UNIVERSAL BOUNDS FOR POSITIVE SOLUTIONS
OF DOUBLY DEGENERATE PARABOLIC EQUATIONS
WITH A SOURCE

A. F. TEDEEV

ABSTRACT. We consider a doubly degenerate parabolic equation with a source term of the form
(uﬂ) = div (|Vu|>‘_1 Vu) + uP where 0 < B <A < p.
t

For a positive solution of the equation we prove universal bounds and provide blow-up rate estimates
under suitable assumptions on p < po(A, 3, N). In particular, we extend some of the recent results
by K. Ammar and Ph. Souplet concerning the blow-up estimates for porous media equations with a
source. Our proofs are based on a generalized version of the Bochner-Weitzenbdk formula and local
energy estimates.

1. INTRODUCTION
We study the doubly degenerate parabolic equation with a nonlinear source of the form
(1.1) u = Ayu+u?  in Qr=RN x(0,T), N >2,
where Aju = div <|Vu|>‘_1 Vu). Here and thereafter we assume that
(1.2) 0<pB<A<Dp.
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Definition 1.1. We say that w > 0 is a weak solution of (1.1) in Q7 if it is locally bounded in

Qr, uwe C((0,7); Lﬁ;l RY)), |VuM e L} .(Qr) and satisfies (1.1) in the sense of the integral
identity

//(—uﬂnt + [Vu* ! Vuvn) dz dt = // uPydz dt
Qr Qr

for any n € C3(Qr).

The existence of local solutions of (1.1) follows, for example, from [22], and the uniqueness
of an energy solution follows from [29]. Moreover, weak solutions are locally Holder continuous
[23, 31]. We also refer to the survey [24], [37] and the books [14, 25, 10, 38| for various local
and global properties of solutions of doubly degenerate parabolic equations.

The main purpose of the present paper is to obtain universal bounds of blow-up solutions of
(1.1), that is, bounds that are independent of initial data. The paper is motivated by recent results
of K. Ammar and Ph. Souplet [3] (see also [33] and earlier results [39]) concerning universal blow-
up behaviour of a porous medium equation with a source. We extend some of these results for a
solution of the equation (1.1). One of the main tools in the proof of universal estimates in [3] is
the following Bochner-Weitzenbok formula

(1.3) %Auw?) _ |D%f + (VAv) - Vo

N

with |D?v|? = 37 (va,4;)?. Below we use the generalized version of (1.3) (see (2.1)) in order to
ij=1

obtain some integral gradient estimates which together with the local L, — Lo, estimates of [8]

give the universal blow-up estimate of supremum norm of a solution to (1.1).



Let

N-1)(1— A— 9
g ( 2;31 B 5:A+]1L, hi=G A=20+8)+(1+8)?
B N(N+X+1)
po(ﬂ’A7N)_(,\+1)(N—1)(2N5+N—1)(1+51+9+\/Z)’

The main result of the paper is as follows.

Theorem 1.1. Let u > 0 be a weak solution of (1.1) in Qr = RN x (0,T). Assume that

p< pO(ﬁa )‘7 N)
Then there exists a constant C = C(N, 8, \,p) such that
(1.4) u(z,t) < C(T — t)~ Y/ @=H)

for allz € RN and t € (T/2,T).
Remark 1.1. For the porous medium equation with a source
vy = Av™ 409,

(1.4) follows from the results in [3]. Namely, as it can be seen in this case 8 = 1/m and ¢ = pm,

A =1. Thus
N(N +2) . (m—1)(N—-1)
1. =——2(14+0+VA) withA=1+20, §=—"""—
(1.5) Do 2(N_l)Q( +0+VA) wi + 26, N
which coincides with the exponent found in [3]. While if in (1.5) m = 1, we get the exponent

N(N +2)

Po—m,
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which was discovered in [11]. Finally, if 8 = 1 in (1.1), that is, (1.1) is the nonstationary

A-Laplacian with a source, then

2(14 6)N(N + A+1)
= N = .

po=polBAN) =N e s N 1)

To the best of our knowledge our result is still new in this case.

Remark 1.2. Notice that po(3, A, N) is less than the Sobolev exponent ps = (NA+ A+ 1)/
(N—X—1) for A\+1 < N. However po(83, A, N) is bigger than the Fujita exponent pg

A+1
pO(ﬁa)‘vN) >pF:)\+ﬁT

Let us recall that the Fujita exponent pr gives the threshold between the global existence and
blow-up. Namely, if 1 < p < pp, then there is no positive global solution of (1.1), while if p > pp,
then there exist some positive global solutions (see the survey by Deng and Levine [13]). The
Sobolev exponent pg is known to be critical for the existence of positive steady states of the
stationary solution

Ayu+uP =0 on RV
(see [35], [12] and references therein).

We also refer the reader for the Fujita type results for the porous medium equation and non-
stationary A-Laplacian with sources to the book [17], the survey [18] and [4]. For more general
doubly degenerate parabolic equations with a source, the Fujita problem was recently treated in
[6, 7, 1, 2, 9, 26], where the authors discussed dependence of the critical Fujita exponent on the
geometry of the domain (see [6, 7]), on the behaviour of the initial data (see [1]), on the various
forms of sources (see [7, 9]) and on the behaviour of the coefficients (see [26]). About the universal
bounds near the blow-up time under the subcritical Fujita exponent we refer also to [8] and [26)]
for a wide class of doubly degenerate parabolic equations with a blow-up term. The problem of



the optimal blow-up rate and universal bounds of both global and blow-up solutions for semilinear
parabolic equations were investigated in [5, 19, 20, 21, 27, 28, 30, 32] (see also the book [33]
and references therein).

The rest of the paper is devoted to the proof of Theorem 1.1.

2. PROOF OF THEOREM 1.1

Turning to the proof of the theorem let us remark that since the solution to (1.1) is not regular
enough, the standard way to proceed is to apply some kind of regularization to the equation
before obtaining the integral estimates, and then subsequently pass to the limit with respect to
the regularization parameter. This process is quite standard by now, it is described in details, for
example, in [15]. Therefore without going into details we assume that our solution is sufficiently
regular (see [15]).

One of the main parts in the proof of the theorem is the universal bound of the integral

to

/ / u?PTBazdt

t1 Br(zo)

for any 0 < t; <ty < T, R > 0 and any 9 € RY. In order to do this, the starting point is the
following formula

|:(|VU|)\_1 vwi)mj |Vv|)‘_1 vzj] = (|Vv|)‘_1 vwi)mj (|Vv|>‘_1 vzj)

+ (Axv)a, |Vv|)‘_1 Vg

(2.1) 24

Lq



This formula is obtained by the direct differentiation and changing the order of the derivatives

[(|Vv|>‘_1 vmi) Vot vmj]
Zj T
s XTjTq

= <|V1)|>\_1 Um")xj (|Vv|)‘_1 vmj)
_ (|vv|*—1vwi)w_ (|W|A—1vzj)x_ n [(WUP—%M)E] Voo,

_ <|Vv|>‘_1vwi)xj (|Vv|)‘_1vzj) A+ (As), [V

Zq

4+ (|V1}|)‘_1 vwi) IVo*! Wl

Here and thereafter the summation on repeating indices is assumed and v will be smooth enough.
Formula (2.1) is a natural generalization of (1.3) and coincides with the latter when A = 1.

Next lemma is similar to [35, Proposition 6.2]. The proof we give here uses similar arguments
to those used in [35]. We reproduce the proof here for the readers’ convenience.

Lemma 2.1. Let G be any domain in RN . Then for any sufficiently smooth function v(z) and
any nonnegative ¢ € D(G), for s > 0 large enough and any d, p € R, it holds

—/1/2:\_:_11/CS’UM_IA)\UlvUP_H"FM(H’_1)%_1_1/€svu_2|vv|2(>\+1)
Go back < NJQ 1 / C v (ANw)? + 25 / ¢ A VoM v G
Full Screen = + M/Cs—lvﬂ—l VoM VoM g, G,
A+1 e
Close +s/§s_1v”|Vv|>‘_1 Vg, |Vv|)‘_1 Vo; oo, -

Quit




Proof. Multiplying both sides of (2.1) by (*v* and integrating by parts, we get

/v"CS [<|V1}|)‘_1 ,Umi)x' |Vv|)‘_1 'vmj]

= /gsv“(Aw)mj |V’u|)‘_1 Vg, ~|—/Cs'u“ (|Vv|)‘_1 'uxi> <|V'u|’\_1 vmj>

T j Zi

I

= — /C%”(Am}f - ,LL/CSU”_IA)\’U |Vv|)"|r1 — S/CS_IU”A)\U |Vv|)‘_1 Uz, Gy

+/Csvu <|Vy|)‘_1 vmi)w‘ (|VU|>\_1 ’Umj)wi'

Using the algebraic inequality (see, for instance, [15, 16], [35])

(|Vu|’\_lvxi> A<|Vv|>‘_1vmj) > —(Ayw)?,

Z;j T

2|~

P we obtain
Full Screen N —1
I > — —/C%"(Aw)2 —u/(sv“_lAvar\H
N
Close (23)

—s/(s_lv“AAvauV‘_l Vap; Gy -
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On the other hand, integrating by parts twice, we have
L= - /((sv“)mi (|V’u|)‘_1 vxi) |Vv|’\_1 Vg,
zj
J@oa (19l er,) 90l e,
z;

N /AM)(CSUH)M |Vv|>‘_l Vo, + /(Csvu)xﬂj |Vv|)‘_1 Va; |Vv|>‘_1 Vz;

= u/csv"_lAAv|V1}|}‘+l +s/(s_1v”A>\v|Vv|)‘_1 WG,

(24) + ,u(,u . 1) / Csvu—2 |vv|2(>\+1)
I 28u/(3_lv“_1 VoM VoM Vi; G,
e s/(js_lv# |Vv|’\_:l Vg, |Vv|’\_:l vziCjixj
[ o TP, (V0P
= puly + sI3 + p(p — 1)1y + 2suls + slg + ply.
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Thus
1 ity = 1I 2s

I =— . - I
[ WIS e WIS e W
and (2.3) implies
pA p(p — 1A 25\
. L = I I I Is + Ig.
(25) YL Y PR R R

Now combining (2.3) with (2.5), we derive

_(p2A+T) (g — 1A
( A+l 2t g e
N-1
<
=N

25U\
/Csv“(AAv)Z + 2sl3 + )\S_f 1I5 + sl + pul7.

Lemma 2.1 is proved.

Denote

20 {N@A-1) -2+ 1 -3)A+D}+ A+ DN -1)((1 - )2 +d?
- AN(A+1) ’

d(N+X+1) N—-1
b= —p .
NA+1) N




Lemma 2.2. Assume that a > 0 and b > 0. Then for a sufficiently small € > 0 there holds

(a—5¢) / / 218 |Vu20HD (5 ¢) / / o8 |V
(2.6) < Cle) (/ £ |V§|A+1 uP 2 4 // 5722y 148
+// g5 =20+1) |V§|2(’\+1) WlBH2s | // oAl |V§|>\+1up+1+/\—,@) :

where integrals are taken over G X (t1,t2) with 0 < t1 < to < T and &(x,t) is a smooth cutoff
function of G X (t1,t2).

Proof. In (2.2), set v = u® with some o € R. Then
I, = 042)\+1((C¥ = 1))\18 A Ig), Iy = 042)‘+1I8,

/ CuH(Arw)? = a2 (@ — 1)2N2Ts + 2(a — )ALy + T1o).
Here
Is = / Cu P VPOV = / Cu T A [V

Iy = /gsuh(AAu)2 h=2(a—1)A+ au.

Therefore, (2.2) implies that

(2.7) — C1Is — Caly <

1%’
I 25T 25\ —1+— )T I13.
10 + 28111 + 2s (a +>\+1> 12 + 113



Here
I :/(s_luhAAu|Vu|)‘_1 Wi G

-[12 = /Cs_luh_l |VU’|)\+1 |vu|>\_1 uZiCEi’

Lis = /uh |V} Us, [V} g, -

Then replacing ¢ by & and integrating (2.7) from ¢; to t2, we get with d = apu

N -1
N

d
(2.8) — C3Jg — CyJy < J1o + 2sJ11 + 2sA (a -1+ —) Jio + sJi3,

A+1

where
to

o — ;d [N(dXA—1) = 2X) + h(A + )]+ (A + 1)(N — 1)(h? + d?)
s AN(A+1) ’
R(N=1)(A+1)+d(N+A+1)

Ca= N(A+1) '

By (1.1) we have

Jloz/ §suh(A>\u)2:/ EulAu(ul — uP)

://gsuhquAu—/ EultP A u.

(2.9)



Integrating by parts, we obtain

i Jfewman=mep [[evrrtme s [[ et v g,
= (h +p)J14 + sJis,

(2.10

// §suhut’3A>\u = ﬁ//{sthrﬂ_lutA)\u
= — 5 [[ewr s (19, - s+ 5 [[ o2 9up

~fs // 55_1uh+,6‘—1 |Vu|)‘_1 Ug,; Ea; Ut

(2.11) 5
_ /\—H(h"'ﬂ_ 1))\//£suh+,8—2 V™
+ ,\i—sl // go g tB=1 |y M 58/ &M VU g £y

B

S
Al (h+B—1)AJ1s + 6—J17 — BsJis.

A+1




Next, by (1.1) we have
Jg = //fsuh_lAAU|VU|>\+l

(212)= / gsuh_l(utﬂ . up) |Vu|)\+1 . //fsuh“’_l |Vu|)\+1 + ﬂ// €suh+p—2 Ivu|>\+1 s
= — Jia + BJie,

= [[e it aulva ug = ([ @l - ) e g
(2.13)

_ //gs—lup-i-h Va6, +I8//§s—1uh+ﬁ—1ut VP e s, = — 15 + Bis.

Denote E = Jg, F' = J14. Then combining (2.9)—(2.13), from (2.8) we get

~GsB+(Ca— " (p+ B)F
(214) < — st + BCa = ‘?v)ﬁﬁi 1ﬁ>_ A
_ (]J\‘[f(; i)f)s Jir + 55¥Jw +25M\(a— 1+ d/(A+ 1)) oo,

Let d and h be chosen as follows

N -1
(215) C3 < 0, Cy — T(p—i— h) > 0.




Applying the Young inequality, we get

11s] = ’// §3—1up+h |Vu|>‘_1 Uz Ea;

(2.16)
< eF +O(e) / / £omATLP I |y P+
|J16] = ’/ U2 |V
(2.17)
< eE+O(e) / £8P0 |7 2,
|J17| _ ‘//55—1§tuh+ﬁ—1 |vu|>\+1
(2.18)
<eE+C(e) // £572¢2 428
|J18| _ ‘//§S_1Uh+'8_1 |vu|)\—1 U;L-ié.xiut
<e [[ et vuP ver + o) [[ e
(2.19)

<eE+C(e) //{suh+zﬂ_2uf
+ C(S) // 55—2()\+1)uh+2)\ |v£|2()\+1) )




| J1a] = ’//58—11/1-1 N i

<eFE+ C’(s) // 53_2()‘+1)uh+2)‘ |V§|2()‘+1) }

Now we choose h = 1 — 8. Then (2.15) holds true if a and b are positive which is the case.
Lemma 2.2 is proved. |

(2.20)

Notice that assumptions a > 0 and b > 0 are equivalent to
NS+N—-14+3 (N-1)(1-p)2
2N6+ N -1 2N6+ N -1
p(A+1)(N —1)

N+Xx+1

d*> —2d <0,

d>

The first of these inequalities is satisfied if
Np Np
2N6+ N —1 2N6+ N -1

Therefore, both inequalities hold if p < po(8, A, N) which coincides with our assumption.
Next we need to bound the integral

Jig Z/ gsuﬂ_luf.
Lemma 2.3. The following inequality holds true

Jig < 4eE + C(e) //58—2(A+1)U2A+1—6 Vg2

) [ferursg o [[etotiel.

(146, +0—-VA) <d< (1461 + 6 +VA).

(2.21)




Proof. Multiply both sides of (1.1) by u:£° and integrate by parts to get

pho= =157 [[ € (V) + = [[ e

(2.22)
— s/ gt |Vu|’\_1 Uty Ex; -

The right-hand side is equal to

By Young’s inequality we have

)\j-l //é-s—lé-t |Vu|)‘+1 < eE+C(e) //55_2U1+ﬁ§t2,

_ 1 1
Jf e v wnta| < o+ 5 [ [ w062 ve vu

1
§J19 + 5E+C(5)//§s—2(k+1)u2/\+1—ﬁ|v§|2(k+1) '

S

IN

Therefore, from (2.22) we arrive at the desired result.




We continue the proof of Theorem 1.1. From Lemma 2.2 and (2.15)—(2.21), one gets
(@ 9B+ (b 2)F < o(e) [ e turtvi=s gt

(2.23) + (e // §S—2()‘+1)u2"+1—5 |V§|2(A+1)
1) [[erarig+ [[etwnig).

My = [[ OB pg e

M= [f e 50
Applying the Young inequality, we have

//gs—x—lup+,\+1—ﬂ VePtt < p+A+1 _ﬂL+ p—A M.

Denote

- 2p+1-p 2p+1-p0

s=200H1)  2AH1-6 | g2+ < 2)\+1—5L 2(p— ) M
//§ “ Vel Sopri1—g- T pri_g v

s—2 14542 1+0 2(p — )
[ferard < n g gty g

1 -8
s—1, p+il < P+ I p M
//5 @ |€t|_2p+1—,8 +2p+1—ﬂ 2;

(2.24)




where

_ [[emns

In order to estimate the last integral we multiply both sides of (1.1) by uP*1=5¢* and integrate by
parts, apply also Young’s inequality to get

,\+1//§ @t p+1-6 F+s//5s WP |V g,

(z\+1)/A)\
glurt + (p+1- B+ 2

A+1
/ é-s A— lup-‘r)\-‘rl ﬂlvgl)\+1

sOHD/Ay
A+1

p+1

)\—I-l
< 58
~prl

61L+<p+1—ﬂ+

b mgal + (S 4 IO (M + M),
Therefore for a sufficiently small 1, we get

L <v(p, 8, )(F + My + My)
and together with (2.23) and (2.24) with a suitable ¢ this gives
(2.25) L+ F <~y(Mi + Ma).

Let G = Bg(xg) for any fixed zg € RN, t; = Ty, to = t and for 0 < T} < Ty < t, & is so that
V¢ <eR7L |6 <c(Ty —Ty) L for0<Ty <7 <t<T and any R > 0. Then
A+1)(2p+1-8) 2p+1— ﬁ)

(2.26) My + My < ¢RN ((TQ —T1)R™ p—X + (T —Ty)"  »=




‘We have

sup / uPTdz < o(L + F).
T <7<t
Br(wo)

Indeed, this follows from Lemma 2.3, (2.24) and (2.25) observing that

/ & (@, TPz, 7) = (p+ 1) /T / e ulu, +S/T / i

Br(zo) Ty Br(zo) Ty Br(zo)
T T 1/2
<(p+1) / /fsuﬁ_luf 1/2 / /Esu2p+1—,3
T1 Br(zo) T1 Br(wo)
-
v [ et
T) Bgr(zo)

Therefore from (2.25) and (2.26), we have

sup / uPtlde
T <1<t

(227) Br(zo)
< ¢RN <(T2 _ TR <X+1);2_p;r1—5> +(Ty - Tl)_2p:_1—ﬁ>



Now we are in a position to complete the proof of Theorem 1.1. The final step of the proof is to
utilize the local estimate of Lemma 3.3 from [8] which we write in the suitable form
||u||oo’BR/2(xo)X(T2’t) < (Tr — Tl)—l/(p—ﬂ) + (R/2)~ D/ (=)

w/(w=p)
(2.28)

+ c(t — Ty)Y/(@=P) ) / uPTlde
! BR(.’Eo)

forall 0 < Ty < Ty <t < T provided p < ps and w > p+ 1 is a free parameter,

A Dw-p-1)B+p
P DB~ (- AN
Finally, in (2.27) and (2.28) choosing To = ¢ — (T — ¢)/2, Th = t — (T — t),
R = (T — t)P=N/O+1)(@=F) with ¢ € (T/2,T) and noting that zy is an arbitrary point of RY,
we arrive at the desired result.
The proof of Theorem 1.1 is complete. O
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