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SOME FIXED POINT THEOREMS FOR ORDERED REICH

TYPE CONTRACTIONS IN CONE RECTANGULAR

METRIC SPACES

S. K. MALHOTRA, S. SHUKLA and R. SEN

Abstract. In this paper, we prove some fixed point theorems for ordered Reich

type contraction in cone rectangular metric spaces without assuming the normality

of cone. Our results generalize and extend some recent results in cone rectangular
metric spaces, cone metric spaces and rectangular metric space. Some examples

illustrating the results are included.

1. Introduction and preliminaries

K-metric and K-normed spaces were introduced in the mid-20th century (see
[29]) by using an ordered Banach space instead of the set of real numbers, as
the codomain for a metric. Indeed, this idea of replacement of real numbers by
an ordered “set” can be seen in [18, 19] (see also references therein). Huang
and Zhang [10] re-introduced such spaces under the name of cone metric spaces,
defining convergent and Cauchy sequence in terms of interior points of under-
lying cone. They proved the basic version of the fixed point theorem with the
assumption that the cone is normal. Subsequently several authors (see, e.g.
[1, 6, 9, 11, 12, 15, 20, 21, 25, 28]) generalized the results of Huang and
Zhang. In [25] Rezapour and Hamlbarani removed the normality of cone and
proved the results of Huang and Zhang in non-normal cone metric spaces.

Branciari [7] introduced a class of generalized metric spaces by replacing tri-
angular inequality by similar one which involves four or more points instead of
three and improves Banach contraction principle. Azam and Arshad [4] proved
fixed point result for Kannan type contraction in rectangular metric spaces. After
the work of Huang and Zhang [10] Azam et al. [5] introduced the notion of cone
rectangular metric space and proved fixed point result for Banach type contraction
in cone rectangular space. Samet and Vetro [26] obtained the fixed point results
in c-chainable cone rectangular metric spaces.

Ordered normed spaces and cones have applications in applied mathematics, for
instance, in using Newton’s approximation method [27] and in optimization theory
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[8]. The existence of fixed point in partially ordered sets was investigated by Ran
and Reurings [23] and then by Nieto and Lopez [22]. Fixed point results in ordered
cone metric spaces were obtained by several authors (see, e.g. [2, 3, 14, 20]).

The fixed point results for Reich type mappings and fixed point results for
ordered contractions not investigated yet even in rectangular metric spaces. In
this paper, we extend and generalize the results of Azam et al. [5] and Azam and
Arshad [4] in ordered cone rectangular metric spaces by proving the fixed point
theorem for Reich type contractions in the setting of ordered cone rectangular
metric space. Results in the present paper are the extension and generalization
of fixed point results of Banach, Kannan [16, 17] and Reich [24] in ordered cone
rectangular metric spaces.

We need the following definitions and results consistent with [8] and [10].

Definition 1 ([10]). Let E be a real Banach space and P be a subset of E.
The set P is called a cone if:

(i) P is closed, nonempty and P 6= {θ}, here θ is the zero vector of E;
(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P ⇒ ax+ by ∈ P ;
(iii) x ∈ P and −x ∈ P ⇒ x = θ.

Given a cone P ⊂ E, we define a partial ordering “ � ” with respect to P by x � y
if and only if y − x ∈ P . We write x ≺ y to indicate that x � y but x 6= y. While
x� y if and only if y − x ∈ P 0, where P 0 denotes the interior of P .

Let P be a cone in a real Banach space E, then P is called normal, if there
exists a constant K > 0 such that for all x, y ∈ E,

θ � x � y implies ‖x‖ ≤ K‖y‖.
The least positive number K satisfying the above inequality is called the normal
constant of P .

Definition 2 ([10]). Let X be a nonempty set, E be a real Banach space.
Suppose that the mapping d : X ×X → E satisfies

(i) θ � d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ X;
(iii) d(x, y) � d(x, z) + d(y, z) for all x, y, z ∈ X.

Then d is called a cone metric on X and (X, d) is called a cone metric space. In
the following we always suppose that E is a real Banach space, P is a solid cone
in E, i.e., P 0 6= φ and “ � ” is partial ordering with respect to P .

The concept of cone metric space is more general than that of a metric space,
because each metric space is a cone metric space with E = R and P = [0,+∞).

For examples and basic properties of normal and non-normal cones and cone
metric spaces we refer [10] and [25].

The following remark will be useful in sequel.

Remark 1 ([13]). Let P be a cone in a real Banach space E and a, b, c ∈ P,
then

(a) If a � b and b� c, then a� c.
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(b) If a� b and b� c, then a� c.
(c) If θ � u� c for each c ∈ P 0, then u = θ.
(d) If c ∈ P 0 and an → θ, then there exists n0 ∈ N such that for all n > n0, we

have an � c.
(e) If θ � an � bn for each n and an → a, bn → b, then a � b.
(f) If a � λa where 0 < λ < 1, then a = θ.

Definition 3 ([5]). Let X be a nonempty set. Suppose the mapping d : X ×
X → E, satisfying

(i) θ � d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ X;
(iii) d(x, y) � d(x,w) + d(w, z) + d(z, y) for all x, y ∈ X and for all distinct

points w, z ∈ X − {x, y} [rectangular property].

Then d is called a cone rectangular metric on X,, and (X, d) is called a cone
rectangular metric space. Let {xn} be a sequence in (X, d) and x ∈ (X, d). If for
every c ∈ E with θ � c there is n0 ∈ N such that for all n > n0, d(xn, x) � c,
then {xn} is said to be convergent, {xn} converges to x and x is the limit of {xn}.
We denote this by limn xn = x or xn → x as n→∞. If for every c ∈ E with θ � c
there is n0 ∈ N such that for all n > n0 and m ∈ N we have d(xn, xn+m)� c. Then
{xn} is called a Cauchy sequence in (X, d). If every Cauchy sequence is convergent
in (X, d), then (X, d) is called a complete cone rectangular metric space. If the
underlying cone is normal, then (X, d) is called normal cone rectangular metric
space.

Example 1. Let X = N, E = R2 and P = {(x, y) : x, y ≥ 0}.
Define d : X ×X → E as follows:

d(x, y) =

 (0, 0) if x = y,
(3, 9) if x and y are in {1, 2}, x 6= y,
(1, 3) if x and y both can not be at a time in {1, 2}, x 6= y.

Now (X, d) is a cone rectangular metric space, but (X, d) is not a cone metric
space because it lacks the triangular property

(3, 9) = d(1, 2) > d(1, 3) + d(3, 2) = (1, 3) + (1, 3) = (2, 6)

as (3, 9)− (2, 6) = (1, 3) ∈ P .

Note that in above example (X, d) is a normal cone rectangular metric space.
Following is an example of non-normal cone rectangular metric space.

Example 2. Let X = N, E = C1
R[0, 1] with ‖x‖ = ‖x‖∞ + ‖x′‖∞ and P =

{x ∈ E : x(t) ≥ 0 for t ∈ [0, 1]}. Then this cone is not normal (see [25]).
Define d : X ×X → E as follows

d(x, y) =

 0 if x = y,
3 et if x and y are in {1, 2}, x 6= y,
et if x and y both can not be at a time in {1, 2}, x 6= y.

Then (X, d) is non-normal cone rectangular metric space, but (X, d) is not a cone
metric space because it lacks the triangular property.



168 S. K. MALHOTRA, S. SHUKLA and R. SEN

Definition 4. If a nonempty set X is equipped with a partial order “ v ” and
mapping d : X ×X → E such that (X, d) is a cone rectangular metric space, then
(X,v, d) is called an ordered cone rectangular metric space. Let f : X → X be a
mapping. The mapping f is called nondecreasing with respect to “ v ” if for each
x, y ∈ X, x v y implies fx v fy.

A self map f on (X,v, d) is called ordered Banach type contraction if for all
x, y ∈ X with x v y, there exists λ ∈ [0, 1) such that

d(fx, fy) � λd(x, y).(1)

If (1) is satisfied for all x, y ∈ X, then f is called Banach contraction.
f is called ordered Kannan type contraction if for all x, y ∈ X with x v y, there

exists λ ∈ [0, 12 ) such that

d(fx, fy) � λ[d(x, fx) + d(y, fy)].(2)

If (2) is satisfied for all x, y ∈ X, then f is called Kannan contraction.
f is called ordered Reich type contraction if for all x, y ∈ X with x v y,

λ, µ, δ ∈ [0, 1) such that λ+ µ+ δ < 1 and

d(fx, fy) � λd(x, y) + µd(x, fx) + δd(y, fy).(3)

If (3) is satisfied for all x, y ∈ X, then f is called Reich contraction.
Kannan showed that the conditions (1) and (2) are independent of each other

(see [16, 17]) and Reich showed that the condition (3) is a proper generalization
of (1) and (2) (see [24]). Note that Reich type contraction turns into Banach and
Kannan type contractions with µ = δ = 0 and λ = 0, µ = δ, respectively.

Definition 5. Let X be a nonempty set equipped with partial order “ v ”. A
nonempty subset A of X is said to be well ordered if every two elements of A are
comparable with respect to “ v ”.

Now we can state our main results.

2. Main Results

Theorem 1. Let (X,v, d) be an ordered complete cone rectangular metric space
and f : X → X be a mapping. Suppose that the following conditions hold

(I) f is an ordered Reich type contraction, i.e., it satisfies (3);
(II) there exists x0 ∈ X such that x0 v fx0;

(III) f is nondecreasing with respect to “ v ”;
(IV) if {xn} is a nondecreasing sequence in X and converging to some z, then

xn v z.

Then f has a fixed point. Furthermore, the set of fixed points of f is well ordered
if and only if fixed point of f is unique.

Proof. Starting with the given x0, we can construct the Picard sequence {xn}
as follows. As x0 ∈ X is such that x0 v fx0, suppose fx0 = x1, then x0 v x1.
Again as f is nondecreasing with respect to “ v ”, we obtain fx0 v fx1 suppose
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fx1 = x2. Continuing in this manner, we obtain the nondecreasing sequence so-
called Picard sequence {xn} such that

x0 v x1 v · · · v xn v xn+1 v · · · and xn+1 = fxn for all n ≥ 0.

Note that if xn+1 = xn for any n, then xn is a fixed point of f. So we assume that
xn+1 6= xn for all n ≥ 0.

As xn v xn+1, for any n ≥ 0, we obtain from (I)

d(xn, xn+1) = d(fxn−1, fxn)

� λd(xn−1, xn) + µd(xn−1, fxn−1) + δd(xn, fxn)

= λd(xn−1, xn) + µd(xn−1, xn) + δd(xn, xn+1)

d(xn, xn+1) � λ+ µ

1− δ
d(xn−1, xn),

i.e., dn � αdn−1, where α =
λ+ µ

1− δ
and dn = d(xn, xn+1).

Repeating this process, we obtain that

dn � αnd0 for all n ≥ 1.(4)

We can also assume that x0 is not a periodic point. Indeed, if x0 = xn for any
n ≥ 2, then from (4) it follows that

d(x0, fx0) = d(xn, fxn)

d(x0, x1) = d(xn, xn+1),

d0 = dn

d0 � αnd0.

As α = λ+µ
1−δ < 1 (since λ + µ + δ < 1), the above inequality shows that d0 = θ,

i.e., d(x0, fx0) = θ, so x0 is a fixed point of f. Thus we assume that xn 6= xm for
all distinct n,m ∈ N.

Again, as xn v xn+2, we obtain from (I) and (4)

d(xn, xn+2) = d(fxn−1, fxn+1)

� λd(xn−1, xn+1) + µd(xn−1, fxn−1) + δd(xn+1, fxn+1)

= λd(xn−1, xn+1) + µd(xn−1, xn) + δd(xn+1, xn+2)

� λ[d(xn−1, xn) + d(xn, xn+2) + d(xn+2, xn+1)]

+ µd(xn−1, xn) + δd(xn+1, xn+2)

= λ[dn−1 + d(xn, xn+2) + dn+1] + µdn−1 + δdn+1

= (λ+ µ)dn−1 + (λ+ δ)dn+1 + λd(xn, xn+2)

� (λ+ µ)αn−1d0 + (λ+ δ)αn+1d0 + λd(xn, xn+2)

d(xn, xn+2) � (λ+ µ) + (λ+ δ)α2

1− λ
αn−1d0

� 2λ+ µ+ δ

1− λ
αn−1d0,
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so

d(xn, xn+2) � βαn−1d0 for all n ≥ 1,(5)

where β =
2λ+ µ+ δ

1− λ
≥ 0.

For the sequence {xn} we consider d(xn, xn+p) in two cases.
If p is odd, say 2m+ 1, then using rectangular inequality and (4), we obtain

d(xn, xn+2m+1) � d(xn+2m, xn+2m+1) + d(xn+2m−1, xn+2m) + d(xn, xn+2m−1)

= dn+2m + dn+2m−1 + d(xn+2m−1, xn)

� dn+2m + dn+2m−1 + dn+2m−2 + dn+2m−3 + · · ·+ dn

� αn+2md0 + αn+2m−1d0 + αn+2m−2d0 + · · ·+ αnd0

= [α2m + α2m−1 + · · ·+ 1]αnd0

� αn

1− α
d0,

so

d(xn, xn+2m+1) � αn

1− α
d0.(6)

If p is even, say 2m, then using rectangular inequality, (4) and (5), we obtain

d(xn, xn+2m) = d(xn+2m, xn)

� d(xn+2m, xn+2m−1) + d(xn+2m−1, xn+2m−2) + d(xn+2m−2, xn)

= dn+2m−1 + dn+2m−2 + d(xn+2m−2, xn)

� dn+2m−1 + dn+2m−2 + dn+2m−3 + dn+2m−4 + · · ·
+ dn+2 + d(xn+2, xn)

� αn+2m−1d0+αn+2m−2d0+αn+2m−3d0+· · ·+αn+2d0 + βαn−1d0

= [α2m−1 + α2m−2 + · · ·+ α2]αnd0 + βαn−1d0

� αn

1− α
d0 + βαn−1d0

so

d(xn, xn+2m) � αn

1− α
d0 + βαn−1d0.(7)

As β ≥ 0, 0 ≤ α < 1, it follows that αn

1−αd0 → θ, βαn−1d0 → θ, so by (a) and

(d) of Remark 1, for every c ∈ E with θ � c, there exists n0 ∈ N such that
d(xn, xn+2m) � c, d(xn, xn+2m+1) � c for all n > n0. Thus, {xn} is a Cauchy
sequence in X. Since X is complete, so there exists u ∈ X such that

lim
n→∞

xn = lim
n→∞

fxn−1 = u
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We shall show that u is a fixed point of f . By (IV), we have xn v u, therefore, it
follows from (I) that

d(fxn−1, fu) � λd(xn−1, u) + µd(xn−1, fxn−1) + δd(u, fu)

d(xn, fu) � λd(xn−1, u) + µd(xn−1, xn) + δ[d(u, xn+1)

+ d(xn+1, xn) + d(xn, fu)]

(1− δ)d(xn, fu) � λd(xn−1, u) + δd(xn+1, u) + µdn−1 + δdn.

In view of (4) and the fact that 1− δ ≥ 0, by (d) of Remark 1, there exists n1 ∈ N
such that for every c ∈ E with θ � c, dn−1 � (1−δ)

4µ c and dn � (1−δ)
4δ c for all

n > n1. Also xn → u, so there exists n2 ∈ N such that for every c ∈ E with θ � c,

d(xn−1, u)� (1−δ)
4λ c and d(xn+1, u)� (1−δ)

4δ c for all n > n2.
Thus, we can choose n3 ∈ N such that

d(xn, fu)� c for all n > n3.(8)

Again by rectangular inequality,

d(fu, u) � d(fu, xn) + d(xn, xn+1) + d(xn+1, u)

= d(fu, xn) + dn + d(xn+1, u).

In view of (8),(4) and the fact that xn → u by (c) of Remark 1, we conclude that
d(fu, u) = θ, i.e., fu = u. Thus, u is fixed point of f.

Suppose that the set of fixed points A (say) of f is well ordered. We shall prove
that u is unique fixed point of f.

Let v ∈ A be another fixed point of f , i.e., fv = v. As A is well ordered, let,
e.g., u v v. From (I) we obtain

d(u, v) = d(fu, fv)

� λd(u, v) + µd(u, fu) + λd(v, fv)

= λd(u, v) + µd(u, u) + λd(v, v)

= λd(u, v).

As 0 ≤ λ < 1, it follows from above inequality and (f) of Remark 1 that u = v.
Thus, fixed point of f is unique. Conversely, if fixed point of f is unique, then A
is a singleton set, therefore well ordered. �

Taking suitable values of λ, µ, δ in theorem 1, one can obtain following fixed
point result in ordered cone rectangular metric spaces.

Corollary 1. Let (X,v, d) be an ordered complete cone rectangular metric
space and f : X → X be a mapping. Suppose that following conditions hold:

(I) f is
(a) an ordered Banach type contraction, or
(b) an ordered Kannan type contraction;

(II) there exists x0 ∈ X such that x0 v fx0;
(III) f is nondecreasing with respect to v;
(IV) if {xn} is a nondecreasing sequence in X and converging to some z, then

xn v z.
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Then f has a fixed point in X. Furthermore, the set of fixed points of f is well
ordered if and only if fixed point of f is unique.

Remark 2. The above corollary is a generalization and extension of results
of Azam et al. [5] and Azam and Arshad [4] in ordered cone rectangular metric
spaces in view of used contractive conditions and normality of cone.

Following is an example of ordered Reich type contraction which is not a Reich
contraction (in the sense of [24]) in cone rectangular metric space.

Example 3. Let X = {1, 2, 3, 4} and E = C1
R[0, 1] with ‖x‖ = ‖x‖∞ + ‖x′‖∞,

P = {x(t) : x(t) ≥ 0 for t ∈ [0, 1]}. Define d : X ×X → E as follows

d(1, 2) = d(2, 1) = 3 et,
d(2, 3) = d(3, 2) = d(1, 3) = d(3, 1) = et,
d(1, 4) = d(4, 1) = d(2, 4) = d(4, 2) = d(3, 4) = d(4, 3) = 4 et,
d(x, y) = θ if x = y.

Then (X, d) is a complete non-normal cone rectangular metric space, but not cone
metric space. Define mappings f : X → X and partial order on X as follows:

f1 = 1, f2 = 1, f3 = 4, f4 = 2,

and v= {(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 4), (1, 4)}.
Then it is easy to verify that f is ordered Reich contraction in (X,v, d) with

λ = δ = 3
8 , µ = 1

5 . Indeed, we have to check the validity of (3) only for (x, y) =
(1, 2), (2, 4), (1, 4).

If (x, y) = (1, 2), then
d(f1, f2) = d(1, 1) = θ,

therefore, (3) holds for arbitrary λ, µ, δ ∈ [0, 1) such that λ+ µ+ δ < 1.
If (x, y) = (2, 4), then

d(f2, f4) = d(1, 2) = 3 et

and
λd(2, 4) + µd(2, f2) + δd(4, f4) = 4λet + 3µ et +4δ et,

therefore, (3) holds for λ = δ = 3
8 , µ = 1

5 .
Similarly, (3) holds for (x, y) = (1, 4) with same values of λ, µ, δ. All other

conditions of Theorem 1 are satisfied and f has unique fixed point, namely “1”.
On the other hand, f is not a Reich type contraction in cone rectangular space

(non-ordered), e.g., for x = 3, y = 1 d(f3, f1) = d(4, 1) = 4 et and λd(3, 1) +
µd(3, f3) + δd(1, f1) = λ et +4µ et and λ+ µ+ δ < 1, therefore, (3) can not hold.

Following example illustrates that fixed point in above results may not be unique
(when the set of fixed point is not well ordered).

Example 4. Let X = {1, 2, 3, 4}, E = R2 and P = {(x, y) : x, y ≥ 0}. Define
d : X ×X → E as follows:

d(1, 2) = d(2, 1) = (3, 6),
d(2, 3) = d(3, 2) = d(1, 3) = d(3, 1) = (1, 2),
d(1, 4) = d(4, 1) = d(2, 4) = d(4, 2) = d(3, 4) = d(4, 3) = (2, 4),
d(x, y) = θ if x = y.
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Then (X, d) is a complete cone rectangular metric space but not cone metric space.
Define f : X → X and partial order on X as follows:

fx =

 x if x ∈ {1, 3},
4 if x = 2,
1 if x = 4,

and v= {(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (1, 4)}.
Then it is easy to see that d(fx, fy) � λd(x, y) for all x, y ∈ X with x v y, is

satisfied for λ ∈ [ 23 , 1). Thus, f is an ordered Banach contraction on X. All other
conditions of Corollary 1 (except the set of fixed points of f is well ordered) are
satisfied and f has two fixed points 1 and 3 in X. Note that (1, 3), (3, 1) 6∈ v .

On the other hand, for x = 1, y = 3, there is no λ such that 0 ≤ λ < 1 and
d(fx, fy) � λd(x, y). Therefore, f is not a Banach contraction on X.

In the following theorem the conditions on f , “nondecreasing” and completeness
of space, are replaced by another condition.

Theorem 2. Let (X,v, d) be an ordered cone rectangular metric space and
f : X → X be a mapping. Suppose that following conditions hold:

(I) f is an ordered Reich type contraction, i.e., it satisfies (3);
(II) there exists u ∈ X such that u v fu and d(u, fu) � d(x, fx) for all x ∈ X.

Then f has a fixed point. Furthermore, the set of fixed points of f is well ordered
if and only if fixed point of f is unique.

Proof. Let F (x) = d(x, fx) for all x ∈ X and z = fu, then F (u) � F (x) for all
x ∈ X. If F (u) = θ, then u is a fixed point of f. If θ ≺ F (u), then by assumption
(II) u v fu, so u v z and by (I), we obtain

F (z) = d(z, fz) = d(fu, fz)

� λd(u, z) + µd(u, fu) + δd(z, fz)

= λd(u, fu) + µd(u, fu) + δd(z, fz)

= λF (u) + µF (u) + δF (z)

F (z) � λ+ µ

1− δ
F (u) ≺ F (u) (as λ+ µ+ δ < 1),

a contradiction. Therefore, we have F (u) = θ, i.e., fu = u. Thus, u is a fixed
point of f.

The necessary and sufficient condition for uniqueness of fixed point follows from
a similar process as used in Theorem 1. �
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