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ISOMETRIES AND ISOMORPHISMS
IN QUASI-BANACH ALGEBRAS

ZHIHUA WANG and WANXIONG ZHANG

Abstract. In this paper, we prove the Hyers-Ulam-Rassias stability of isometries and of homomor-
phisms for additive functional equations in quasi-Banach algebras. This is applied to investigate iso-
morphisms between quasi-Banach algebras.

1. Introduction and preliminaries

Stability is investigated when one concerns whether a small error of parameters causes a large
deviation of the solution. Generally speaking, given a function which satisfies a functional equation
approximately called an approximate solution, we ask: Is there a solution of this equation which
is close to the approximate solution in some accuracy? An ealier work was done by Hyers [11]
in order to answer Ulam’s question ([20]) on approximately additive mappings. Later there have
been given lots of results on stability in the Hyers-Ulam sense or some generalized sense (see books
and papers [1, 3, 8, 9, 12, 17, 18] and references therein).
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G. Z. Eskandani [7] established the general solution and investigated the Hyers-Ulam-Rassias
stability of the following functional equation

m∑
i=1

f

mxi +
m∑

j=1,j 6=i

xj

+ f

(
m∑

i=1

xi

)
= 2f

(
m∑

i=1

mxi

)
(1.1)

in quasi-Banach spaces, where m ∈ N and m ≥ 2. The stability of isometries in norms spaces and
Banach spaces was investigated in several papers [4, 6, 10, 13]. However, C. Park and Th. M.
Rassias [15] proved the Hyers-Ulam stability of isometric additive functional equations in quasi-
Banach spaces. C. Park [16] studied the Hyers-Ulam stability of homomorphisms in quasi-Banach
algebras. Recently, M. S. Moslehian and Gh. Sadeghi [14] have proved the Hyers-Ulam-Rassias
stability of linear mappings in quasi-Banach modules associated to the Cauchy functional equation
and a generalized Jensen functional equation.

The main purpose of this paper is to study the Hyers-Ulam-Rassias stability of equation (1.1).
More precisely, we prove the Hyers-Ulam-Rassias stability of isometric additive functional equations
(1.1) in quasi-Banach algebras. Furthermore, we investigate the Hyers-Ulam-Rassias stability of
homomorphisms in quasi-Banach algebras associated to additive functional equations (1.1). This
is applied to investigate isomorphisms between quasi-Banach algebras.

We now give some basic facts concerning quasi-Banach spaces and some preliminary results.

Definition 1.1 (cf. [5, 19]). Let X be a real linear space. A quasi-norm is a real-valued
function on X satisfying the following:

(1) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0.
(2) ‖λx‖ = |λ| · ‖x‖ for all λ ∈ R and for all x ∈ X.
(3) There is a constant K ≥ 1 such that ‖x+ y‖ ≤ K(‖x‖+ ‖y‖) for all x, y ∈ X.
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The pair (X, ‖ · ‖) is called a quasi-normed space if ‖ · ‖ is a quasi-norm on X. The smallest
possible K is called the modulus of concavity of ‖ · ‖. A quasi-Banach space is a complete quasi-
normed space.

A quasi-norm ‖ · ‖ is called a p-norm (0 < p ≤ 1) if

‖x+ y‖p ≤ ‖x‖p + ‖y‖p

for all x, y ∈ X. In this case, a quasi-Banach space is called a p-Banach space.

Given a p-norm, the formula d(x, y) := ‖x − y‖p gives us a translation invariant metric on X.
By the Aoki-Rolewicz theorem [19] (see also [5]), each quasi-norm is equivalent to some p-norm.
Since it is much easier to work with p-norms than quasi-norms, henceforth we restrict our attention
mainly to p-norms.

Definition 1.2 (cf. [2]). Let (X, ‖ · ‖) be a quasi-normed space. The quasi-normed space
(X, ‖ · ‖) is called a quasi-normed algebra if X is an algebra and there is a constant C > 0 such
that ‖xy‖ ≤ C‖x‖‖y‖ for all x, y ∈ X.

A quasi-Banach algebra is a complete quasi-normed algebra. If the quasi-norm ‖ · ‖ is a p-norm,
then the quasi-Banach algebra is called a p-Banach algebra.

Definition 1.3 (cf. [15]). Let X and Y be quasi-Banach algebras with norms ‖ · ‖X and
‖ · ‖Y , respectively. An additive mapping A : X → Y is called an isometric additive mapping if the
additive mapping A : X → Y satisfies

‖A(x)−A(y)‖Y = ‖x− y‖X

for all x, y ∈ X.
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2. Stability of isometric additive mappings in quasi-Banach algebras

Throughout this section and Section 3, assume that X is a quasi-normed algebra with quasi-norm
‖ · ‖X and that Y is a p-Banach algebra with p-norm ‖ · ‖Y . Let K be the modulus of concavity
of ‖ · ‖Y . For convenience, we use the following abbreviation for a given mapping f : X → Y :

Df(x1, · · · , xm) =
m∑

i=1

f

mxi +
m∑

j=1,j 6=i

xj

+ f

(
m∑

i=1

xi

)
− 2f

(
m∑

i=1

mxi

)

for all xj ∈ X (1 ≤ j ≤ m). We prove the Hyers-Ulam-Rassias stability of the isometric additive
functional equation (1.1) in quasi-Banach algebras.

Theorem 2.1. Let ϕ : Xm → [0,∞) be a mapping such that

lim
n→∞

1
mn

ϕ(mnx1, · · · ,mnxm) = 0(2.1)

ϕ̃(x) :=
∞∑

i=0

1
mip

(ϕ(mix, 0, · · · , 0))p <∞(2.2)

for all x, xj ∈ X (1 ≤ j ≤ m). Suppose that a mapping f : X → Y satisfies

‖Df(x1, · · · , xm)‖Y ≤ ϕ(x1, · · · , xm)(2.3)

| ‖f(x)‖Y − ‖x‖X |≤ ϕ(x, · · · , x︸ ︷︷ ︸
m−times

)(2.4)
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for all x, xj ∈ X (1 ≤ j ≤ m). Then there exists a unique isometric additive mapping A : X → Y
such that

‖f(x)−A(x)‖Y ≤
1
m

[ϕ̃(x)]
1
p(2.5)

for all x ∈ X.

Proof. By the Eskandani’s theorem [7, Theorem 2.2], it follows from (2.1), (2.2) and (2.3)
that there exists a unique additive mapping A : X → Y satisfying (2.5). The additive mapping
A : X → Y is given by

A(x) := lim
n→∞

1
mn

f(mnx)(2.6)

for all x ∈ X.
It follows from (2.4) that

| ‖ 1
mn

f(mnx)‖Y − ‖x‖X | ≤
1
mn
| ‖f(mnx)‖Y − ‖mnx‖X |

≤ 1
mn

ϕ(mnx, · · · ,mnx︸ ︷︷ ︸
m−times

)

which tends to zero as n→∞ for all x ∈ X. So

‖A(x)‖Y = lim
n→∞

‖ 1
mn

f(mnx)‖Y = ‖x‖X

for all x ∈ X. Since A : X → Y is additive,

‖A(x)−A(y)‖Y = ‖A(x− y)‖Y = ‖x− y‖X
for all x ∈ X. So the mapping A : X → Y is an isometry. Thus the mapping A : X → Y is a
unique isometric additive mapping satisfying (2.5). This completes the proof of the theorem. �
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Theorem 2.2. Let φ : Xm → [0,∞) be a mapping such that

lim
n→∞

mnφ(
x1

mn
, · · · , xm

mn
) = 0(2.7)

φ̃(x) :=
∞∑

i=1

mip(φ(
x

mi
, 0, · · · , 0))p <∞(2.8)

for all x, xj ∈ X (1 ≤ j ≤ m). Suppose that a mapping f : X → Y satisfies

‖Df(x1, · · · , xm)‖Y ≤ φ(x1, · · · , xm)(2.9)

| ‖f(x)‖Y − ‖x‖X |≤ φ(x, · · · , x︸ ︷︷ ︸
m−times

)(2.10)

for all x, xj ∈ X (1 ≤ j ≤ m). Then there exists a unique isometric additive mapping A : X → Y
such that

‖f(x)−A(x)‖Y ≤
1
m

[φ̃(x)]
1
p(2.11)

for all x ∈ X.

Proof. By the Eskandani’s theorem [7, Theorem 2.3], it follows from (2.7), (2.8) and (2.9)
that there exists a unique additive mapping A : X → Y satisfying (2.11). The additive mapping
A : X → Y is given by

A(x) := lim
n→∞

mnf(
x

mn
)(2.12)

for all x ∈ X.
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By (2.10), we have

| ‖mnf(
x

mn
)‖Y − ‖x‖X | ≤ mn | ‖f(

x

mn
)‖Y − ‖

x

mn
‖X |

≤ mnϕ(
x

mn
, · · · , x

mn︸ ︷︷ ︸
m−times

)

which tends to zero as n→∞ for all x ∈ X. By (2.12), we obtain

‖A(x)‖Y = lim
n→∞

‖mnf(
x

mn
)‖Y = ‖x‖X

for all x ∈ X. Hence
‖A(x)−A(y)‖Y = ‖A(x− y)‖Y = ‖x− y‖X

for all x ∈ X. So the additive mapping A : X → Y is an isometry. This completes the proof of the
theorem. �

Corollary 2.1. Let θ, rj (1 ≤ j ≤ m) be non-negative real numbers such that rj > 1 or
0 < rj < 1. Suppose that a mapping f : X → Y satisfies

‖Df(x1, · · · , xm)‖Y ≤ θ
m∑

i=1

‖xi‖ri

X

| ‖f(x)‖Y − ‖x‖X |≤ θ
m∑

i=1

‖x‖ri

X

for all x, xj ∈ X (1 ≤ j ≤ m). Then there exists a unique isometric additive mapping A : X → Y
such that

‖f(x)−A(x)‖Y ≤
θ

|mp −mpr1 |
1
p

‖x‖r1
X
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for all x ∈ X.

Proof. The result follows from the proofs of Theorems 2.1 and 2.2. �

3. Stability of homomorphisms in quasi-Banach algebras

We prove the Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras, associated
to the additive functional equation (1.1).

Theorem 3.1. Suppose that a mapping f : X → Y satisfies

‖Df(x1, · · · , xm)‖Y ≤ ϕ(x1, · · · , xm)(3.1)

‖f(xy)− f(x)f(y)‖Y ≤ ψ(x, y)(3.2)

for all x, y, xj ∈ X (1 ≤ j ≤ m), where ϕ : Xm → [0,∞) satisfies (2.1) and (2.2), and ψ : X×X →
[0,∞) satisfies the following

lim
n→∞

1
mn

ψ(mnx,mny) = 0(3.3)

for all x, y ∈ X. If f(tx) is continuous in t ∈ R for each fixed x ∈ X, then there exists a unique
homomorphism H : X → Y such that

‖f(x)−H(x)‖Y ≤
1
m

[ϕ̃(x)]
1
p(3.4)

for all x ∈ X.

Proof. By Theorem 2.1, there exists a unique additive mapping H : X → Y satisfying (3.4).
The additive mapping H : X → Y is given by

H(x) := lim
n→∞

1
mn

f(mnx)(3.5)
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for all x ∈ X. By the same reasoning as in the proof of Theorem of [17], the mapping H : X → Y
is R-linear.

It follows from (3.2) that

‖H(xy)−H(x)H(y)‖Y = lim
n→∞

1
m2n
‖f(m2nxy)− f(mnx)f(mny)‖Y

≤ lim
n→∞

1
m2n

ψ(mnx,mny) = 0

for all x, y ∈ X. Hence, we get
H(xy) = H(x)H(y)

for all x, y ∈ X. Thus the mapping H : X → Y is a unique homomorphism satisfying (3.4). This
completes the proof of the theorem. �

Theorem 3.2. Suppose that a mapping f : X → Y satisfies

‖Df(x1, · · · , xm)‖Y ≤ φ(x1, · · · , xm)(3.6)

‖f(xy)− f(x)f(y)‖Y ≤ Ψ(x, y)(3.7)

for all x, y, xj ∈ X (1 ≤ j ≤ m), where φ : Xm → [0,∞) satisfies (2.7) and (2.8), and Ψ: X×X →
[0,∞) satisfies the following

lim
n→∞

mnΨ(
x

mn
,
y

mn
) = 0(3.8)

for all x, y ∈ X. If f(tx) is continuous in t ∈ R for each fixed x ∈ X, then there exists a unique
homomorphism H : X → Y such that

‖f(x)−H(x)‖Y ≤
1
m

[φ̃(x)]
1
p(3.9)
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for all x ∈ X.

Proof. By Theorem 2.2, there exists a unique additive mapping H : X → Y satisfying (3.9).
The additive mapping H : X → Y is given by

H(x) := lim
n→∞

mnf(
x

mn
)(3.10)

for all x ∈ X. By the same reasoning as in the proof of Theorem of [17], the mapping H : X → Y
is R-linear.

It follows from (3.8) that

‖H(xy)−H(x)H(y)‖Y = lim
n→∞

m2n‖f(
xy

mn ·mn
)− f(

x

mn
)f(

y

mn
)‖Y

≤ lim
n→∞

m2nΨ(
x

mn
,
y

mn
) = 0

for all x, y ∈ X. Hence, we get
H(xy) = H(x)H(y)

for all x, y ∈ X. Thus the mapping H : X → Y is a unique homomorphism satisfying (3.9). This
completes the proof of the theorem. �

Corollary 3.1. Let θ, δ be non-negative real numbers and let rj (1 ≤ j ≤ m), s1, s2 be non-
negative real numbers such that rj > 1, s1, s2 > 2 or 0 < rj < 1, s1, s2 < 2. Suppose that a
mapping f : X → Y satisfies

‖Df(x1, · · · , xm)‖Y ≤ θ
m∑

i=1

‖xi‖ri

X(3.11)

‖f(xy)− f(x)f(y)‖Y ≤ δ(‖x‖s1
X + ‖y‖s2

X )(3.12)
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for all x, y, xj ∈ X (1 ≤ j ≤ m). If f(tx) is continuous in t ∈ R for each fixed x ∈ X, then there
exists a unique homomorphism H : X → Y such that

‖f(x)−H(x)‖Y ≤
θ

|mp −mpr1 |
1
p

‖x‖r1
X

for all x ∈ X.

Proof. The result follows from the proofs of Theorems 3.1 and 3.2. �

Corollary 3.2. Let θ, δ be non-negative real numbers and let rj (1 ≤ j ≤ m), s1, s2 be non-

negative real numbers such that
m∑

i=1

ri > 1, s1 + s2 > 2 or
m∑

i=1

ri < 1, s1 + s2 < 2 and rj 6= 0 for

some j (2 ≤ j ≤ m). Suppose that a mapping f : X → Y satisfies

‖Df(x1, · · · , xm)‖Y ≤ θ
m∏

i=1

‖xi‖ri

X(3.13)

‖f(xy)− f(x)f(y)‖Y ≤ δ‖x‖s1
X ‖y‖

s2
X(3.14)

for all x, y, xj ∈ X (1 ≤ j ≤ m). If f(tx) is continuous in t ∈ R for each fixed x ∈ X, then the
mapping f : X → Y is a homomorphism.

Proof. The result follows from the proofs of Theorems 3.1 and 3.2. �

4. Isomorphisms between quasi-Banach algebras

Throughout this section, assume that X is a quasi-Banach algebra with quasi-norm ‖ · ‖X and
unit e and that Y is a p-Banach algebra with p-norm ‖ · ‖Y and unit e′. Let K be the modulus of
concavity of ‖ · ‖Y .
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We investigate isomorphisms between quasi-Banach algebras associated to the additive func-
tional equation (1.1).

Theorem 4.1. Suppose that f : X → Y is a bijective mapping satisfying (3.1) such that

f(xy) = f(x)f(y)(4.1)

for all x, y ∈ X. If f(tx) is continuous in t ∈ R for each fixed x ∈ X and lim
n→∞

1
mn f(mne) = e′,

then the mapping f : X → Y is an isomorphism.

Proof. By Theorem 3.1, there exists a homomorphism H : X → Y satisfying (3.4). The mapping
H : X → Y is given by

H(x) := lim
n→∞

1
mn

f(mnx)(4.2)

for all x ∈ X.
By (4.1), we have

H(x) = H(ex) = lim
n→∞

1
mn

f(mnex) = lim
n→∞

1
mn

f(mne · x)

= lim
n→∞

1
mn

f(mne)f(x) = e′f(x) = f(x)

for all x ∈ X. So the bijective mapping f : X → Y is an isomorphism. This completes the proof
of the theorem. �

Theorem 4.2. Suppose that f : X → Y is a bijective mapping satisfying (3.6) and (4.1). If
f(tx) is continuous in t ∈ R for each fixed x ∈ X and lim

n→∞
mnf( e

mn ) = e′, then the mapping
f : X → Y is an isomorphism.
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Proof. By Theorem 3.2, there exists a homomorphism H : X → Y satisfying (3.9). The mapping
H : X → Y is given by

H(x) := lim
n→∞

mnf(
x

mn
)(4.3)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 4.1. This completes the proof of the

theorem. �

Corollary 4.1. Let θ, rj (1 ≤ j ≤ m) be non-negative real numbers such that rj > 1 or
0 < rj < 1. Suppose that a bijective mapping f : X → Y satisfies (3.11) and (4.1). If f(tx) is
continuous in t ∈ R for each fixed x ∈ X and lim

n→∞
mnf( e

mn ) = e′ or lim
n→∞

1
mn f(mne) = e′, then

the mapping f : X → Y is an isomorphism.

Proof. The result follows from the proofs of Theorems 4.1 and 4.2. �
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