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POSITIVE PERIODIC SOLUTIONS OF IMPULSIVE FUNCTIONAL
DIFFERENTIAL EQUATIONS

WITH A PARAMETER

YANQIN WANG, QINGWEI TU, QIANG WANG and CHAO HU

Abstract. By using a fixed point theorem of strict-set-contraction, some criteria are established for
the existence of positive periodic solutions of the following impulsive functional differential equations
with a parameter8<:

ẋ(t) = −a(t)f(t, x(t))x(t) + λg(t, xt, x(t− τ(t, x(t))), t ∈ R, and t 6= tk,

x(t+k )− x(t−k ) = Ik(tk, x(tk − τ(tk, x(tk)))), k ∈ Z.

1. Introduction

The theory and applications of impulsive functional differential equations are emerging as an
important area of investigation, since it is far richer than the corresponding theory of nonimpulsive
functional differential equations. Various population models characterized by the fact that sudden
change of their state and process under such as population dynamics, ecology and epidemic, etc.
depending on their prehistory at each moment of time can be expressed by impulsive differential
equations with deviating argument. We note that the difficulties dealing with such models are
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that corresponding equations have deviating arguments and theirs states are discontinuous. In [2],
Cushing pointed out that it is necessary and important to consider the models with the parameters
or perturbations. This might be quite naturally exposed, for example, for such processes changing
due to seasonal effects of weather, food supply, mating habit, etc.

Very recently Yan [11] employed a well-known fixed-point index theorem to study the existence
of positive periodic solutions for the periodic impulsive functional differential equation with two
parameters

{
y′(t) = h(t, y(t))− λf(t, y(t− τ(t))), t ∈ R, t 6= tk,

y(t+k )− y(tk) = µIk(tk, y(tk − τ(tk))), k ∈ Z.
(1.1)

By using the fixed point theorem in cones, Wu [10] discussed the existence of positive periodic
solutions for the functional differential equation with a parameter

ẏ(t) = −a(t)f(y(t))y(t) + λg(t, y(t− τ(t))),(1.2)

where a(t) ∈ C(R, [0,∞)), f(·) ∈ C([0,∞), [0,∞)), τ(t) ∈ C(R,R), y ∈ C(R × [0,∞), [0,∞)),
R = (−∞,+∞), λ > 0 is a parameter; a(t), τ(t), g(t, ·) are all ω-periodic functions in t and ω > 0
is a constant.

Li [5] employed a fixed point theorem of strict-set-contraction to study the existence of positive
periodic solutions of the following periodic neutral Lotka-Volterra system with state dependent
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delays

dxi(t)
dt

= xi(t)

ri(t)− n∑
j=1

aij(t)xj(t)−
n∑
j=1

bij(t)xj(t− τij(t, x1(t), . . . , xn(t)))

−
n∑
j=1

cij(t)x
′

j(t− σij(t, x1(t), . . . , xn(t)))

 .
(1.3)

For some other relative works see [4]–[13] and references cited therein.
In this paper, mainly motivated by [5, 10, 11], we use a fixed point theorem of strict-set-

contraction to investigate the existence of positive periodic solutions for the impulsive functional
differential equation with a parameter

ẋ(t) = −a(t)f(t, x(t))x(t) + λg(t, xt, x(t− τ(t, x(t))),
t ∈ R, and t 6= tk,

x(t+k )− x(t−k ) = Ik(tk, x(tk − τ(tk, x(tk))),
k ∈ Z,

(1.4)

where R = (−∞,+∞), R+ = [0,+∞), a(t) ∈ C(R,R+) is ω-periodic, τ(·, ·) ∈ C(R × R+,R)
satisfies τ(t + ω, y) for all t ∈ R, y ∈ R, λ > 0 is a parameter and ω > 0 is a constant. f(·, ·) ∈
C(R×R+, R+) satisfies f(t+ω, y) = f(t, y), g ∈ C(R×BC+×R+, R+) satisfies g(t+ω, xt+ω, y) =
g(t, xt, y) for all t ∈ R, x ∈ BC+, y ∈ R+, where BC+ = {η ∈ BC : η(t) ∈ R+ for t ∈ R},
BC denotes the Banach space of bounded continuous functions η : R → R with the norm ‖η‖ =
supθ∈R |η(θ)|. If x ∈ BC, then xt ∈ BC for any t ∈ R is defined by xt(θ) = x(t + θ) for
θ ∈ R. Ik ∈ C(R × R+,R+) and there exists a positive integer p such that tk+p = tk + ω,
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Ik+p(tk+p, x) = Ik(tk, x), k ∈ Z. Without loss of generality we also assume that tk 6= 0, for
k = 1, 2, . . . , and [0, ω) ∩ {tk : k ∈ Z} = {t1, t2, . . . , tp}.

For convenience, we introduce the notations

δ := e
−

ωR
0
a(t)dt

, σ :=
δ2L2(1− δL1)
δL1(1− δL2)

, aM = max
t∈[0,ω)

{a(t)},

gMq = sup
σq≤‖ut‖,‖v‖≤q

max
t∈[0,ω)

{g(t, ut, v)},

IMq = sup
σq≤‖v‖≤q

max
t∈[0,ω)

{
p∑
k=1

I(t, v)

}
,

gmq = inf
σq≤‖ut‖,‖v‖≤q

min
t∈[0,ω)

{g(t, ut, v)},

Imq = sup
σq≤‖v‖≤q

inf
t∈[0,ω)

{
p∑
k=1

I(t, v)

}
.

In the following, we always assume that:

(H1)

ω∫
0

a(t)dt > 0, 0 < δ := e−
R ω
0 a(t)dt < 1.

(H2) For t ∈ R, u ∈ R+, there exist positive constants L1, L2 such that L1 ≤ f(t, u) ≤ L2.

(H3) 0 < σ :=
δ2L2(1− δL1)
δL1(1− δL2)

< 1.
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(H4) For all (t, u, v) ∈ R×BC+ × R+, g(t, ut, v) ≥ 0.

(H5) 0 < λ < ∞ is a parameter, λ∗ = sup{λ > 0}, there exists a positive constant q such that
q ≥ B(λ∗ωgMq + IMq ).

2. Preliminaries

In order to obtain the existence of a periodic solution of system (1.4), we first make the following
preparations:

Let X be a real Banach space and K a closed, nonempty subset of X. Then K is a cone provided
(i) αu+ βv ∈ K for all u, v ∈ K and all α, β ≥ 0;

(ii) u,−u ∈ K implies u = 0.
Let E be a Banach space and K be a cone in E. The semi-order induced by the cone K is

denoted by ≤. That is, x ≤ y if and only if y − x ∈ K. In addition, for a bounded subset A ⊂ E,
let αE(A) denote the (Kuratowski) measure of non-compactness defined by

αE(A) = inf {γ > 0 : there is a finite number of subsets Ai ⊂ A

such that A =
⋃
i

Ai and diam(Ai) ≤ γ},

where diam(Ai) denotes the diameter of the set Ai.
Let E,F be two Banach spaces and D ⊂ E. A continuous and bounded map Φ: D → F is

called k-set contractive if for any bounded set S ⊂ D, we have

αF (Φ(S)) ≤ kαE(S).

Φ is called strict-set-contractive if it is k-set-contractive for some 0 ≤ k < 1.
The following lemma is useful for the proof of our main results of this paper.
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Lemma 2.1 ([1, 3, 5]). Let K be a cone in the real Banach space X and Kr,R = {x ∈ K : r ≤‖
x ‖≤ R} with R > r > 0. Suppose that Φ: Kr,R → K is strict-set-contractive such that one of the
following two conditions is satisfied:

(i) Φx � x, ∀x ∈ K, ‖x‖ = r and Φx � x,∀x ∈ K, ‖x‖ = R.

(ii) Φx � x, ∀x ∈ K, ‖x‖ = r and Φx � x, ∀x ∈ K, ‖x‖ = R.

Then Φ has at least one fixed point in Kr,R.

In order to apply Lemma 2.1 to system (1.4), we set

PC(R) = {x(t) : R→ R, x|(tk, tk+1) ∈ C(tk, tk+1),

∃ x(t−k ) = x(tk), x(t+k ), k ∈ Z}.

Consider the Banach space

X = {x(t) : x(t) ∈ PC(R), x(t+ ω) = x(t)}

with the form defined by ‖x‖ = maxt∈[0,ω]{|x(t)| : x ∈ X}.
Let the map Φ be defined by

(Φx)(t) = λ

t+ω∫
t

G(t, s)g(s, xs, x(s− τ(s, x(s)))ds

+
∑

k:tk∈[t,t+ω)

G(t, tk)Ik(tk, x(t− τ(tk, x(tk)))),

(2.1)
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where x ∈ K, t ∈ R and

G(t, s) =
e

sR
t

a(u)f(u,x(u))du

e

ωR
0
a(u)f(u,x(u))du

−1

.

It is easy to see that G(t+ ω, s+ ω) = G(t, s).
Define the cone K in X by

K = {x ∈ X : x(t) ≥ σ ‖ x ‖},(2.2)

where

0 < σ = A�B < 1

and

A := min{G(t, s) : 0 ≤ t ≤ s ≤ ω} =
1

δ−L2 − 1
> 0,

B := max{G(t, s) : 0 ≤ t ≤ s ≤ ω} =
δ−L2

δ−L1 − 1
> 0.

It is not difficult to verify that K is a cone in X.
In the following, we will give some lemmas concerning K and Φ defined by (2.1) and (2.2),

respectively.

Lemma 2.2. Assume that (H1), (H3) hold, then Φ: K → K is well defined.
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Proof. For any x ∈ K, it is clear that Φx ∈ PC(R). In view of (2.1), for t ∈ R, we obtain

(Φx)(t+ ω)

= λ

t+2ω∫
t+ω

G(t+ ω, s)g(s, xs, x(s− τ(s, x(s)))ds

+
∑

k:tk∈[t+ω,t+2ω)

G(t+ ω, tk)Ik(tk, x(tk − τ(tk, x(tk))))

= λ

t+ω∫
t

G(t+ ω, u+ ω)g(u+ ω, xu+ω, x(u+ ω − τ(u+ ω, x(u+ ω)))du

+
∑

j:tj∈[t,t+ω)

G(t+ ω, tj + ω)Ij(tj + ω, x(tj + ω − τ(tj + ω, x(tj + ω)))

= λ

t+ω∫
t

G(t, u)g(u, xu, x(u− τ(u, x(u)))du

+
∑

j:tj∈[t,t+ω)

G(t, tj)Ij(tj , x(tj − τ(tj , x(tj))))

= (Φx)(t)

That is, (Φx)(t+ ω) = (Φx)(t), t ∈ R. So Φx ∈ X. For any x ∈ K, we have

‖Φx| ≤ λB

ω∫
0

g(s, xs, x(s− τ(s, x(s)))ds+B

p∑
k=1

Ik(tk, x(tk − τ(tk, x(tk))))
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and

(Φx)(t) ≥ λA

ω∫
0

g(s, xs, x(s− τ(s, x(s)))ds+A

p∑
k=1

Ik(tk, x(tk − τ(tk, x(tk)))).

So we have

(Φx)(t) ≥ A

B
‖Φx‖ = σ‖Φx‖

i.e. Φ ∈ K. This completes the proof of Lemma 2.2. �

Lemma 2.3. Assume that (H1)–(H5) hold and gMR < ∞, then Φ: K
⋂

ΩR→K is strict-set-
contractive, where ΩR = {x ∈ X : ‖x‖ < R}.

Proof. It is easy to see that Φ is continuous and bounded. Now we prove that αX(Φ(S)) ≤
kαX(S) for any bounded set S ⊂ ΩR and 0 < k < 1.

Let η = αX(S). Then, for any positive number ε < η, there is a finite family of subsets {Si}
satisfying S =

⋃
i Si with diam(Si) ≤ η + ε. As S and Si are precompact in X, it follows that

there is a finite family of subsets Sij of Si such that Si =
⋃
j Sij and ‖x− y‖ ≤ ε for x, y ∈ Sij .
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In addition, from (H5), it follows that there exists a positive constant λ∗ = sup{λ > 0} such
that 0 < λ ≤ λ∗ for any y ∈ S and t ∈ [0, ω]. We have

|(Φx)(t)| =

∣∣∣∣∣∣λ
t+ω∫
t

G(t, s)g(s, xs, x(s− τ(s, x(s)))ds

+
∑

k:tk∈[t,t+ω)

G(t, tk)Ik(tk, x(t− τ(tk, x(tk))))

∣∣∣∣∣∣
≤

∣∣∣∣∣∣λ
t+ω∫
t

BgMR ds+BIMR

∣∣∣∣∣∣
≤ B(λωgMR + IMR ) ≤ B(λ∗ωgMR + IMR ) := H

and
|(Φx)

′
(t)| = | − a(t)f(t, (Φx)(t))(Φx)(t) + λg(t, xt, x(t− τ(t, x(t)))|

≤ aML2H + λgMR ≤ aML2H + λ∗gMR .

Applying the Arzela-Ascoli theorem, we know that Φ(S) is precompact in PC(R). Then, there
is a finite family of subsets {Sijl} of Sij such that Sij =

⋃
l Sijl and ‖(Φx) − (Φy)‖ ≤ ε for any

x, y ∈ Sijl.
As ε is arbitrary small, it follows that

αX(Φ(S)) ≤ kαX(S).

Therefore, Φ is strict-set-contractive. The proof of Lemma 2.3 is complete. �
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3. Main result

In this section, we state and prove the following result.

Theorem 3.1. Assume that (H1)–(H5) hold, then there exists λ∗ > 0 such that (1.4) has at
least a positive ω-periodic solution associated with some λ ∈ (0, λ∗].

Proof. From (H5), it is clear that there exists a positive constant λ∗ = sup{λ > 0} such that
0 < λ ≤ λ∗. Let R := Rλ = B(λωgMR + IMR ) and 0 < r := rλ < A(λωgmR + ImR ), where λ ∈ (0, λ∗].
Obviously, 0 < rλ < Rλ for the same λ in (0, λ∗]. From Lemmas 2.2 and 2.3, we know that Φ is
strict-set-contractive on Kr,R. Now, we shall prove that condition (i) of Lemma 2.1 holds.

First, we prove that Φx � x for all x ∈ K, ‖x‖ = r. Otherwise, there exists x ∈ K, ‖x‖ = r
such that Φx ≤ x. So |x| > 0 and x− Φx ∈ K which implies that

x(t)− (Φx)(t) ≥ σ‖x− Φx‖ ≥ 0 for any t ∈ [0, ω](3.1)

Moreover, for t ∈ [0, ω], we have

(Φx)(t) = λ

t+ω∫
t

G(t, s)g(s, xs, x(s− τ(s, x(s)))ds

+
∑

k:tk∈[t,t+ω)

G(t, tk)Ik(tk, x(t− τ(tk, x(tk)))),

> λ

t+ω∫
t

AgmR ds+AΣpk=1Ik(tk, x(tk − τ(tk, x(tk))))

≥ A(λωgmR + ImR ) > r.

(3.2)
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In view of (3.1) and (3.2), we have

‖x‖ ≥ ‖Φx‖ > r = ‖x‖,
which is a contradiction.

Finally, we prove that Φx � x for all x ∈ K, ‖x‖ = R also holds. In this case, we only need to
prove that

Φx ≯ x, x ∈ K, ‖x‖ = R.

Suppose, for the sake of contradiction, that there exists x ∈ K and ‖x‖ = R such that x < Φx.
Thus Φx− x ∈ K \ {0}. Furthermore, for any t ∈ [0, ω], we have

(Φx)(t)− x(t) ≥ σ‖x− Φx‖ > 0.(3.3)

In addition, for any t ∈ [0, ω], we find

(Φx)(t) = λ

t+ω∫
t

G(t, s)g(s, xs, x(s− τ(s, x(s)))ds

+
∑

k:tk∈[t,t+ω)

G(t, tk)Ik(tk, x(t− τ(tk, x(tk)))),

≤ λ

t+ω∫
t

BgMR ds+BΣpk=1Ik(tk, x(tk − τ(tk, x(tk))))

≤ B(λωgMR + IMR ) = R.

(3.4)

From (3.3) and (3.4), we obtain
‖x‖ < ‖Φx‖ ≤ R = ‖x‖,
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which is a contradiction. Therefore, conditions (i) and (ii) hold. By Lemma 2.1, we see that Φ has
at least one nonzero fixed point in K. Therefore, system (1.4) has at least one positive ω-periodic
solution associated with some λ ∈ (0, λ∗]. The proof of Theorem 3.1 is complete. �
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