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POSITIVE PERIODIC SOLUTIONS OF IMPULSIVE
FUNCTIONAL DIFFERENTIAL EQUATIONS

WITH A PARAMETER

YANQIN WANG, QINGWEI TU, QIANG WANG and CHAO HU

Abstract. By using a fixed point theorem of strict-set-contraction, some crite-
ria are established for the existence of positive periodic solutions of the following

impulsive functional differential equations with a parameter8<:
ẋ(t) = −a(t)f(t, x(t))x(t) + λg(t, xt, x(t− τ(t, x(t))), t ∈ R, and t 6= tk,

x(t+k )− x(t−k ) = Ik(tk, x(tk − τ(tk, x(tk)))), k ∈ Z.

1. Introduction

The theory and applications of impulsive functional differential equations are
emerging as an important area of investigation, since it is far richer than the
corresponding theory of nonimpulsive functional differential equations. Various
population models characterized by the fact that sudden change of their state and
process under such as population dynamics, ecology and epidemic, etc. depending
on their prehistory at each moment of time can be expressed by impulsive differ-
ential equations with deviating argument. We note that the difficulties dealing
with such models are that corresponding equations have deviating arguments and
theirs states are discontinuous. In [2], Cushing pointed out that it is necessary
and important to consider the models with the parameters or perturbations. This
might be quite naturally exposed, for example, for such processes changing due to
seasonal effects of weather, food supply, mating habit, etc.

Very recently Yan [11] employed a well-known fixed-point index theorem to
study the existence of positive periodic solutions for the periodic impulsive func-
tional differential equation with two parameters{

y′(t) = h(t, y(t))− λf(t, y(t− τ(t))), t ∈ R, t 6= tk,

y(t+k )− y(tk) = µIk(tk, y(tk − τ(tk))), k ∈ Z.
(1.1)
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By using the fixed point theorem in cones, Wu [10] discussed the existence of
positive periodic solutions for the functional differential equation with a parameter

ẏ(t) = −a(t)f(y(t))y(t) + λg(t, y(t− τ(t))),(1.2)

where a(t) ∈ C(R, [0,∞)), f(·) ∈ C([0,∞), [0,∞)), τ(t) ∈ C(R,R), y ∈ C(R ×
[0,∞), [0,∞)), R = (−∞,+∞), λ > 0 is a parameter; a(t), τ(t), g(t, ·) are all
ω-periodic functions in t and ω > 0 is a constant.

Li [5] employed a fixed point theorem of strict-set-contraction to study the
existence of positive periodic solutions of the following periodic neutral Lotka-
Volterra system with state dependent delays

dxi(t)
dt

= xi(t)

ri(t)− n∑
j=1

aij(t)xj(t)−
n∑
j=1

bij(t)xj(t− τij(t, x1(t), . . . , xn(t)))

−
n∑
j=1

cij(t)x
′

j(t− σij(t, x1(t), . . . , xn(t)))

 .
(1.3)

For some other relative works see [4]–[13] and references cited therein.
In this paper, mainly motivated by [5, 10, 11], we use a fixed point theorem

of strict-set-contraction to investigate the existence of positive periodic solutions
for the impulsive functional differential equation with a parameter

ẋ(t) = −a(t)f(t, x(t))x(t) + λg(t, xt, x(t− τ(t, x(t))),
t ∈ R, and t 6= tk,

x(t+k )− x(t−k ) = Ik(tk, x(tk − τ(tk, x(tk))),
k ∈ Z,

(1.4)

where R = (−∞,+∞), R+ = [0,+∞), a(t) ∈ C(R,R+) is ω-periodic, τ(·, ·) ∈
C(R × R+,R) satisfies τ(t + ω, y) for all t ∈ R, y ∈ R, λ > 0 is a parameter
and ω > 0 is a constant. f(·, ·) ∈ C(R × R+, R+) satisfies f(t + ω, y) = f(t, y),
g ∈ C(R × BC+ × R+, R+) satisfies g(t + ω, xt+ω, y) = g(t, xt, y) for all t ∈ R,
x ∈ BC+, y ∈ R+, where BC+ = {η ∈ BC : η(t) ∈ R+ for t ∈ R}, BC denotes
the Banach space of bounded continuous functions η : R→ R with the norm ‖η‖ =
supθ∈R |η(θ)|. If x ∈ BC, then xt ∈ BC for any t ∈ R is defined by xt(θ) = x(t+θ)
for θ ∈ R. Ik ∈ C(R × R+,R+) and there exists a positive integer p such that
tk+p = tk + ω, Ik+p(tk+p, x) = Ik(tk, x), k ∈ Z. Without loss of generality we also
assume that tk 6= 0, for k = 1, 2, . . . , and [0, ω) ∩ {tk : k ∈ Z} = {t1, t2, . . . , tp}.

For convenience, we introduce the notations

δ := e
−

ωR
0
a(t)dt

, σ :=
δ2L2(1− δL1)
δL1(1− δL2)

, aM = max
t∈[0,ω)

{a(t)},
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gMq = sup
σq≤‖ut‖,‖v‖≤q

max
t∈[0,ω)

{g(t, ut, v)},

IMq = sup
σq≤‖v‖≤q

max
t∈[0,ω)

{
p∑
k=1

I(t, v)

}
,

gmq = inf
σq≤‖ut‖,‖v‖≤q

min
t∈[0,ω)

{g(t, ut, v)},

Imq = sup
σq≤‖v‖≤q

inf
t∈[0,ω)

{
p∑
k=1

I(t, v)

}
.

In the following, we always assume that:

(H1)

ω∫
0

a(t)dt > 0, 0 < δ := e−
R ω
0 a(t)dt < 1.

(H2) For t ∈ R, u ∈ R+, there exist positive constants L1, L2 such that L1 ≤
f(t, u) ≤ L2.

(H3) 0 < σ :=
δ2L2(1− δL1)
δL1(1− δL2)

< 1.

(H4) For all (t, u, v) ∈ R×BC+ × R+, g(t, ut, v) ≥ 0.

(H5) 0 < λ < ∞ is a parameter, λ∗ = sup{λ > 0}, there exists a positive
constant q such that q ≥ B(λ∗ωgMq + IMq ).

2. Preliminaries

In order to obtain the existence of a periodic solution of system (1.4), we first
make the following preparations:

Let X be a real Banach space and K a closed, nonempty subset of X. Then K
is a cone provided

(i) αu+ βv ∈ K for all u, v ∈ K and all α, β ≥ 0;
(ii) u,−u ∈ K implies u = 0.

Let E be a Banach space and K be a cone in E. The semi-order induced by
the cone K is denoted by ≤. That is, x ≤ y if and only if y − x ∈ K. In addition,
for a bounded subset A ⊂ E, let αE(A) denote the (Kuratowski) measure of
non-compactness defined by

αE(A) = inf {γ > 0 : there is a finite number of subsets Ai ⊂ A

such that A =
⋃
i

Ai and diam(Ai) ≤ γ},

where diam(Ai) denotes the diameter of the set Ai.
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Let E,F be two Banach spaces and D ⊂ E. A continuous and bounded map
Φ: D → F is called k-set contractive if for any bounded set S ⊂ D, we have

αF (Φ(S)) ≤ kαE(S).

Φ is called strict-set-contractive if it is k-set-contractive for some 0 ≤ k < 1.
The following lemma is useful for the proof of our main results of this paper.

Lemma 2.1 ([1, 3, 5]). Let K be a cone in the real Banach space X and
Kr,R = {x ∈ K : r ≤‖ x ‖≤ R} with R > r > 0. Suppose that Φ: Kr,R → K is
strict-set-contractive such that one of the following two conditions is satisfied:

(i) Φx � x, ∀x ∈ K, ‖x‖ = r and Φx � x, ∀x ∈ K, ‖x‖ = R.

(ii) Φx � x, ∀x ∈ K, ‖x‖ = r and Φx � x, ∀x ∈ K, ‖x‖ = R.
Then Φ has at least one fixed point in Kr,R.

In order to apply Lemma 2.1 to system (1.4), we set

PC(R) = {x(t) : R→ R, x|(tk, tk+1) ∈ C(tk, tk+1),

∃ x(t−k ) = x(tk), x(t+k ), k ∈ Z}.
Consider the Banach space

X = {x(t) : x(t) ∈ PC(R), x(t+ ω) = x(t)}
with the form defined by ‖x‖ = maxt∈[0,ω]{|x(t)| : x ∈ X}.

Let the map Φ be defined by

(Φx)(t) = λ

t+ω∫
t

G(t, s)g(s, xs, x(s− τ(s, x(s)))ds

+
∑

k:tk∈[t,t+ω)

G(t, tk)Ik(tk, x(t− τ(tk, x(tk)))),

(2.1)

where x ∈ K, t ∈ R and

G(t, s) =
e

sR
t

a(u)f(u,x(u))du

e

ωR
0
a(u)f(u,x(u))du

−1

.

It is easy to see that G(t+ ω, s+ ω) = G(t, s).
Define the cone K in X by

K = {x ∈ X : x(t) ≥ σ ‖ x ‖},(2.2)

where
0 < σ = A�B < 1

and
A := min{G(t, s) : 0 ≤ t ≤ s ≤ ω} =

1
δ−L2 − 1

> 0,

B := max{G(t, s) : 0 ≤ t ≤ s ≤ ω} =
δ−L2

δ−L1 − 1
> 0.
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It is not difficult to verify that K is a cone in X.
In the following, we will give some lemmas concerning K and Φ defined by (2.1)

and (2.2), respectively.

Lemma 2.2. Assume that (H1), (H3) hold, then Φ: K → K is well defined.

Proof. For any x ∈ K, it is clear that Φx ∈ PC(R). In view of (2.1), for t ∈ R,
we obtain

(Φx)(t+ ω)

= λ

t+2ω∫
t+ω

G(t+ ω, s)g(s, xs, x(s− τ(s, x(s)))ds

+
∑

k:tk∈[t+ω,t+2ω)

G(t+ ω, tk)Ik(tk, x(tk − τ(tk, x(tk))))

= λ

t+ω∫
t

G(t+ ω, u+ ω)g(u+ ω, xu+ω, x(u+ ω − τ(u+ ω, x(u+ ω)))du

+
∑

j:tj∈[t,t+ω)

G(t+ ω, tj + ω)Ij(tj + ω, x(tj + ω − τ(tj + ω, x(tj + ω)))

= λ

t+ω∫
t

G(t, u)g(u, xu, x(u− τ(u, x(u)))du

+
∑

j:tj∈[t,t+ω)

G(t, tj)Ij(tj , x(tj − τ(tj , x(tj))))

= (Φx)(t)

That is, (Φx)(t+ ω) = (Φx)(t), t ∈ R. So Φx ∈ X. For any x ∈ K, we have

‖Φx| ≤ λB

ω∫
0

g(s, xs, x(s− τ(s, x(s)))ds+B

p∑
k=1

Ik(tk, x(tk − τ(tk, x(tk))))

and

(Φx)(t) ≥ λA

ω∫
0

g(s, xs, x(s− τ(s, x(s)))ds+A

p∑
k=1

Ik(tk, x(tk − τ(tk, x(tk)))).

So we have

(Φx)(t) ≥ A

B
‖Φx‖ = σ‖Φx‖

i.e. Φ ∈ K. This completes the proof of Lemma 2.2. �

Lemma 2.3. Assume that (H1)–(H5) hold and gMR <∞, then Φ: K
⋂

ΩR→K
is strict-set-contractive, where ΩR = {x ∈ X : ‖x‖ < R}.
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Proof. It is easy to see that Φ is continuous and bounded. Now we prove that
αX(Φ(S)) ≤ kαX(S) for any bounded set S ⊂ ΩR and 0 < k < 1.

Let η = αX(S). Then, for any positive number ε < η, there is a finite family
of subsets {Si} satisfying S =

⋃
i Si with diam(Si) ≤ η + ε. As S and Si are

precompact in X, it follows that there is a finite family of subsets Sij of Si such
that Si =

⋃
j Sij and ‖x− y‖ ≤ ε for x, y ∈ Sij .

In addition, from (H5), it follows that there exists a positive constant λ∗ =
sup{λ > 0} such that 0 < λ ≤ λ∗ for any y ∈ S and t ∈ [0, ω]. We have

|(Φx)(t)| =

∣∣∣∣∣∣λ
t+ω∫
t

G(t, s)g(s, xs, x(s− τ(s, x(s)))ds

+
∑

k:tk∈[t,t+ω)

G(t, tk)Ik(tk, x(t− τ(tk, x(tk))))

∣∣∣∣∣∣
≤

∣∣∣∣∣∣λ
t+ω∫
t

BgMR ds+BIMR

∣∣∣∣∣∣
≤ B(λωgMR + IMR ) ≤ B(λ∗ωgMR + IMR ) := H

and

|(Φx)
′
(t)| = | − a(t)f(t, (Φx)(t))(Φx)(t) + λg(t, xt, x(t− τ(t, x(t)))|

≤ aML2H + λgMR ≤ aML2H + λ∗gMR .

Applying the Arzela-Ascoli theorem, we know that Φ(S) is precompact in PC(R).
Then, there is a finite family of subsets {Sijl} of Sij such that Sij =

⋃
l Sijl and

‖(Φx)− (Φy)‖ ≤ ε for any x, y ∈ Sijl.
As ε is arbitrary small, it follows that

αX(Φ(S)) ≤ kαX(S).

Therefore, Φ is strict-set-contractive. The proof of Lemma 2.3 is complete. �

3. Main result

In this section, we state and prove the following result.

Theorem 3.1. Assume that (H1)–(H5) hold, then there exists λ∗ > 0 such that
(1.4) has at least a positive ω-periodic solution associated with some λ ∈ (0, λ∗].

Proof. From (H5), it is clear that there exists a positive constant λ∗ =
sup{λ > 0} such that 0 < λ ≤ λ∗. Let R := Rλ = B(λωgMR + IMR ) and
0 < r := rλ < A(λωgmR + ImR ), where λ ∈ (0, λ∗]. Obviously, 0 < rλ < Rλ
for the same λ in (0, λ∗]. From Lemmas 2.2 and 2.3, we know that Φ is strict-
set-contractive on Kr,R. Now, we shall prove that condition (i) of Lemma 2.1
holds.
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First, we prove that Φx � x for all x ∈ K, ‖x‖ = r. Otherwise, there exists
x ∈ K, ‖x‖ = r such that Φx ≤ x. So |x| > 0 and x−Φx ∈ K which implies that

x(t)− (Φx)(t) ≥ σ‖x− Φx‖ ≥ 0 for any t ∈ [0, ω](3.1)

Moreover, for t ∈ [0, ω], we have

(Φx)(t) = λ

t+ω∫
t

G(t, s)g(s, xs, x(s− τ(s, x(s)))ds

+
∑

k:tk∈[t,t+ω)

G(t, tk)Ik(tk, x(t− τ(tk, x(tk)))),

> λ

t+ω∫
t

AgmR ds+AΣpk=1Ik(tk, x(tk − τ(tk, x(tk))))

≥ A(λωgmR + ImR ) > r.

(3.2)

In view of (3.1) and (3.2), we have

‖x‖ ≥ ‖Φx‖ > r = ‖x‖,
which is a contradiction.

Finally, we prove that Φx � x for all x ∈ K, ‖x‖ = R also holds. In this case,
we only need to prove that

Φx ≯ x, x ∈ K, ‖x‖ = R.

Suppose, for the sake of contradiction, that there exists x ∈ K and ‖x‖ = R such
that x < Φx. Thus Φx− x ∈ K \ {0}. Furthermore, for any t ∈ [0, ω], we have

(Φx)(t)− x(t) ≥ σ‖x− Φx‖ > 0.(3.3)

In addition, for any t ∈ [0, ω], we find

(Φx)(t) = λ

t+ω∫
t

G(t, s)g(s, xs, x(s− τ(s, x(s)))ds

+
∑

k:tk∈[t,t+ω)

G(t, tk)Ik(tk, x(t− τ(tk, x(tk)))),

≤ λ

t+ω∫
t

BgMR ds+BΣpk=1Ik(tk, x(tk − τ(tk, x(tk))))

≤ B(λωgMR + IMR ) = R.

(3.4)

From (3.3) and (3.4), we obtain

‖x‖ < ‖Φx‖ ≤ R = ‖x‖,
which is a contradiction. Therefore, conditions (i) and (ii) hold. By Lemma 2.1,
we see that Φ has at least one nonzero fixed point in K. Therefore, system (1.4)
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has at least one positive ω-periodic solution associated with some λ ∈ (0, λ∗]. The
proof of Theorem 3.1 is complete. �
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