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A GENERALIZATION OF ORLICZ SEQUENCE SPACES
BY CESÀRO MEAN OF ORDER ONE

H. DUTTA and F. BAŞAR

Abstract. In this paper, we introduce the Orlicz sequence spaces generated by
Cesàro mean of order one associated with a fixed multiplier sequence of non-zero

scalars. Furthermore, we emphasize several algebraic and topological properties
relevant to these spaces. Finally, we determine the Köthe-Toeplitz dual of the

spaces `′
M (C, Λ) and hM (C, Λ).

1. Preliminaries, Background and Notation

By ω, we denote the space of all complex valued sequences. Any vector subspace of
ω which contains φ, the set of all finitely non–zero sequences is called a sequence
space. We write `∞, c and c0 for the classical sequence spaces of all bounded,
convergent and null sequences which are Banach spaces with the sup-norm ‖x‖∞ =
supk∈N |xk|, where N = {0, 1, 2, . . . }, the set of natural numbers. A sequence
space X with a linear topology is called a K−space provided each of the maps
pi : X → C defined by pi(x) = xi is continuous for all i ∈ N. A K-space X is
called an FK-space provided X is a complete linear metric space. An FK-space
whose topology is normable is called a BK-space.

A function M : [0,∞) → [0,∞) which is convex with M(u) ≥ 0 for u ≥ 0, and
M(u)→∞ as u→∞, is called as an Orlicz function. An Orlicz function M can
always be represented in the following integral form

M(u) =
∫ u

0

p(t)dt,

where p, the kernel of M , is right differentiable for t ≥ 0, p(0) = 0, p(t) > 0 for
t > 0, p is non–decreasing and p(t)→∞ as t→∞ whenever M(u)

u ↑ ∞ as u ↑ ∞.
Consider the kernel p associated with the Orlicz function M and let

q(s) = sup{t : p(t) ≤ s}.

Received March 29, 2010; revised December 9, 2010.
2010 Mathematics Subject Classification. Primary 46A45; Secondary 40C05, 40A05.
Key words and phrases. Orlicz function, Cesàro mean of order one, sequence spaces, topo-
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Then q possesses the same properties as the function p. Suppose now

Φ(x) =
∫ x

0

q(s)ds.

Then, Φ is an Orlicz function. The functions M and Φ are called mutually com-
plementary Orlicz functions.

Now, we give the following well-known results.
Let M and Φ are mutually complementary Orlicz functions. Then, we have:
(i) For all u, y ≥ 0,

uy ≤M(u) + Φ(y), (Young’s inequality).(1.1)

(ii) For all u ≥ 0,

up(u) = M(u) + Φ(p(u)).(1.2)

(iii) For all u ≥ 0 and 0 < λ < 1,

M(λu) < λM(u).(1.3)

An Orlicz function M is said to satisfy the ∆2-condition for small u or at 0 if for
each k ∈ N, there exist Rk > 0 and uk > 0 such that M(ku) ≤ RkM(u) for all
u ∈ (0, uk]. Moreover, an Orlicz function M is said to satisfy the ∆2-condition if
and only if

lim sup
u→0+

M(2u)
M(u)

<∞.

Two Orlicz functions M1 and M2 are said to be equivalent if there are positive
constants α, β and b such that

M1(αu) ≤M2(u) ≤M1(βu) for all u ∈ [0, b].(1.4)

Orlicz used the Orlicz function to introduce the sequence space `M (see Musielak
[10]; Lindenstrauss and Tzafriri [9]), as follows

`M =

{
x = (xk) ∈ ω :

∑
k

M

(
|xk|
ρ

)
<∞ for some ρ > 0

}
.

For simplicity in notation, here and in what follows, the summation without limits
runs from 0 to ∞. For relevant terminology and additional knowledge on the
Orlicz sequence spaces and related topics, the reader may refer to [1, 3, 5, 6, 7,
8, 11, 9, 10] and [12].

Throughout the present article, we assume that Λ = (λk) is the sequence of
non–zero complex numbers. Then for a sequence space E, the multiplier sequence
space E(Λ) associated with the multiplier sequence Λ is defined by

E(Λ) = {x = (xk) ∈ ω : Λx = (λkxk) ∈ E} .
The scope for the studies on sequence spaces was extended by using the notion of
associated multiplier sequences. G. Goes and S. Goes defined the differentiated
sequence space dE and integrated sequence space

∫
E for a given sequence space

E, using the multiplier sequences (k−1) and (k) in [4], respectively. A multiplier
sequence can be used to accelerate the convergence of the sequences in some spaces.
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In some sense, it can be viewed as a catalyst, which is used to accelerate the process
of chemical reaction. Sometimes the associated multiplier sequence delays the rate
of convergence of a sequence. Thus it also covers a larger class of sequences for
study.

Let C = (cnk) be the Cesàro matrix of order one defined by

cnk :=


1

n+ 1
, 0 ≤ k ≤ n,

0, k > n,

for all k, n ∈ N.

Definition 1.1. Let M be any Orlicz function and δ(M,x) :=
∑
kM (|xk|),

where x = (xk) ∈ ω. Then, we define the sets ˜̀M (C,Λ) and ˜̀M by

˜̀
M (C,Λ) :=

x = (xk) ∈ ω : δ̂C(M,x) =
∑
k

M


∣∣∣∑k

j=0 λjxj

∣∣∣
k + 1

 <∞


and ˜̀

M := {x = (xk) ∈ ω : δ(M,x) <∞} .

Definition 1.2. Let M and Φ be mutually complementary functions. Then,
we define the set `M (C,Λ) by

`M (C,Λ):=

{
x=(xk) ∈ ω :

∑
k

(∑k
j=0 λjxj

k + 1

)
yk converges for all y = (yk) ∈ ˜̀Φ}

which is called as Orlicz sequence space associated with the multiplier sequence
Λ = (λk) and generated by Cesàro matrix of order one.

Definition 1.3. The α-dual or Köthe-Toeplitz dual Xα of a sequence space X
is defined by

Xα :=

{
a = (ak) ∈ ω :

∑
k

|akxk| <∞ for all x = (xk) ∈ X

}
.

It is known that if X ⊂ Y , then Y α ⊂ Xα. It is clear that X ⊂ Xαα. If X = Xαα,
then X is called as an α space. In particular, an α space is called a Köthe space
or a perfect sequence space.

The main purpose of this paper is to introduce the sequence spaces `M (C,Λ),˜̀
M (C,Λ), `′M (C,Λ) and hM (C,Λ), and investigate their certain algebraic and

topological properties. Furthermore, it is proved that the spaces `′M (C,Λ) and
hM (C,Λ) are topologically isomorphic to the spaces `∞(C,Λ) and c0(C,Λ) when
M(u) = 0 on some interval, respectively. Finally, the α-dual of the spaces `′M (C,Λ)
and hM (C,Λ) are determined, and therefore the non-perfectness of the space
`′M (C,Λ) is showed when M(u) = 0 on some interval, and some open problems
are noted.
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2. Main Results

In this section, we emphasize the sequence spaces `M (C,Λ), ˜̀M (C,Λ), `′M (C,Λ)
and hM (C,Λ), and give their some algebraic and topological properties.

Proposition 2.1. For any Orlicz functionM , the inclusion ˜̀M (C,Λ)⊂`M (C,Λ)
holds.

Proof. Let x = (xk) ∈ ˜̀M (C,Λ). Then, since
∑
kM

(
|Pk

j=0 λjxj|
k+1

)
< ∞ we

have from (1.1) that∣∣∣∣∣∑
k

(∑k
j=0 λjxj

k + 1

)
yk

∣∣∣∣∣ ≤∑
k

∣∣∣∣∣
(∑k

j=0 λjxj

k + 1

)
yk

∣∣∣∣∣
≤
∑
k

M

(∣∣∣∣∣
∑k
j=0 λjxj

k + 1

∣∣∣∣∣
)

+
∑
k

Φ(|yk|) <∞

for every y = (yk) ∈ ˜̀Φ. Thus, x = (xk) ∈ `M (C,Λ). �

Proposition 2.2. For each x = (xk) ∈ `M (C,Λ),

sup

{∣∣∣∣∣∑
k

(∑k
j=0 λjxj

k + 1

)
yk

∣∣∣∣∣ : δ(Φ, y) ≤ 1

}
<∞.(2.1)

Proof. Suppose that (2.1) does not hold. Then for each n ∈ N, there exists yn

with δ(Φ, yn) ≤ 1 such that∣∣∣∣∣∑
k

(∑k
j=0 λjxj

k + 1

)
ynk

∣∣∣∣∣ > 2n+1.

Without loss of generality, we can assume that
∑k
j=0

λjxj

k+1 , yn ≥ 0. Now, we can

define a sequence z = (zk) by zk =
∑
n

yn
k

2n+1 for all k ∈ N. By the convexity of Φ,
we have

Φ

(
l∑

n=0

1
2n+1

ynk

)
≤ 1

2

[
Φ(y0

k) + Φ
(
y1
k +

y2
k

2
+ · · ·+ ylk

2l−1

)]

≤ · · · ≤
l∑

n=0

1
2n+1

Φ(ynk )

for any positive integer l. Hence, using the continuity of Φ, we have

δ(Φ, z) =
∑
k

Φ(zk) ≤
∑
k

∑
n

1
2n+1

Φ(ynk ) ≤
∑
n

1
2n+1

= 1.
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But for every l ∈ N, it holds∑
k

(∑k
j=0 λjxj

k + 1

)
zk ≥

∑
k

(∑k
j=0 λjxj

k + 1

)
l∑

n=0

1
2n+1

ynk

=
l∑

n=0

∑
k

(∑k
j=0 λjxj

k + 1

)
ynk

2n+1
≥ l.

Hence
∑
k

(Pk
j=0 λjxj

k+1

)
zk diverges and this implies that x /∈ `M (C,Λ), a contra-

diction. This leads us to the required result. �

The preceding result encourages us to introduce the following norm ‖ · ‖CM on
`M (C,Λ).

Proposition 2.3. The following statements hold:
(i) `M (C,Λ) is a normed linear space under the norm ‖ · ‖CM defined by

‖x‖CM = sup

{∣∣∣∣∣∑
k

(∑k
j=0 λjxj

k + 1

)
yk

∣∣∣∣∣ : δ(Φ, y) ≤ 1

}
.(2.2)

(ii) `M (C,Λ) is a Banach space under the norm defined by (2.2).
(iii) `M (C,Λ) is a BK space under the norm defined by (2.2).

Proof. (i) It is easy to verify that `M (C,Λ) is a linear space with respect to
the co-ordinatewise addition and scalar multiplication of sequences. Now we show
that ‖ · ‖CM is a norm on the space `M (C,Λ).

If x = 0, then obviously ‖x‖CM = 0. Conversely, assume ‖x‖CM = 0. Then using
the definition of the norm given by (2.2), we have

sup

{∣∣∣∣∣∑
k

(∑k
j=0 λjxj

k + 1

)
yk

∣∣∣∣∣ : δ(Φ, y) ≤ 1

}
= 0.

This implies that
∣∣∣∣∑k

[Pk
j=0 λjxj

k+1

]
yk

∣∣∣∣ = 0 for all y such that δ(Φ, y) ≤ 1. Now

considering y = ek if Φ(1) ≤ 1 otherwise considering y = ek /Φ(1) so that λkxk = 0
for all k ∈ N, where ek is a sequence whose only non-zero term is 1 in kth place
for each k ∈ N. Hence we have xk = 0 for all k ∈ N, since (λk) is a sequence of
non-zero scalars. Thus, x = 0.

It is easy to show that ‖αx‖CM = |α|‖x‖CM and ‖x + y‖CM ≤ ‖x‖CM + ‖y‖CM for
all α ∈ C and x, y ∈ `M (C,Λ).

(ii) Let (xs) be any Cauchy sequence in the space `M (C,Λ). Then for any ε > 0,
there exists a positive integer n0 such that ‖xs− xt‖CM < ε for all s, t ≥ n0. Using
the definition of norm given by (2.2), we get

sup

{∣∣∣∣∣∑
k

[∑k
j=0 λj

(
xsj − xtj

)
k + 1

]
yk

∣∣∣∣∣ : δ(Φ, y) ≤ 1

}
< ε
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for all s, t ≥ n0. This implies that∣∣∣∣∣∑
k

[∑k
j=0 λj

(
xsj − xtj

)
k + 1

]
yk

∣∣∣∣∣ < ε

for all y with δ(Φ, y) ≤ 1 and for all s, t ≥ n0. Now considering y = ek if Φ(1) ≤ 1,
otherwise considering y = ek /Φ(1) we have (λkxsk) is a Cauchy sequence in C for
all k ∈ N. Hence, it is a convergent sequence in C for all k ∈ N.

Let lims→∞ λkx
s
k = xk for each k ∈ N. Using the continuity of the modulus,

we can derive for all s ≥ n0 as t→∞, that

sup

{∣∣∣∣∣∑
k

[∑k
j=0 λj

(
xsj − xj

)
k + 1

]
yk

∣∣∣∣∣ : δ(Φ, y) ≤ 1

}
< ε.

It follows that (xs−x) ∈ `M (C,Λ). Since xs is in the space `M (C,Λ) and `M (C,Λ)
is a linear space, we have x = (xk) ∈ `M (C,Λ).

(iii) From the above proof, one can easily conclude that ‖xs‖CM → 0 implies
that xsk → 0 for each s ∈ N which leads us to the desired result.

Therefore, the proof of the theorem is completed. �

Proposition 2.4. `M (C,Λ) is a normed linear space under the norm ‖ · ‖C(M)

defined by

‖x‖C(M) = inf

ρ > 0 :
∑
k

M


∣∣∣∑k

j=0 λjxj

∣∣∣
ρ(k + 1)

 ≤ 1

 .(2.3)

Proof. Clearly ‖x‖C(M) = 0 if x = 0. Now, suppose that ‖x‖C(M) = 0. Then, we
have

inf

ρ > 0 :
∑
k

M


∣∣∣∑k

j=0 λjxj

∣∣∣
ρ(k + 1)

 ≤ 1

 = 0.

This yields the fact for a given ε > 0 that there exists some ρε ∈ (0, ε) such that

sup
k∈N

M


∣∣∣∑k

j=0 λjxj

∣∣∣
ρε(k + 1)

 ≤ 1

which implies that

M


∣∣∣∑k

j=0 λjxj

∣∣∣
ρε(k + 1)

 ≤ 1

for all k ∈ N. Thus,

M


∣∣∣∑k

j=0 λjxj

∣∣∣
ε(k + 1)

 ≤M

∣∣∣∑k

j=0 λjxj

∣∣∣
ρε(k + 1)

 ≤ 1
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for all k ∈ N. Suppose |
Pni

j=0 λjxj|
ni+1 6= 0 for some ni ∈ N. Then, |

Pni
j=0 λjxj|
ε(ni+1) →∞ as

ε → 0. It follows that M
(
|Pni

j=0 λjxj|
ε(k+1)

)
→ ∞ as ε → 0 for some ni ∈ N, which is

a contradiction. Therefore, |
Pk

j=0 λjxj|
k+1 = 0 for all k ∈ N. It follows that λkxk = 0

for all k ∈ N. Hence x = 0, since (λk) is a sequence of non-zero scalars.
Let x = (xk) and y = (yk) be any two elements of `M (C,Λ). Then, there exist

ρ1, ρ2 > 0 such that

∑
k

M


∣∣∣∑k

j=0 λjxj

∣∣∣
ρ1(k + 1)

 ≤ 1 and
∑
k

M


∣∣∣∑k

j=0 λjyj

∣∣∣
ρ2(k + 1)

 ≤ 1.

Let ρ = ρ1 + ρ2. Then by the convexity of M , we have

∑
k

M


∣∣∣∑k

j=0 λj(xj + yj)
∣∣∣

ρ(k + 1)

 ≤ ρ1

ρ1 + ρ2

∑
k

M


∣∣∣∑k

j=0 λjxj

∣∣∣
ρ1(k + 1)


+

ρ2

ρ1 + ρ2

∑
k

M


∣∣∣∑k

j=0 λjyj

∣∣∣
ρ2(k + 1)

 ≤ 1.

Hence, we have

‖x+ y‖C(M) = inf

ρ > 0 :
∑
k

M


∣∣∣∑k

j=0 λj(xj + yj)
∣∣∣

ρ

 ≤ 1


≤ inf

ρ1 > 0 :
∑
k

M


∣∣∣∑k

j=0 λjxj

∣∣∣
ρ1

 ≤ 1


+ inf

ρ2 > 0 :
∑
k

M


∣∣∣∑k

j=0 λjyj

∣∣∣
ρ2

 ≤ 1


which gives that ‖x+ y‖C(M) ≤ ‖x‖

C
(M) + ‖y‖C(M).

Finally, let α be any scalar and define r by r = ρ/|α|. Then,

‖αx‖C(M) = inf

ρ > 0 :
∑
k

M


∣∣∣∑k

j=0 αλjxj

∣∣∣
ρ(k + 1)

 ≤ 1


= inf

r|α| > 0 :
∑
k

M


∣∣∣∑k

j=0 λjxj

∣∣∣
r(k + 1)

 ≤ 1

 = |α|‖x‖C(M).

This completes the proof. �

Proposition 2.4 inspires us to define the following sequence space.
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Definition 2.5. For any Orlicz function M , we define

`′M (C,Λ) :=

x = (xk) ∈ ω :
∑
k

M


∣∣∣∑k

j=0 λjxj

∣∣∣
ρ(k + 1)

 <∞ for some ρ > 0

 .

Now, we can give the corresponding proposition on the space `′M (C,Λ) to the
Proposition 2.3.

Proposition 2.6. The following statements hold:

(i) `′M (C,Λ) is a normed linear space under the norm ‖ · ‖C(M) defined by (2.3).
(ii) `′M (C,Λ) is a Banach space under the norm defined by (2.3).
(iii) `′M (C,Λ) is a BK space under the norm defined by (2.3).

Proof. (i) Since the proof is similar to the proof of Proposition 2.4, we omit the
detail.

(ii) Let (xs) be any Cauchy sequence in the space `′M (C,Λ). Let δ > 0 be fixed
and r > 0 be given such that 0 < ε < 1 and rδ ≥ 1. Then, there exists a positive
integer n0 such that ‖xs − xt‖C(M) < ε/rδ for all s, t ≥ n0. Using the definition of
the norm given by (2.3), we get

inf

ρ > 0 :
∑
k

M


∣∣∣∑k

j=0 λj
(
xsj − xtj

)∣∣∣
ρ(k + 1)

 ≤ 1

 <
ε

rδ

for all s, t ≥ n0. This implies that

∑
k

M


∣∣∣∑k

j=0 λj
(
xsj − xtj

)∣∣∣
‖xs − xt‖C(M)(k + 1)

 ≤ 1

for all s, t ≥ n0. It follows that

M


∣∣∣∑k

j=0 λj
(
xsj − xtj

)∣∣∣
‖xs − xt‖C(M)(k + 1)

 ≤ 1

for all s, t ≥ n0 and for all k ∈ N. For r > 0 with M(rδ/2) ≥ 1, we have

M


∣∣∣∑k

j=0 λj
(
xsj − xtj

)∣∣∣
‖xs − xt‖C(M)(k + 1)

 ≤M (
rδ

2

)
for all s, t ≥ n0 and for all k ∈ N. Since M is non-decreasing, we have∣∣∣∑k

j=0 λj
(
xsj − xtj

)∣∣∣
k + 1

≤ rδ

2
· ε
rδ

=
ε

2

for all s, t ≥ n0 and for all k ∈ N. Hence, (λkxsk) is a Cauchy sequence in C for all
k ∈ N which implies that it is a convergent sequence in C for all k ∈ N.
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Let lims→∞ λkx
s
k = xk for each k ∈ N. Using the continuity of an Orlicz

function and modulus, we can have

inf

ρ > 0 :
∑
k

M


∣∣∣∑k

j=0 λj(x
s
j − xj)

∣∣∣
ρ(k + 1)

 ≤ 1

 < ε

for all s ≥ n0, as j → ∞. It follows that (xs − x) ∈ `′M (C,Λ). Since xs is in the
space `′M (C,Λ) and `′M (C,Λ) is a linear space, we have x = (xk) ∈ `′M (C,Λ).

(iii) From the above proof, one can easily conclude that ‖xs‖CM → 0 as s→∞,
which implies that xsk → 0 as k →∞ for each s ∈ N. This leads us to the desired
result. �

Proposition 2.7. The inequality
∑
kM

(
|Pk

j=0 λjxj|
‖x‖C

(M)(k+1)

)
≤ 1 holds for all x =

(xk) ∈ `′M (C,Λ).

Proof. This is immediate from the definition of the norm ‖ · ‖C(M) defined by
(2.3). �

Definition 2.8. For any Orlicz function M , we define

hM (C,Λ) :=

x = (xk) ∈ ω :
∑
k

M


∣∣∣∑k

j=0 λjxj

∣∣∣
ρ(k + 1)

 <∞ for each ρ > 0

 .

Clearly hM (C,Λ) is a subspace of `′M (C,Λ).
Here and after we shall write ‖ · ‖ instead of ‖ · ‖C(M) provided it does not lead

to any confusion. The topology of hM (C,Λ) is induced by ‖ · ‖.

Proposition 2.9. Let M be an Orlicz function. Then, (hM (C,Λ), ‖ · ‖) is an
AK-BK space.

Proof. First we show that hM (C,Λ) is an AK space. Let x = (xk) ∈ hM (C,Λ).
Then for each ε ∈ (0, 1), we can find n0 such that

∑
i≥n0

M


∣∣∣∑k

j=0 λjxj

∣∣∣
ε(k + 1)

 ≤ 1.

Define the nth section x(n) of a sequence x = (xk) by x(n) =
∑n
k=0 xk ek. Hence

for n ≥ n0, it holds∥∥∥x− x(n)
∥∥∥ = inf

ρ > 0 :
∑
k≥n0

M


∣∣∣∑k

j=0 λjxj

∣∣∣
ρ(k + 1)

 ≤ 1


≤ inf

ρ > 0 :
∑
k≥n

M


∣∣∣∑k

j=0 λjxj

∣∣∣
ρ(k + 1)

 ≤ 1

 < ε.

Thus, we can conclude that hM (C,Λ) is an AK space.
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Next to show that hM (C,Λ) is a BK space, it is enough to show hM (C,Λ) is
a closed subspace of `′M (C,Λ). For this, let (xn) be a sequence in hM (C,Λ) such
that ‖xn − x‖ → 0 as n→∞ where x = (xk) ∈ `′M (C,Λ). To complete the proof
we need to show that x = (xk) ∈ hM (C,Λ), i.e.,

∑
k

M


∣∣∣∑k

j=0 λjxj

∣∣∣
ρ(k + 1)

 <∞ for all ρ > 0.

There is l corresponding to ρ > 0 such that ‖xl − x‖ ≤ ρ/2. Then, using the
convexity of M , we have by Proposition 2.7 that

∑
k

M


∣∣∣∑k

j=0 λjxj

∣∣∣
ρ(k + 1)


=
∑
k

M

2
∣∣∣∑k

j=0 λjx
l
j

∣∣∣− 2
(∣∣∣∑k

j=0 λjx
l
j

∣∣∣− ∣∣∣∑k
j=0 λjxj

∣∣∣)
2ρ(k + 1)


≤ 1

2

∑
k

M

2
∣∣∣∑k

j=0 λjx
l
j

∣∣∣
ρ(k + 1)

+
1
2

∑
k

M

2
∣∣∣∑k

j=0 λj
(
xlj − xj

)∣∣∣
ρ(k + 1)


≤ 1

2

∑
k

M

2
∣∣∣∑k

j=0 λjx
l
j

∣∣∣
ρ(k + 1)

+
1
2

∑
k

M

2
∣∣∣∑k

j=0 λj
(
xlj − xj

)∣∣∣
‖xl − x‖(k + 1)


<∞.

Hence, x = (xk) ∈ hM (C,Λ) and consequently hM (C,Λ) is a BK space. �

Proposition 2.10. Let M be an Orlicz function. If M satisfies the ∆2-condition
at 0, then `′M (C,Λ) is an AK space.

Proof. We shall show that `′M (C,Λ) = hM (C,Λ) if M satisfies the ∆2-condition
at 0. To do this it is enough to prove that `′M (C,Λ) ⊂ hM (C,Λ). Let x = (xk) ∈
`′M (C,Λ). Then for some ρ > 0,

∑
k

M


∣∣∣∑k

j=0 λjxj

∣∣∣
ρ(k + 1)

 <∞.

This implies that

lim
k→∞

M


∣∣∣∑k

j=0 λjxj

∣∣∣
ρ(k + 1)

 = 0.(2.4)

Choose an arbitrary l > 0. If ρ ≤ l, then
∑
kM

(
|Pk

j=0 λjxj|
l(k+1)

)
< ∞. Now, let

l < ρ and put k = ρ/l. Since M satisfies ∆2-condition at 0, there exist R ≡ Rk > 0
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and r ≡ rk > 0 with M(kx) ≤ RM(u) for all x ∈ (0, r]. By (2.4), there exists a
positive integer n1 such that

M


∣∣∣∑k

j=0 λjxj

∣∣∣
ρ(k + 1)

 <
r

2
p
(r

2

)
for all k ≥ n1.

We claim that |
Pk

j=0 λjxj|
ρ(k+1) ≤ r for all k ≥ n1. Otherwise, we can find d > n1 with

|Pd
j=0 λjxj|
ρ(d+1) > r and thus

M


∣∣∣∑d

j=0 λjxj

∣∣∣
ρ(d+ 1)

 ≥ ∫ |Pd
j=0 λjxj|/ρ(d+1)

r/2

p(t)dt >
r

2
p
(r

2

)
,

a contradiction. Hence our claim is true. Then, we can find that

∑
k≥n1

M


∣∣∣∑k

j=0 λjxj

∣∣∣
l(k + 1)

 ≤ R ∑
k≥n1

M


∣∣∣∑k

j=0 λjxj

∣∣∣
ρ(k + 1)

 .

Hence, ∑
k

M


∣∣∣∑k

j=0 λjxj

∣∣∣
l(k + 1)

 <∞ for all l > 0.

This completes the proof. �

Proposition 2.11. Let M1 and M2 be two Orlicz functions. If M1 and M2 are
equivalent, then `′M1

(C,Λ)=`′M2
(C,Λ) and the identity map I :

(
`′M1

(C,Λ), ‖ · ‖CM1

)
→
(
`′M2

(C,Λ), ‖ · ‖CM2

)
is a topological isomorphism.

Proof. Let α, β and b be constants from (1.3). Since M1 and M2 are equivalent,
it is obvious that (1.3) holds. Let us take any x = (xk) ∈ `′M2

(C,Λ). Then,

∑
k

M2


∣∣∣∑k

j=0 λjxj

∣∣∣
ρ(k + 1)

 <∞ for some ρ > 0.

Hence, for some l ≥ 1, |
Pk

j=0 λjxj|
lρ(k+1) ≤ b for all k ∈ N. Therefore,

∑
k

M1

α
∣∣∣∑k

j=0 λjxj

∣∣∣
lρ(k + 1)

 ≤∑
k

M2


∣∣∣∑k

j=0 λjxj

∣∣∣
ρ(k + 1)

 <∞

which shows that the inclusion

`′M2
(C,Λ) ⊂ `′M1

(C,Λ)(2.5)

holds. One can easily see in the same way that the inclusion

`′M1
(C,Λ) ⊂ `′M2

(C,Λ)(2.6)

also holds.
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By combining the inclusions (2.5) and (2.6), we conclude that `′M1
(C,Λ) =

`′M2
(C,Λ).

For simplicity in notation, let us write ‖ · ‖1 and ‖ · ‖2 instead of ‖ · ‖CM1
and

‖ · ‖CM2
, respectively. For x = (xk) ∈ `′M2

(C,Λ), we get

∑
k

M2


∣∣∣∑k

j=0 λjxj

∣∣∣
‖x‖2(k + 1)

 ≤ 1.

One can find µ > 1 with (b/2)µp2(b/2) ≥ 1, where p2 is the kernel associated with
M2. Hence,

M2


∣∣∣∑k

j=0 λjxj

∣∣∣
‖x‖2(k + 1)

 ≤ b

2
µp2

(
b

2

)
for all k ∈ N.

This implies that ∣∣∣∑k
j=0 λjxj

∣∣∣
µ‖x‖2(k + 1)

≤ b for all k ∈ N.

Therefore, ∑
k

M1

α
∣∣∣∑k

j=0 λjxj

∣∣∣
µ‖x‖2(k + 1)

 < 1.

Hence, ‖x‖1 ≤ (µ/α)‖x‖2. Similarly, we can show that ‖x‖2 ≤ βγ‖x‖1 by choosing
γ with γβ > 1 such that γβ(b/2)p1(b/2) ≥ 1. Thus, αµ−1‖x‖1 ≤ ‖x‖2 ≤ βγ‖x‖1
which establish that I is a topological isomorphism. �

Proposition 2.12. Let M be an Orlicz function and p be the corresponding
kernel. If p(x) = 0 for all x in [0, b], where b is some positive number, then the
spaces `′M (C,Λ) and hM (C,Λ) are topologically isomorphic to the spaces `∞(C,Λ)
and c0(C,Λ), respectively; where `∞(C,Λ) and c0(C,Λ) are defined by

`∞(C,Λ) =

x = (xk) ∈ ω : sup
k∈N

k∑
j=0

|λjxj |
k + 1

<∞


and

c0(C,Λ) =

x = (xk) ∈ ω : lim
k→∞

k∑
j=0

|λjxj |
k + 1

= 0

 .

It is easy to see that the spaces `∞(C,Λ) and c0(C,Λ) are the Banach spaces under

the norm ‖x‖C∞ = supk∈N
|Pk

j=0 λjxj|
k+1 .

Proof. Let p(x) = 0 for all x in [0, b]. If y ∈ `∞(C,Λ), then we can find ρ > 0

such that |
Pk

j=0 λjyj|
ρ(k+1) ≤ b for k ∈ N. Hence,

∑
kM

(
|Pk

j=0 λjyj|
ρ(k+1)

)
<∞. That is to

say that y ∈ `′M (C,Λ).
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On the other hand, let y ∈ `′M (C,Λ). Then for some ρ > 0, we have

∑
k

M


∣∣∣∑k

j=0 λjyj

∣∣∣
ρ(k + 1)

 <∞.

Therefore, |
Pk

j=0 λjyj|
k+1 ≤ K < ∞ for a constant K > 0 and for all k ∈ N which

yields that y ∈ `∞(C,Λ). Hence, y ∈ `∞(C,Λ) if and only if y ∈ `′M (C,Λ).
We can easily find b such that M(u0) ≥ 1. Let y ∈ `∞(C,Λ) and α = ‖y‖∞ =

supk∈N

(∣∣∣∣Pk
j=0 λjyj

k+1

∣∣∣∣) > 0. For every ε ∈ (0, α), we can determine d with∣∣∣∣Pd
j=0 λjyj

d+1

∣∣∣∣ > α− ε and so

∑
k

M


∣∣∣∑k

j=0 λjyj

∣∣∣ b
α(k + 1)

 ≥M (
α− ε
α

b

)
.

Since M is continuous,
∑
kM

(
|Pk

j=0 λjyj|b
α(k+1)

)
≥ 1, and so ‖y‖∞ ≤ b‖y‖, otherwise∑

kM

(
|Pk

j=0 λjyj|
‖y‖(k+1)

)
> 1 which contradicts Proposition 2.7. Again,

∑
k

M


∣∣∣∑k

j=0 λjyj

∣∣∣ b
α(k + 1)

 = 0

which gives that ‖y‖ ≤ ‖y‖∞/b. That is to say that the identity map
I : (`′M (C,Λ), ‖ · ‖)→ (`∞(C,Λ), ‖ · ‖) is a topological isomorphism.

For the last part, let y ∈ hM (C,Λ). Then for any ε > 0, |
Pk

j=0 λjyj|
k+1 ≤ εb for

all sufficiently large k, where b is a positive number such that p(b) > 0. Hence,

y ∈ c0(C,Λ). Conversely, let y ∈ c0(C,Λ). Then, for any ρ > 0, |
Pk

j=0 λjyj|
ρ(k+1) < b/2

for all sufficiently large k. Thus,
∑
kM

(
|Pk

j=0 λjyj|
ρ(k+1)

)
< ∞ for all ρ > 0 and so

y ∈ hM (C,Λ). Hence, hM (C,Λ) = c0(C,Λ) and this step completes the proof. �

Prior to giving our final two consequences concerning the α-dual of the spaces
`′M (C,Λ) and hM (C,Λ), we present the following easy lemma without proof.

Lemma 2.13. For any Orlicz function M , Λx = (λkxk) ∈ `∞ whenever x =
(xk) ∈ `′M (C,Λ).

Proposition 2.14. Let M be an Orlicz function and p be the corresponding
kernel of M . Define the sets D1 and D2 by

D1 :=

{
a = (ak) ∈ ω :

∑
k

∣∣λ−1
k ak

∣∣ <∞}
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and

D2 :=
{
b = (bk) ∈ ω : sup

k∈N
|λkbk| <∞

}
.

If p(x) = 0 for all x in [0, d], where d is some positive number, then the following
statements hold:

(i) Köthe-Toeplitz dual of `′M (C,Λ) is the set D1.
(ii) Köthe-Toeplitz dual of D1 is the set D2.

Proof. Since the proof of Part (ii) is similar to that of the proof of Part (i), to
avoid the repetition of the similar statements we prove only Part (i).

Let a = (ak) ∈ D1 and x = (xk) ∈ `′M (C,Λ). Then, since∑
k

|akxk| =
∑
k

∣∣akλ−1
k

∣∣ |λkxk| ≤ sup
k∈N
|λkxk| ·

∑
k

∣∣akλ−1
k

∣∣ <∞,
applying Lemma 2.13, we have a = (ak) ∈ {`′M (C,Λ)}α. Hence, the inclusion

D1 ⊂ {`′M (C,Λ)}α(2.7)

holds.
Conversely, suppose that a = (ak) ∈ {`′M (C,Λ)}α. Then, (akxk) ∈ `1, the

space of all absolutely convergent series, for every x = (xk) ∈ `′M (C,Λ). So, we
can take xk = λ−1

k for all k ∈ N because (xk) ∈ `′M (C,Λ) by Proposition 2.12
whenever (xk) ∈ `∞(C,Λ). Therefore,

∑
k

∣∣akλ−1
k

∣∣ =
∑
k |akxk| <∞ and we have

a = (ak) ∈ D1. This leads us to the inclusion

{`′M (C,Λ)}α ⊂ D1.(2.8)

By combining the inclusion relations (2.7) and (2.8), we have {`′M (C,Λ)}α = D1.
�

Proposition 2.14 (ii) shows that {`′M (C,Λ)}αα 6= `′M (C,Λ) which leads us to
the consequence that `′M (C,Λ) is not perfect under the given conditions.

Proposition 2.15. Let M be an Orlicz function and p be the corresponding
kernel of M and the set D1 be defined as in the Proposition 2.14. If p(x) = 0
for all x in [0, b], where b is a positive number, then the Köthe-Toeplitz dual of
hM (C,Λ) is the set D1.

Proof. Let a = (ak) ∈ D1 and x = (xk) ∈ hM (C,Λ). Then, since∑
k

|akxk| =
∑
k

∣∣akλ−1
k

∣∣ |λkxk| ≤ sup
k∈N
|λkxk| ·

∑
k

∣∣akλ−1
k

∣∣ <∞,
we have a = (ak) ∈ {hM (C,Λ)}α. Hence, the inclusion

D1 ⊂ {hM (C,Λ)}α(2.9)

holds.
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Conversely, suppose that a = (ak) ∈ {hM (C,Λ)}α \ D1. Then, there exists a
strictly increasing sequence (ni) of positive integers ni such that

ni+1∑
k=ni+1

|ak| |λk|−1
> i.

Define x = (xk) by

xk :=
{
λ−1
k sgn ak/i , (ni < k ≤ ni+1),

0 , (0 ≤ k < n0),

for all k ∈ N. Then, since x = (xk) ∈ c0(C,Λ), x = (xk) ∈ hM (C,Λ) by Proposi-
tion 2.12. Therefore, we have∑

k

|akxk| =
n1∑

k=n0+1

|akxk|+ · · ·+
ni+1∑

k=ni+1

|akxk|+ · · ·

=
n1∑

k=n0+1

∣∣akλ−1
k

∣∣+ · · ·+ 1
i

ni+1∑
k=ni+1

∣∣akλ−1
k

∣∣+ · · ·

> 1 + · · ·+ 1 + · · · =∞,

which contradicts the hypothesis. Hence, a = (ak) ∈ D1. This leads us to the
inclusion

{hM (C,Λ)}α ⊂ D1.(2.10)

By combining the inclusion relations (2.9) and (2.10), we obtain the desired
result {hM (C,Λ)}α = D1.

This completes the proof. �

3. Conclusion

The difference Orlicz spaces `M (∆,Λ) and ˜̀M (∆,Λ) were recently been studied by
Dutta [2]. Of course, the sequence spaces introduced in this paper can be redefined
as a domain of a suitable matrix in the Orlicz sequence space `M . Indeed, if we
define the infinite matrix C(λ) = {cnk(λ)} via the multiplier sequence Λ = (λk)
by

cnk(λ) :=


λk
n+ 1

, (0 ≤ k ≤ n),

0, (k > n),

for all k, n ∈ N, then the sequence spaces `′M (C,Λ), c0(C,Λ) and `∞(C,Λ) rep-
resent the domain of the matrix C(λ) in the sequence spaces `M , c0 and `∞,
respectively. Since cnn(λ) 6= 0 for all n ∈ N, i.e., C(λ) is a triangle, it is obvious
that those spaces `′M (C,Λ), c0(C,Λ) and `∞(C,Λ) are linearly isomorphic to the
spaces `M , c0 and `∞, respectively.

Although some algebraic and topological properties of these new spaces are
investigated, the following further suggestions remain open:
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(i) What is the relation between the norms ‖ · ‖CM and ‖ · ‖C(M)? Are they
equivalent?

(ii) What is the relation between the spaces `M (C,Λ) and `′M (C,Λ)? Do they
coincide?

(iii) What are the β- and γ-duals of the spaces `′M (C,Λ) and hM (C,Λ)?
(iv) Under which conditions an infinite matrix transforms the sets `′M (C,Λ) or

hM (C,Λ) to the sequence spaces `∞ and c?
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