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ACTION OF GENERALIZED LIE GROUPS ON MANIFOLDS

M. R. FARHANGDOOST

Abstract. In this paper by definition of generalized action of generalized Lie groups (top spaces) on

a manifold, the concept of stabilizer of the top spaces is introduced. We show that the stabilizer is

a top space, moreover we find the tangent space of a stabilizer. By using of the quotient spaces, the
dimension of some top spaces are fined.

1. Introduction

In Physics, Lie groups often appear as the set of transformations acting on a manifold. For example,
SO(3) is the group of rotations in R3 while the Poincaré group is the set of transformations
acting on the Minkowski spacetime. To study more general cases, the notion of top spaces as a
generalization of Lie groups was introduced by M. R. Molaei in 1998 [3]. Here we would like to
study the action of a top space T on a manifold M . Moreover we have encountered the intersection
between generalized group theory and geometry.

In this paper we introduce generalized action of generalized Lie groups (top spaces) and the
stabilizer of the top spaces. We show that stabilizer is a top space, moreover we find the tangent
space of the stabilizer. Also, by using the generalized action, we find the dimension of some top
spaces.

Now, we recall the definition of a generalized group of [1].
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A generalized group is a non-empty set T admitting an operation called multiplication which
satisfies the following conditions:

i) (t1 · t2) · t3 = t1 · (t2 · t3); for all t1, t2, t3 ∈ T .
ii) For each t in T there exists a unique e(t) in T such that t · e(t) = e(t) · t = t.
iii) For each t in T there exists s in T such that t · s = s · t = e(t).

It is easy to show that for each t in a generalized group T , there is a unique inverse in T , so
inverse of t is denoted by t−1.

Let T and S be generalized groups. A map f : T → S is called homomorphism if f(t1t2) =
f(t1)f(t2) for every t1, t2 ∈ T .

Now, we recall top spaces [3].
A top space T is a Hausdorff d-dimensional differentiable manifold which is endowed with a

generalized group structure such that the generalized group operations:

i) · : T × T −→ T by (t1, t2) 7→ t1 · t2.
ii) −1 : T −→ T by t 7→ t−1;

are differentiable and it holds

iii) e(t1 · t2) = e(t1) · e(t2).

Example 1.1 ([5]). If I and Λ are smooth manifolds, G is a Lie group and P : Λ× I −→ G is
a smooth mapping, then the matrix semigroup M(G, I,Λ, P ) is a top space.

Let (T, ·) be a top space. Then a top space (S, .) is called a subtop space of (T, ·), when S is a
submanifold of T .

Let T and S be top spaces, a smooth homomorphism map f : T → S is called homomorphism
of top spaces.



JJ J I II

Go back

Full Screen

Close

Quit

A top generalized subgroup N of a top space T is called a top generalized normal subgroup of T
if there exist a top space E and differentiable homomorphism f : T −→ E such that t ∈ T , Nt = ∅
or Nt = ker ft, where Nt = N ∩ Tt, ft = f |Tt , Tt = {s ∈ T | e(s) = e(t)} and t ∈ T .

Theorem 1.2 ([2]). Let N be a top normal generalized subgroup of T and let e(T ) be finite.
Then ΓN = {t ∈ T | Nt 6= ∅} is an open top generalized subgroup of T . Moreover, there is a unique
differentiable structure on T/N such that T/N is a top space with the topology {U |π−1(U) is open
in ΓN}, where the topology ΓN : {U |U ∩Nt is open in Nt for all t ∈ T}∪{ΓN} and π : ΓN → T/N
is defined by π(t) = tNt.

In the previous theorem we can show that the map π is a submersion map [2].

2. Action of Top Spaces

We begin this section by definition of generalized action of top spaces on manifolds.

Definition 2.1. A generalized action of a top space T on a manifold M is a differentiable map
λ : T ×M −→M which satisfies the following conditions:

i) For any m ∈M , there is e(t) in T such that λ(e(t),m) = m.
ii) λ(t1, λ(t2,m)) = λ(t1t2,m).

[Note: We often use the notation tm instead of λ(t,m), so the second condition of Definition 2.1
is defined by t1(t2m)) = (t1t2)m.]

Note that generalized action is a generalization of action of Lie groups on manifolds, i.e. if T is
a Lie group, then λ is an action of the Lie group on manifold M .

Example 2.2. The Euclidean subspace R∗ = R − {0} with the product (a, b) 7→ a|b| is a top
space with the identity element e(T ) = {+1,−1}. Then λ : R∗×R −→ R defined by λ(a,m) = am
is a generalized action of the top space R∗ on Euclidean manifold R.
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Example 2.3. T = R× R− {0} with product (a, b) · (e, f) = (be, bf) is a top space. The map
λ : T × R −→ R defined by λ((a, b), c) = ac/b is a generalized action. [Note: e((a, b)) = (a/b, 1)
and (a, b)−1 = (a/b2, 1/b)].

Example 2.4. T = R×R−{0} with product (a, b) ·(e, f) = (be, bf) is a top space. Let M = R,
then the map ζ : T ×M −→M defined by ζ((a, b), c) = c is a generalized action.

Definition 2.5. Let T be a top space that acts on a manifold M . Then H(m) = {t ∈ T |
λ(t,m) = m} is called the stabilizer of m, where m ∈M .

Example 2.6. Let T be the space of all real 2× 2 matrices with product

Mat(a11, a12, a21, a22)×Mat(b11, b12, b21, b22) = Mat(a11, b12, b21, a22).

Then T is a top space.
Let M = R4 be the Euclidean manifold, then map λ : T ×M −→M defined by

Mat(a11, a12, a21, a22)× (b, c, d, e) = (a11, c, d, a22)

is a generalized action of T on M and

H(b, c, d, e) = {Mat(b, a12, a21, e) | a12, a21 ∈ R}.

Theorem 2.7. Let T be a top space with the finite identity elements. Then the stabilizer H(m)
is a generalized subgroup of T , where m ∈M .

Proof. Let
t ∈ H(m).

Then
t ·m = m.
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So
t−1 · (t ·m) = t−1 ·m.

By definition of generalized action, we deduce

t−1 · (t ·m) = (t−1 · t) ·m = e(t) ·m.
Therefore

e(t) ·m = t−1 ·m.(?)

It is clear that t · (t ·m) = m. So t−1 · (t · (t ·m)) = t−1 ·m. Thus e(t) · (t ·m) = t−1 ·m. Since
e(t) · t = t. Then t ·m = t−1 ·m, and t−1 ·m = m, using (?) we deduce e(t) ·m = m. Thus e(t),
t−1 ∈ H(m). Hence H(m) is a generalized subgroup. �

Remark. The subset e−1(e(t)) = {s ∈ T | e(s) = e(t)} of T is a Lie group with an identity
element e(t), for any t ∈ T .

Let λ : T ×M −→M be a generalized action of a top space T on a manifold M . We define two
functions:

τ(t) : M −→M and ρ(m) : T −→M

τ(t)(m) = t ·m ρ(m)(t) = t ·m
where t ∈ T and m ∈M .

It is clear that τ(t) and ρ(m) are smooth maps. Moreover H(m) = (ρ(m))−1(m). So H(m) is
a closed generalized subgroup of T .

Theorem 2.8. Let e−1(e(t0)) be an open subset of T , where t0 ∈ T , λ : T × M −→ M is
a generalized action of the top space T on a manifold M and for every m ∈ M there is an open
neighborhood U of m such that λ(e(s), n) = n for all n ∈ U , where e(s) ∈ T . Then for any m ∈M ,
the orbit map ρ(m) has the constant rank. In particular ρ(m) is a subimmersion.
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Proof. For any s, t ∈ T we have

(τ(s) ◦ ρ(m))(t) = τ(s)(t ·m) = (st) ·m = ρ(m)(st) = (ρ(m) ◦ λ(s))(t)

i.e.
(τ(s) ◦ ρ(m)) = (ρ(m) ◦ λ(s))

for any s ∈ T .
If we calculate the differential of the map at the identity e(r) in T , where λ(e(r), n) = n in an

open neighborhood U of m, we get

dm(τ(s)) ◦ de(r)(ρ(m)) = ds(ρ(m)) ◦ de(r)(λ(s))

for any s ∈ e−1(e(r)). [Note: ρ(m)(e(r)) = m and λ(s)(e(r)) = s.]
It is easy to show that τ(s) : U → τ(s)(U) and λ(s) : U → λ(s)(U) are diffeomorphisms, and so,

by the inverse function theorem, their differentials dm(τ(s)) and de(r)(λ(s)) are isomorphisms of
tangent spaces. This implies that

rank(de(r)(ρ(m))) = rank(ds(ρ(m)))

for any s ∈ e−1(e(r)). Since e−1(e(i)) and e−1(e(j)) are diffeomorphic for all i, j ∈ T [5], the orbit
map ρ(m) has constant rank. Hence ρ(m) is a subimmersion. �

Theorem 2.9. For any m ∈M , the stabilizer H(m) is a subtop space of T .

Proof. SinceH(m) is a generalized subgroup of T , ρ(m) is a differentiable subimmersion function
between two manifolds T and M , then

H(m) = (ρ(m))−1(m)

is a closed submanifold of T . Thus H(m) is a subtop space of T . �

Example 2.10. In the Example 2.6, the stabiliizer H(b, c, d, e) is a subtop space.
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Theorem 2.11. For any stabilizer H(m) of a top space T with finite identity elements (i.e.
cardinality Card(e(T )) <∞), we get de(t)(H(m)) = ker de(t)(ρ(m)).

Proof. Since T has finite identity elements, then e−1(e(t)) is an open subset of T for each t ∈ T
[4], and it is a Lie group with the identity element e(t), for any t ∈ T . So H(m) ∩ e−1(e(t)) is an
open Lie subgroup of e−1(e(t)). Thus

de(t)(H(m) ∩ e−1(e(t))) = ker(de(t)(ρ(m) |e−1(e(t)))).

Since e−1(e(t)) is an open subset of T , then

de(t)(H(m)) = ker de(t)(ρ(m)).

�

Let T be a top space and Card(e(T )) <∞. Then Tm = H(m)∩e−1(e(t)) is an open subgroup of
the Lie group e−1(e(t)) = Te(t), we know the coset space Te(t)/Tm admits a differentiable structure
such that Te(t)/Tm becomes a manifold, called homogeneous space. Let λ be a generalized action
of a top space T on a manifold M such that λ|e−1(e(t))×M be a transitive action. We know that if
Te(t)/T

m is compact, then Te(t)/Tm is homeomorphic to M . Since Te(t)/Tm and M are manifolds,

dim(Te(t)/Tm) = dim(Te(t))− dim(Tm),

then
dim(Te(t)) = dim(Tm) + dim(M).

Since Te(t) is an open subtop space of T , then

dim(T ) = dim(Te(t)),

and hence
dim(T ) = dim(Tm) + dim(M).
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Example 2.12. In the Example 2.6 we have

dim(T ) = dim(Tm) + dim(M)

moreover, dim(T ) = 4, dim(M) = 4 and dim(Tm) = 0 for any m ∈M .

Example 2.13. The Euclidean space T = R with the multiplication (a, b) 7→ a is a top space,
and λ : T ×R −→ R defined by λ(a,m) = am is a generalized action, where M = R is an Euclidean
manifold. Then dim(T ) = dim(Tm) + dim(M). [Note: e(a) = a for any a ∈ T ].

Let λ : T × M −→ M be a generalized action of a top space T on a manifold M and let
e(t)m0 = m0 for every t ∈ T , we show that

S = {τ(t) : M →M |τ(t)(m) = tm, t ∈ T and m ∈M}
with product τ(t)⊗ τ(s) = τ(ts) is a top space

It is clear that S with this product is closed and associative. Now let τ(t) belong to S, it is easy
to show that e(τ(t)) = τ(e(t)), [τ(t)]−1 = τ(t−1). Moreover, we have

e(τ(t)⊗ τ(s)) = e(τ(ts)) = τ(e(ts)) = τ(e(t)e(s))

= τ(e(t))⊗ τ(e(s)) = e(τ(t))e(τ(s)),

where t, s ∈ T . [Note: Since T is a top space, e(ts) = e(t)e(s).]
Also, since the product (t, s) 7→ ts is a C∞ map, then the product ⊗ is a C∞ map. Thus (S,⊗)

is a top space.
Let f : T −→ S be defined by f(t) = τ(t), where t ∈ T . Then it is easy to show that f is a

homomorphism between two top spaces T and S.
Now, we claim that ker(ft) is empty or Lie subgroup of Lie group Tt.
We know that Tt = e−1(e(t)) = {s ∈ T | e(s) = e(t)} and ft = f |Tt

, also we have

ker(ft) = {r ∈ Tt | ft(r) = e(f(r))}.



JJ J I II

Go back

Full Screen

Close

Quit

Since
e(f(r)) = e(τ(r)) = τ(e(r)),

then
ker(ft) = {r ∈ Tt | ft(r) = τ(e(r))} = {r ∈ Tt | ft(r)(m) = e(r)m}.

It is easy to show that ker(ft) is a Lie subgroup of Tt, and so

ker(ft) = {r ∈ Tt | rm = e(r)m}.

We know ker(f) =
⋃
t∈T ker(ft), so

ker(f) =
⋃
t∈T
{r ∈ Tt | rm = e(r)m},

therefore ker(f) = {r ∈ T | rm = e(r)m, for every m}.
One can show that ker(f) is a subtop space of T and so we have the following lemma.

Lemma 2.14. Let λ : T ×M −→M be a generalized action of a top space T on a manifold M
and S = {τ(t) : M → M | τ(t)(m) = tm, t ∈ T and m ∈ M}. Then there is a product on S such
that with this product S is a top space, and f : T −→ S is a homomorphism of top spaces, where
f is defined by f(t) = τ(t). Moreover, ker(f) is a subtop space of T .

Now, by the generalized actions we introduce a new equivalence relation on a manifold M . Let
λ : T ×M −→M be a generalized action of top space T on a manifold M .

Now, we say that
”m ∼ n if and only if there is t ∈ T such that tm = n.”

We claim that this relation is an equivalence relation on M . As it is clear that this relation is
reflexive, let m ∼ n, so there is t ∈ T such that tm = n. Then t−1tm = t−1n and so e(t)m = t−1n.
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Moreover, since λ is a generalized action, then there exists e(r) ∈ T such that e(r)m = m.
Therefore we have

e(r)(e(t)m) = e(r)(e(t)(e(r)m)) = (e(r)e(t)e(r))m = e(r)m = m.

[Note: We know that e(t)e(s)e(t) = e(t) for every t, s ∈ T . [5]].
Thus

m = e(r)(t−1n) = (e(r)t−1)n,
therefore n ∼ m and so ∼ is a symmetric relation.

Let m ∼ n and n ∼ p, then there are t and s belonging to T such that tm = n and sn = p.
Therefore stm = sn = p. So m ∼ p. Hence every generalized action of a top space on the manifold
M induces an equivalence relation ∼ on M .

Moreover, since τ(t) : M → M and the projection map P : M → M/ ∼ are continuous maps,
then there is a unique continuous map Q : M/ ∼→ M such that Q ◦ P = τ(t) and we have the
following commutative diagram

M
τ(t)

//

P

��

M

M/ ∼
Q

<<xxxxxxxx

By the relation ∼ we have a quotient space M/ ∼. We know that if ∼ is a regular relation, then
there is a unique differentiable structure such that M/ ∼ is a quotient manifold.

Example 2.15. In the Example 2.2, the quotient space R is

R/ ∼= {[0], [a]}, [0] = {0} and [a] = R− {0}, where a 6= 0.

Conclusion: In this paper we prove the following statements:
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1. For every generalized action of a top space T on a manifold M , the stabilizer H(m) is a
subtop space of T , moreover, ρ(m) is a subimmersion.

2. For a top spaces with finite identity elements, the tangent space of a stabilizer is equal to
the kernel of differential ρ(m).

3. The set of all τ(t),s is a top space.

1. Molaei M. R., Mathematical Structures Based on Completely Simple Semigroups, Hadronic Press, 2005.
2. Molaei M. R., Generalized Actions, In: Intenational Conference on Geometry, Integrability and Quantization,

September 1–10, Varna 1999.
3. Molaei M. R., Top Spaces, Journal of Inerdisciplinary Mathematics, 7(2) (2004), 173–181.
4. Molaei M. R., Khadekar G. S. and Farhangdoost M. R., On Top Spaces, Balkan Journal of Geometry and its

Applications, 11(1) (2006), 101–106.
5. Farhangdoost M. R. and Molaei M. R., Charactrization of Top Spaces by Diffeomorphic Lie Groups, Differential

Geometry-Dynamical Systems, 11 (2009), 130–134.

M. R. Farhangdoost, Department of Mathematics, College of Sciences, Shiraz University, Shiraz, 71457-44776, Iran,

e-mail : farhang@shirazu.ac.ir, e-mail : farhang858@yahoo.com


