_{n+2 p q}
$$

or

$$
\begin{equation*}
x_{n+2 p q-p}=c^{q} x_{n-p}, \quad n=1,2, \ldots \tag{15}
\end{equation*}
$$

Again repeated application of (15) leads to

$$
\begin{equation*}
x_{n+2 p q j-p}=c^{q j} x_{n-p}, \quad j=1,2, \ldots, \quad n=1,2, \ldots \tag{16}
\end{equation*}
$$

Consequently: (i) follows from Eqs.(14) and (16) and the fact that $|c|<1$. (iii) follows from equations Eqs.(14) and (16), and the fact that $|c|>1$.

It remains to show (ii). If $c^{q}=1$ (resp. $c^{q}=-1$), it follows from (15) and (13) that

$$
\begin{align*}
& x_{n}=x_{n+2 p q},
\end{align*} \quad y_{n}=y_{n+2 p q}, \quad n=1,2, \ldots
$$

A short computation reveals that

$$
x_{2 p q j-p}=x_{-p} y_{-p} \frac{x_{0}}{a} \neq x_{-p}
$$

$j=1,2, \ldots$ for arbitrary initial values. In fact, from (17) (resp. (18)), it suffices to show that $x_{2 p q-p}=x_{-p} y_{-p} x_{0} / b$ (resp. $x_{4 p q-p}=x_{-p} y_{-p} x_{0} / b$). From Lemma 1, we have $x_{n} y_{n}=x_{n+2 q} y_{n+2 q}=\cdots=x_{n+2 p q} y_{n+2 p q}$. Thus by taking $n=-p$, we have

$$
\begin{equation*}
x_{-p} y_{-p}=x_{2 p q-p} y_{2 p q-p}, \quad\left(\text { resp. } x_{-p} y_{-p}=x_{4 p q-p} y_{4 p q-p}\right) \tag{19}
\end{equation*}
$$

From (5), we have

$$
\begin{equation*}
\frac{y_{n-p}}{y_{n}}=\frac{y_{n+q}}{y_{n+q-p}}=\cdots=\frac{y_{n+(2 p-1) q}}{y_{n+(2 p-1) q-p}} \tag{20}
\end{equation*}
$$

By taking $n=q$ in (20), we get

$$
\begin{equation*}
\frac{y_{q-p}}{y_{q}}=\frac{y_{2 p q}}{y_{2 p q-p}}, \quad\left(\text { resp. } \quad \frac{y_{q-p}}{y_{q}}=\frac{y_{4 p q}}{y_{4 p q-p}}\right) \tag{21}
\end{equation*}
$$

Folloing from (19), (21) and $y_{2 p q}=y_{0}$, we obtain

$$
\begin{align*}
x_{2 p q-p} & =\frac{x_{-p} y_{-p}}{y_{2 p q-p}}=x_{-p} y_{-p} \frac{y_{q-p}}{y_{q} y_{2 p q}}=x_{-p} y_{-p} \frac{y_{q-p}}{y_{q} y_{0}} \tag{22}\\
\left(\text { resp. } \quad x_{4 p q-p}\right. & \left.=x_{-p} y_{-p} \frac{y_{q-p}}{y_{q} y_{0}}\right)
\end{align*}
$$

By taking $n=q$ in the second equation of system (1), we have

$$
\frac{y_{q-p}}{y_{q} y_{0}}=\frac{x_{0}}{b}
$$

This together with (22) imply that

$$
x_{2 p q-p}=\frac{x_{-p} y_{-p} x_{0}}{b}, \quad\left(\text { resp. } x_{4 p q-p}=\frac{x_{-p} y_{-p} x_{0}}{b}\right)
$$

Figure 2. $c^{q}=1, w=24$.

Figure 4. p is even, $c=-1$.

Figure 6. p, q are even, $c=-1.5$.

Figure 3. $c^{q}=-1, w=60$.

Figure 5. p is even, $c=1$.

Figure 7. p is even, q is odd, $c=0.5$.

Remark 1. Some numerical experiments are carried out by MATLAB software. Choosing $a=-b=2, p=3, q=4$, and random initial data, we see that $c^{q}=1$ and the solutions of (1) are eventually periodic with period 24 in Fig. 2. Choosing $a=-b=2, p=3, q=5$ and random initial data, we see that $c^{q}=-1$ and the solutions of (1) are eventually periodic with period 60 in Fig. 3.

A natural question is what the solutions look like if p is even. We plot Figs. $4-7$ with different c and different q. None of them can tell that the corresponding solution of (1) is eventually periodic even if $c=1$.

Acknowledgment. The authors are very grateful to the referees for many helpful comments and suggestions.

References

1. Alseda L., and Llibre J., Periods for triangular maps, Bull. Austral. Math. Soc. 47 (1993), 41-53.
2. Camouzis E. and Papaschinopoulos G. C., Global asymptotic behavior of positive solutions on the system of rational difference equations, Appl. Math. Lett. 17 (2004), 733-737.
3. Cुinar C., On the positive solutions of the difference equation system $x_{n+1}=1 / y_{n}$, $y_{n+1}=y_{n} / x_{n-1} y_{n-1}$, Appl. Math. Comput. 158 (2004), 303-305.
4. Clark D. and Kulenovic M.R., A coupled system of rational difference equations, Comput. Math. Appl. 43 (2002), 849-867.
5. Iričanin B. and Stević S., On a class of third-order nonlinear difference equations, Appl. Math. Comput. 213 (2009), 479-483.
6. Özban A. Y., On the positive solutions of the system of rational difference equations $x_{n+1}=$ $1 / y_{n-k}, y_{n+1}=y_{n} / x_{n-m} y_{n-m-k}$, J. Math. Anal. Appl. 323 (2006), 26-32.
7. $a / y_{n-3}, y_{n}=b y_{n-3} /\left(x_{n-q} y_{n-q}\right)$, Appl. Math. Comput. 188 (2007), 833-837.
8. Papaschinopoulos G. C. and Schinas C. J., On a system of two nonlinear difference equations, J. Math. Anal. Appl. 219 (1998), 415-426.
9. Sedaghat H., Every homogeneous difference equation of degree one admits a reduction in order, J. Difference Eqs. and Appl. 15 (2009), 621-624.
10. _, Semiconjugate factorization and reduction of order in difference equations, http://arxiv.org/abs/0907.3951.
11. Shojaei M., Saadati R. and Adibi H., Stability and periodic character of a rational third order difference equation, Chaos, Solitons and Fractals, 39 (2009), 1203-1209.
12. Smítal J., Why it is important to understand the dynamics of triangular maps, J. Difference Eqs. and Appl. 14 (2008), 597-606.
13. Yang X., On the system of rational difference equations $x_{n+1}=1+x_{n} / y_{n-m}, y_{n+1}=$ $1+y_{n} / x_{n-m}$, J. Math. Anal. Appl. 307 (2005), 305-311.
14. Yang Y. and Yang X., On the difference equation $x_{n+1}=\left(p x_{n-s}+x_{n-t}\right) /\left(q_{n-s}+x_{n-t}\right)$, Appl. Math. Comput. 203 (2008), 903-907.
15. Yang X., Liu Y. and Bai S, On the system of high order rational difference equations $x_{n}=a / y_{n-p}, y_{n}=b y_{n-p} /\left(x_{n-q} y_{n-q}\right)$, Appl. Math. Comput. 171 (2005), 853-856.
16. Yuan Z. and Huang L., All solutions of a class of discrete-time systems are eventually periodic, Appl. Math. Comput. 158 (2004), 537-546.

Yu Yang, Key Laboratory of Numerical Simulation of Sichuan Province, College of Mathematics and Information Science, Neijiang Normal University, Neijiang, Sichuan 641112, P. R. China, e-mail: yangyunyydy@163.com

Li Chen, Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, P. R. China, e-mail: scuchenli@126.com

Yong-Guo Shi, Key Laboratory of Numerical Simulation of Sichuan Province, College of Mathematics and Information Science, Neijiang Normal University, Neijiang, Sichuan 641112, P. R. China, e-mail: scumat@163.com

[^0]: Received February 1, 2010; revised September 29, 2010.
 2001 Mathematics Subject Classification. Primary 39A11, 37B20.
 Key words and phrases. System of difference equations; homogeneous equations of degree one; eventually periodic solutions.

 This research was supported by the undergraduate scientific research project of Neijiang Normal University. Corresponding to Yong-Guo Shi (scumat@163.com).

