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REGULAR TETRAHEDRA WHOSE VERTICES
HAVE INTEGER COORDINATES

E. J. IONASCU

Abstract. In this paper we introduce theoretical arguments for constructing a

procedure that allows one to find the number of all regular tetrahedra that have

coordinates in the set {0, 1, ..., n}. The terms of this sequence are twice the values of
the sequence A103158 in the Online Encyclopedia of Integer Sequences [16]. These

results lead to the consideration of an infinite graph having fractal nature which is

tightly connected to the set of orthogonal 3-by-3 matrices with rational coefficients.
The vertices of this graph are the primitive integer solutions of the Diophantine

equation a2 + b2 + c2 = 3d2. Our aim here is to lay down the basis of finding good

estimates, if not exact formulae, for the sequence A103158.

1. Introduction

The story of regular tetrahedra having vertices with integer coordinates starts
with the parametrization of some equilateral triangles in Z3 that began in [9].
There was an additional hypothesis that did not cover all the generality in the
result obtained in [9] but it was removed successfully in [2]. In this note we are
interested in the following problem

How many regular tetrahedra, T (n), can be found if the coordinates of its vertices
must be in the set {0, 1, ..., n}? We observe that A103158 = 1

2T (n) (see [16]).
This sequence starts as in the following table.

n 1 2 3 4 5 6 7 8 9 10 11
A103158 1 9 36 104 257 549 1058 1896 3199 5154 7926

n 12 13 14 15 16 17 18
A103158 11768 16967 23859 32846 44378 58977 77215

These values were computed by Hugo Pfoertner in 2005, using a brute force
program. Our method of counting is based on several theoretical facts. Roughly,
it is an extension of the technique described in [10] using the results from [12]
about the existence of regular tetrahedrons in Z3. The program can be used
to cover values of T (n) for n quite bigger than 100, but we included here only
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the first one hundred terms just for exemplification. The rest of the terms are
at the end of the paper. Our approach begins by looking first at the faces of a
regular tetrahedron which must be equilateral triangles. It turns out that every
equilateral triangle in Z3 after a translation by a vector with integer coordinates
can be assumed to have the origin as one of its vertices. Then one can show that
the triangle’s other vertices are contained in a lattice of the form

Pa,b,c := {(α, β, γ) ∈ Z3 | aα+ bβ + cγ = 0, a2 + b2 + c2 = 3d2,

a, b, c, d ∈ Z}.
(1)

Figure 1. The lattice Pa,b,c.

In general, the vertices of the equilateral triangles that dwell in Pa,b,c form a
strict sub-lattice of Pa,b,c which is generated by only two vectors,

−→
ζ and −→η (see

Figure 1). These two vectors are described by Theorem 1.1 proved in [2].

Theorem 1.1. Let a, b, c, d be odd integers such that a2 + b2 + c2 = 3d2

and gcd(a, b, c) = 1. Then for every m,n ∈ Z (not both zero), the triangle OPQ
determined by

−−→
OP = m

−→
ζ − n−→η ,

−−→
OQ = n

−→
ζ − (n−m)−→η ,(2)

with
−→
ζ = (ζ1, ζ1, ζ2),−→η = (η1, η2, η3),

ζ1 = −rac+ dbs

q
,

ζ2 =
das− bcr

q
,

ζ3 = r,

,


η1 = −db(s− 3r) + ac(r + s)

2q
,

η2 =
da(s− 3r)− bc(r + s)

2q
,

η3 =
r + s

2
,

(3)
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where q = a2 +b2 and (r, s) is a suitable solution of 2q = s2 +3r2 that makes all of
the numbers in (3) integers, forms an equilateral triangle in Z3 that is contained
in the lattice (1) and has sides-lengths equal to d

√
2(m2 −mn+ n2).

Conversely, if there exists a choice of the integers r and s such that given an
arbitrary equilateral triangle in R3 whose vertices, one at the origin and the other
two in the lattice (1), then there also exist integers m and n such that the two
vertices not at the origin are given by (2) and (3).

The Diophantine equation

a2 + b2 + c2 = 3d2(4)

has non-trivial solutions for every odd number d. As a curiosity, for d = 2011
one obtains 336 solutions satisfying also 0 < a ≤ b ≤ c and gcd(a, b, c) = 1. We
will refer to such a solution of (4) as a positive ordered primitive solution. For
d = 2011, all of these solutions, except one, satisfy even a stronger condition
a < b < c. The exception is a = b = 913 and c = 3235. Determining the exact
number of solutions for (4) is certainly important if one wishes to find the number
(or just an estimate) of equilateral triangles or the number of tetrahedra with
vertices in {0, 1, 2, . . . , n}3. In the paper of Hirschhorn and Seller [8] from 1999,
the number of solutions for (4), taking into account all permutations and changes
of signs is equal to

8

 ∏
p≡1 or 7(mod 12)

pβ ||d

pβ


 ∏
q≡5 or 11(mod 12)

qα||d

(
qα + 2

qα − 1
q − 1

)
f(d)

(5)

where

f(d) =


1 if 3|d

3γ − 1
2

if 3γ ||d.

Even more important for our purpose is the calculation of the number of primitive
representations of d as in (4) (gcd(a, b, c) = 1) in terms of d which appeared in a
more recent paper of Cooper and Hirschhorn [3]. One may easily check that the
following is a corollary of Theorem 2 in [3].

Theorem 1.2 (Cooper-Hirschhorn). Given an odd number d, the number of
primitive solutions of (4) taking into account all changing of signs and permuta-
tions, is equal to

Λ(d) := 8d
∏

p|d,p prime

(
1−

(−3
p )

p

)
,(6)

where (−3
p ) is the Legendre symbol.
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We remind the reader that if p is prime, then(
−3
p

)
=


0 if p = 3

1 if p ≡ 1 or 7 (mod 12)

−1 if p ≡ 5 or 11 (mod 12)

(7)

We observe that the same type of prime partition is used in different calculations
in both formulae (5) and (6). We have mentioned that the number of positive
ordered primitive representations for d = 2011 was 336. This is one less than the
number given by (6) modulo the number of permutations and changes of signs.
Indeed, since 2011 is prime and 2011 ≡ 7 (mod 12), we have ( −3

2011 ) = 1 and then
Λ(2011)

48 = 8(2011)(1− 1
2011 )

48 = 335. This happens because there is basically only one
solution where we have repeating values for a, b and c as we said. We will see later
how this number of positive ordered primitive representations can be obtained in
general by compensating for the repeating ones.

For k ∈ N, we let Ω(k) := {(m,n) ∈ Z × Z : m2 − mn + n2 = k2}. In [9]
we showed that every regular tetrahedron with integer coordinates must have side
lengths of the form λ

√
2, λ ∈ N, and in [12] we found the following characterization

of the regular tetrahedrons with integer coordinates.

Theorem 1.3. Every tetrahedron whose side lengths are λ
√

2, λ ∈ N, which has
a vertex at the origin, can be obtained by taking as one of its faces an equilateral
triangle having the origin as a vertex and the other two vertices given by (2) and
(3) with a, b, c and d odd integers satisfying (4) with d, a divisor of λ, and then
completing it with the fourth vertex R with coordinates(

(2ζ1 − η1)m− (ζ1 + η1)n± 2ak
3

,

(2ζ2 − η2)m− (ζ2 + η2)n± 2bk
3

,

(2ζ3 − η3)m− (ζ3 + η3)n± 2ck
3

)
,

(8)

for some (m,n) ∈ Ω(k), k := λ
d .

Conversely, if we let a, b, c and d be a primitive solution of (4), let k ∈ N
and (m,n) ∈ Ω(k), then the coordinates of the point R in (8), which completes the
equilateral triangle OPQ given as in (2) and (3), are

(a) all integers if k ≡ 0 (mod 3) regardless of the choice of signs or
(b) integers, precisely for only one choice of the signs if k 6≡ 0 (mod 3).

The following graph (Figure 1) is constructed on the positive ordered primitive
solutions of (4), with edges defined by:

two vertices, say [(a1, b1, c1), d1] and [(a2, b2, c2), d2], that are con-
nected if and only if

a1a
′
2 ± a2b

′
2 ± c1c′2 ± d1d2 = 0(9)

for some choice of the signs and permutation (a′2, b
′
2, c
′
2) of (a2, b2, c2).
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Figure 2. The graph RT , d ≤ 19..

Equation (9) insures basically insures that the planes Pa1,b1,c1 and Pa′2,b′2,c′2 as-
sociated with two faces make a dihedral angle of arccos(1/3) ≈ 70.52878◦. In fact,
this equality characterizes the existence of a regular tetrahedron having integer
coordinates with one of its faces in the plane Pa1,b1,c1 and another contained in
the plane Pa′2,b′2,c′2 . For instance, [(1, 1, 5), 3] is connected to [(1, 5, 11), 7] since
1(11) + (1)5 + 5(1) − 3(7) = 0. An example of a regular tetrahedron which has
a face in P−5,−1,1 and one face in P−1,−5,11 is given by the vertices [19, 23, 0],
[0, 12, 20], [27, 0, 17], and [24, 27, 29].

A few questions related to this graph appear naturally at this point. Is it con-
nected? Is there a different characterization of the existence of an edge between
two vertices in terms of only d1 and d2? We do not have an answer to the second
question, but we have an heuristic argument that shows that the graph is discon-
nected. The vertices, [(1, 1, 1), 1] and [(1, 5, 7), 5], are in two different components
and the component starting at [(1, 5, 7), 5] contains a copy of the whole graph.

Each edge in this graph, determined by [(a1, b1, c1), d1] and [(a2, b2, c2), d2],
gives rise to a minimal tetrahedron whose side lengths are at most max{d1, d2}

√
2.

This tetrahedron is determined up to the set of isometric transformations that are
generated by the symmetries of the cube in C(m) where m is the size of the smallest
“cube” {0, 1, · · · ,m}3 containing the tetrahedron or a translation of it. In [13] we
explained how this graph is connected with the 3-by-3 orthogonal matrices having
rational entries.
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2. Some preliminaries

We would like to have a good estimate of the number of primitive solutions of
(4) which satisfy in addition 0 < a ≤ b ≤ c. Let us observe that we cannot have
a = b = c unless d = 1. So, the counting in (6) via (7) would give what we want if
we can count the number of positive primitive solutions of the following equation
in terms of d

2a2 + c2 = 3d2.(10)

A description similar to the Pythagorean triples which gives the nature of the
solutions of (10) is stated next.

Theorem 2.1. For every two positive integers l and k such that gcd(k, l) = 1
and k is odd, a, c and d given by

d = 2l2 + k2 and a = |2l2 + 2kl − k2|, c = |k2 + 4kl − 2l2|, if k 6≡ l (mod 3)

a = |2l2 − 2kl − k2|, c = |k2 − 4kl − 2l2|, if k 6≡ −l (mod 3)

(11)

constitute a positive primitive solution for (10).
Conversely, with the exception of the trivial solution a = c = d = 1, every

positive primitive solution for (10) appears in the way described above for some l
and k.

Proof. First, one can check that (11) satisfies (10) for every l and k. As a result
it follows that a, c and d are positive integers. Let p be a prime dividing a, c and
d. Then p must divide ±a−d = 2k(±l−k) and so p is equal to 2, p divides k or it
divides ±l−k. If p = 2, then p must divide k, but this contradicts the assumption
that k is odd.

In case p is not equal to 2 and it divides k, we see p must divide l2 = (d−k2)/2.
Since we assumed gcd(l, k) = 1 it follows that p must divide ±l − k. By our
assumptions on k and l, p cannot be equal to 3. Then p divides±a+(±l−k)2 = 3l2.
Because p 6= 3 then p must divide l2 and so p should divide l and then k. This
contradiction shows that a, c and d cannot have prime common factors. So, we
have a primitive solution in (11).

For the converse, let us assume that a, c and d represent a positive primitive
solution of (10) which is different from the trivial one. We denote by u = a

d and
v = c

d . Then the point with rational coordinates (u, v) (different of (1, 1)) is on
the ellipse x2

3/2 + y2

3 = 1 (Figure 3) in the first quadrant. This ellipse contains the
following four points with integer coordinates: (1, 1), (−1, 1), (−1,−1) and (1, 1).
This gives the lines y + 1 = t1(x + 1), y + 1 = t2(x − 1), y − 1 = t3(x + 1) and
y − 1 = t4(x− 1), passing through (u, v) and one of the points mentioned above.
Hence, the slopes t1, t2, t3 and t4 are rational numbers. This gives expressions
for the point (u, v) in terms of ti (i = 1, . . . , 4). Let us assume that ti = ki

li
with
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Figure 3. The ellipse
x2

3/2
+

y2

3
= 1.

ki, li ∈ Z, written in reduced form. Then we must have

u =
|2± 2ti − t2i |

2 + t2i
=
|2l2i ± 2kili − k2

i |
2l2i + k2

i

,

v =
|t2i ± 4ti − 2|

2 + t2i
=
|k2
i ± 4kili − 2l2i |

2l2i + k2
i

,

and so, these equalities give

a

d
=
|2l2i ± 2kili − k2

i |
2l2i + k2

i

, and

c

d
=
|k2
i ± 4kili − 2l2i |

2l2i + k2
i

, i = 1, . . . , 4.
(12)

We claim that the function ti → 2l2i + k2
i (i = 1, . . . , 4) is injective. If for some

2l2i + k2
i = 2l2j + k2

j (i 6= j), that would imply that the corresponding numerators
in (12) are equal. This gives enough information to conclude a contradiction.
There are

(
4
2

)
= 6 possibilities here, but we are going to include the details only

in the case i = 1 and j = 2. The rest of the cases can be done in a similar
fashion. For this situation we have 2l21 + 2k1l1 − k2

1 = k2
2 + 2k2l2 − 2l22 and

k2
1 + 4k1l1 − 2l21 = k2

2 − 4k2l2 − 2l22. The first equality implies

2k1l1 = k2
1 + k2

2 + 2k2l2 − 2l21 − 2l22 = 2k2
1 + 2k2l2 − 4l22

which substituted into the second equality gives

6k2
1 = 2k2

2 − 8k2l2 + 8l22 ⇔ 3k2
1 = (k2 − 2l2)2.
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Because
√

3 is irrational, the last equality is impossible for k1, k2, l2 integers
and k1 nonzero. For the other cases will get a contradiction based on the facts

that
√

3
2 and

√
2 are irrational numbers.

A similar argument to the one in the first part of the proof shows that the
fractions in the right-hand side of the equalities of (12) can be simplified only by a
factor of 2, 3 or 6. Having four distinct possibilities in (12) for the denominators,
exactly one of the fractions (simultaneously in the first and second equalities) must
be in reduced form. This one will give the wanted representation. �

Similar to Fermat’s theorem about the representation of primes as a sum of two
squares and the number of such representations one can show the next result.

Theorem 2.2 (Fermat [4]). An odd prime p can be written as 2x2 + y2 with
x, y ∈ Z if and only if p ≡ 1 or 3 (mod 8). If d = 2k

∏
pαii
∏
q
βj
j is the prime

factorization of d with qj primes as before and pi the rest of them, then the number
of representations d = 2x2 + y2 with x, y ∈ Z is either zero if not all αi are even
and otherwise given by ⌊

1
2

∏
(βi + 1)

⌋
.(13)

The number of positive primitive representations d = 2x2 + y2 for d odd, i.e.
x, y ∈ N and gcd(x, y) = 1, is equal to

Γ2(d) =


0 if d is divisible by a prime factor

of the form 8s+5 or 8s+7, s ≥ 0,

2k−1 where k is the number of distinct prime factors
of d of the form 8s+ 1, or 8s+ 3 (s ≥ 0)

(14)

Putting the two results together (Theorem 2.2 and Theorem 1.2), we obtain the
following proposition.

Proposition 2.3. For every odd d, the number of representations of (4) which
satisfy 0 < a ≤ b ≤ c and gcd(a, b, c) = 1 is equal to

πε(d) =
Λ(d) + 24Γ2(3d2)

48
.(15)

Going back to the example d = 2011 we see that the contribution of 24Γ2(3d2)
48

is exactly 1, since 2011 ≡ 3 (mod 8).
A regular tetrahedron whose vertices are integers is said to be irreducible if it

cannot be obtained by an integer dilation and a translation from a smaller one also
with integer coordinates. An important question at this point about irreducible
tetrahedra is included next.

Does every irreducible tetrahedron with integer coordinates have a
face with a normal vector (a, b, c) satisfying a2 + b2 + c2 = 3d2 such
that d gives the side lengths ` of the tetrahedron by the formula ` =
d
√

2? In other words, is there a face for which k = 1 in Theorem 1.3?
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Unfortunately the last question is solved by the next counterexample. The
following points together with the origin, [−6677, −2672, 1445], [−5940, 4143,
−1167], [−3837, 2595, 5688] form a regular tetrahedron of side-lengths equal to
5187

√
2 and the highest d for the faces is 1729. We observe that 3, 7, 13 and 19

are the first three distinct primes numbers of the form u2 + 3v2, u, v ∈ Z.

3. The Code

The program is written in Maple code and it is based on Theorem 1.3. The main
idea is to create a list of irreducible regular tetrahedra that can be used to generate
all the others in {0, 1, 2, . . . , n}3 by certain transformations generating a partition
for the set of all tetrahedra. Each such irreducible tetrahedron is constructed from
the equation of one face using Theorem 1.3. For the interested reader we included
the details in [11]. The result of the calculation(100) gives in less than a few hours
of computation:

[1, 1] [2, 9] [3, 36] [4, 104] [5, 257]

[6, 549] [7, 1058] [8, 1896] [9, 3199] [10, 5145]

[11, 7926] [12, 11768] [13, 16967] [14, 23859] [15, 32846]

[16, 44378] [17, 58977] [18, 77215] [19, 99684] [20, 126994]

[21, 159963] [22, 199443] [23, 246304] [24, 301702] [25, 366729]

[26, 442587] [27, 530508] [28, 631820] [29, 748121] [30, 880941]

[31, 1031930] [32, 1202984] [33, 1395927] [34, 1612655] [35, 1855676]

[36, 2127122] [37, 2429577] [38, 2765531] [39, 3137480] [40, 3548434]

[41, 4001071] [42, 4498685] [43, 5044606] [44, 5641892] [45, 6294195]

[46, 7005191] [47, 7778912] [48, 8620242] [49, 9533105] [50, 10521999]

[51, 11591474] [52, 12746562] [53, 13992107] [54, 15332971] [55, 16775590]

[56, 18324372] [57, 19985523] [58, 21765013] [59, 23668266] [60, 25702480]

[61, 27873699] [62, 30188259] [63, 32655348] [64, 35281418] [65, 38074085]

[66, 41040495] [67, 44188592] [68, 47525856] [69, 51061295] [70, 54804647]

[71, 58763604] [72, 62949850] [73, 67371219] [74, 72037311] [75, 76958126]

[76, 82143618] [77, 87606245] [78, 93355379] [79, 99403446] [80, 105762770]

[81, 112443331] [82, 119456581] [83, 126814970] [84, 134532746] [85, 142621185]

[86, 151093691] [87, 159964136] [88, 169245226] [89, 178954039] [90, 189102295]

[91, 199706864] [92, 210781424] [93, 222341631] [94, 234402515] [95, 246978962]

[96, 260093046] [97, 273757925] [98, 287989943] [99, 302809940] [100, 318235290]

We observe a similar behavior with the sequence
ln(ET (n))
ln(n+ 1)

in [10].
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Figure 4. The graph
ln(T (n)/2)

ln(n + 1)
, 1 ≤ n ≤ 100.
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