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MODIFIED MULTISTEP ITERATION FOR APPROXIMATING A GENERAL

CLASS OF FUNCTIONS

IN LOCALLY CONVEX SPACES

H. AKEWE

Abstract. In this paper, we study the convergence of modified multistep iteration and use the scheme
to approximate the fixed point of a general class of functions introduced by Bosede and Rhoades [5] in
a complete metrisable locally convex space. As corollaries, the convergence results for SP and Mann
iterations are also established. Moreover, most convergence results in Banach spaces are generalized to
complete metrisable locally convex spaces. Our convergence results generalize and extend the results
of Berinde [2], Olaleru [11], Phuengrattana and Suantai [13], Rafiq [14] among others.

1. Introduction and Preliminary Definitions

A locally Convex space (X,u) with topology u is a topological vector space which has a local
base of convex neighborhoods of zero [20, Chap. 7]. It is metrisable if it is Hausdorff and has
countable zero basis. Consequently, it is metrisable if u can be described by a countable family of
continuous seminorms [20]. X is Hausdorff if and only if for each non-zero x ∈ X, there is p ∈ Q
with p(x) > 0 [11]. A seminorm p corresponds to each absolutely convex absorbent subset U of
X is called the gauge of U defined by p(x) = inf{λ : λ > 0, x ∈ λU} and with the property that
{x : p(x) < 1} ⊆ U ⊆ {x : p(x) ≤ 1}, U is a neighborhood of zero if and only if p is continuous.
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Theorem 1.1 ([11]). The topology of a metrizable locally convex space can always be defined
by a metric which is invariant under translation.

Proof. For details of proof see Olaleru [11]. �

Let X be a metrisable topological space and C be a nonempty subset of X and T : C → C a
self map of C. For x0 ∈ C, the sequence {xn}∞n=1

xn+1 = (1− αn)xn + αnTxn,(1.1)

where {αn}∞n=0 is a real sequence in [0,1] such that
∑∞
n=0 αn = ∞ is called the Mann iterative

process [9].
Olaleru [11] proved the convergence of Mann iterative process using the Zamfirescu operators

[22] and generalized several results in literature to complete metrisable locally convex spaces.
For x0 ∈ C, the sequence {xn}∞n=0 defined by

xn+1 = (1− αn)xn + αnTyn

yn = (1− βn)xn + βnTxn,
(1.2)

where {αn}∞n=0, {βn}∞n=0 are real sequences in [0,1] such that
∑∞
n=0 αn = ∞ is called Ishikawa

iterative scheme [7].
Observe that if βn = 0 for each n, then the Ishikawa iterative scheme (1.2) reduces to the Mann

iterative scheme (1.1).
For x0 ∈ C, the sequence {xn}∞n=0 defined by

xn+1 = (1− αn)xn + αnTyn,

yn = (1− βn)xn + βnTzn,

zn = (1− γn)xn + γnTxn

(1.3)
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where {αn}∞n=0, {βn}∞n=0, {γn}∞n=0 are real sequences in [0,1] such that
∑∞
n=0 αn

=∞ is called the Noor iterative (or three-step) scheme [10].
Also observe that if γn = 0 for each n, then the Noor iteration process (1.3) reduces to the

Ishikawa iterative scheme (1.2).
For x0 ∈ C, the sequence {xn}∞n=0 defined by

xn+1 = (1− αn)yn + αnTyn,

yn = (1− βn)zn + βnTzn,

zn = (1− γn)xn + γnTxn

(1.4)

where {αn}∞n=0, {βn}∞n=0, {γn}∞n=0 are real sequences in [0,1] satisfying βn ≤ αn, γn ≤ αn,∑∞
n=0 αn =∞ is called the SP-iterative (or modified three-step) process [13].
Also observe that if γn = 0 for each n and zn = xn, then the SP-iteration process (1.4) reduces

to the modified Ishikawa iterative scheme

xn+1 = (1− αn)yn + αnTyn,

yn = (1− βn)xn + βnTxn.(1.4b)

If γn = 0 and βn = 0 for each n, then the SP-iteration process (1.4) reduces to the Mann iterative
process (1.1).

In 2011, Phuengrattana and Suantai [13] used the SP-iterative process (1.4) to approximate the
fixed point of continuous functions on an arbitrary interval. They also compared the convergence
speed of Mann, Ishikawa, Noor and SP-iterative processes and proved that the SP-iterative process
converges faster than the others.
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For x0 ∈ C. The sequence {xn}∞n=0 defined by

xn+1 = (1− αn)xn + αnTy
1
n

yin = (1− βin)xn + βinTy
i+1
n ,

yp−1n = (1− βp−1n )xn + βp−1n Txn, i = 1, 2, . . . , p− 2, p ≥ 2

(1.5)

where {αn}∞n=0, {βin}∞n=0, i = 1, 2, . . . , p− 1 are real sequences in [0,1] such that
∑∞
n=0 αn =∞ is

called a multistep iteration scheme [22].
Observe that the multistep iteration is a generalization of the Noor, Ishikawa and the Mann

iterations. In fact, if p = 1 in (1.5), we have the Mann iteration (1.2); if p = 2 in (1.5), we have
the Ishikawa iteration (1.3) and if p = 3, we have the Noor iteration (1.4).

Several generalizations of the Banach fixed point theorem have been proved to date (for example,
see [2], [15] and [22]). One of the most commonly studied generalization hitherto is the one proved
by Zamfirescu [21] in 1972, which is stated as follows.

Theorem 1.2 ([22]). Let X be a complete metric space and T : X → X a Zamfirescu operator
satisfying

d(Tx, Ty)

≤ hmax{d(x, y),
1

2
[d(x, Tx) + d(y, Ty)],

1

2
[d(x, Ty) + d(y, Tx)]}

(1.6)

where 0 ≤ h < 1. Then, T has a unique fixed point and the Picard iteration converges to p for any
x0 ∈ X.

Observe that in a Banach space setting, condition (1.5) implies

‖Tx− Ty‖ ≤ δ‖x− y‖+ 2δ‖x− Tx‖(1.7)

where 0 ≤ δ < 1 and δ = max{h, h
2−h}, for details of proof see [3].
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Several papers have been written on the Zamfirescu operators (1.6), (for example, see [2], [15],
[18], [22]). The most commonly used methods of approximating the fixed points of the Zamfirescu
operators are Picard, Mann [8], Ishikawa [6] and Noor [10] iterative processes. Rhoades [16, 17]
used the Zamfirescu contraction condition (1.7) to obtan some convergence results for Mann and
Ishikawa iterative processes in a uniformly Banach space. Berinde [1] extended the results of the
author [16, 17] to arbitrary Banach space for the same fixed point iteration procedures. Rafiq
[15] proved the convergence of Noor iterative process (1.3) using the Zamfirescu operators defined
by (1.7). Osilike [12] proved several stability results and generalized several results in literature
using the following contractive definition. For each x, y ∈ X, there exist δ ∈ [0, 1) and L ≥ 0 such
that

d(Tx, Ty) ≤ δd(x, y) + Ld(x, Tx).(1.8)

In 2003, Imoru and Olatinwo [6] proved some stability results and generalized some known
results in the literature using the follwing general contractive definition.
For each x, y ∈ X, there exist δ ∈ [0, 1) and a monotone increasing function ϕ : R+ → R+ with
ϕ(0) = 0 such that

d(Tx, Ty) ≤ δd(x, y) + ϕ(d(x, Tx)).(1.9)

In 2010, Bosede and Rhoades [4] observed that the process of “generalizing” (1.8) could continue
ad infinitum. As a result of this observation, the authors [4], introduced the following class of
functions and proved the stability of Picard and Mann iterative schemes. That is, if x = p (is a
fixed point), then (1.8) becomes

d(p, Ty) ≤ δd(p, y)(1.10)

for some 0 ≤ δ < 1 and all x, y ∈ X.
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The contractive condition (1.10) is more general than those considered by Imoru and Olatinwo
[6], Osilike [12] and several others in the sense that if by replacing L in (1.8) with more complicated
expressions, the process of “generalizing” (1.8) could continue ad infinitum. Also, the condition
“ϕ(0) = 0” usually imposed by Imoru and Olatinwo [6] in the contractive definition (1.9) is
no longer necessary in the contractive condition (1.10). However, Bosede [3] also proved strong
convergence of the Noor iterative process for this general class of functions.

Definition 1.3. Let X be a metrisable topological space and C be a nonempty subset of X
and T : C → C a self map of C. For x0 ∈ C, the iteration procedure defined by (1.4) such that the
generated sequence {xn}∞n=0 converges to a fixed point p of T . Let {un}∞n=0 be arbitrary sequence
in X and set εn = fc(un+1 − g(T, un)), for n ≥ 0. We say the iteration procedure (1.4) is T -stable
if and only if limn→∞ εn = 0 implies that limn→∞ un = p.

Definition 1.4. Let x0 ∈ C. The sequence {xn}∞n=0 defined by

xn+1 = (1− αn)y1n + αnTy
1
n

yin = (1− βin)yi+1
n + βinTy

i+1
n ,

yp−1n = (1− βp−1n )xn + βp−1n Txn, i = 1, 2, . . . , p− 2, p ≥ 2

(1.11)

where {αn}∞n=0, {βin}, i = 1, 2, . . . , p−1 are real sequences in [0,1] such that
∑∞
n=0 αn =∞ is called

the modified multistep iteration scheme.

Motivated by the above results, we introduce the following modified multistep iteration scheme
(1.11) and use it to approximate the fixed point of a general class of functions introduced by
Bosede and Rhoades [4] in a complete metrisable locally convex space. As corollaries, some strong
convergence results are obtained for SP and Mann iterative schemes for this general class of funtions
(1.10). Our convergence results generalize and extend the results of Berinde [2], Bosede and
Rhoades [4], Olaleru [11], Phuengrattana and Suantai [13] and Rafiq [14] among others.
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We shall need the following Lemma which appeared in [1] to prove our results.

Lemma 1.5 ([21]). Let δ be a real number satisfying 0 ≤ δ < 1 and {εn}∞n=0 a sequence of
positive numbers such that limn→∞ εn = 0. Then for any sequence of positive numbers {un}∞n=0

satisfying un+1 ≤ δun + εn, n = 0, 1, 2, . . . , we have limn→∞ un = 0.

2. Main Result

Theorem 2.1. Let (X, fc) be a complete metrisable locally convex space, K a closed convex
subset of X and T : K → K be an operator with a fixed point p satisfying the condition

fc(p− Ty) ≤ δfc(p− y)(2.1)

for each y ∈ K and 0 ≤ δ < 1. For x0 ∈ K, let {xn}∞n=0 be the modified multistep iteration scheme
defined by (1.11) converging to p (that is, Tp = p), where {αn}∞n=0, {βin}∞n=0 (for each i) are real
sequences in [0, 1]. Then the modified multistep iteration scheme (1.11) converges strongly to p.

Proof. In view of (1.11) and (2.1), we have

fc(xn+1 − p) ≤ fc((1− αn)y1n + αnTy
1
n − (1− αn + αn)p)

≤ (1− αn)fc(y
1
n − p) + αnfc(Ty

1
n − p)

≤ (1− αn)fc(y
1
n − p) + δαnfc(y

1
n − p)

= [1− αn(1− δ)]fc(y1n − p).

(2.2)
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An application of (1.11) and (2.1) with y = y1n gives

fc(y
1
n − p) = fc((1− β1

n)y2n + β1
nTy

2
n − (1− β1

n + β1
n)p‖

≤ (1− β1
n)fc(y

2
n − p) + β1

nfc(Ty
2
n − p)

≤ (1− β1
n)fc(y

2
n − p) + δβ1

nfc(y
2
n − p)

= [1− β1
n(1− δ)]fc(y2n − p).

(2.3)

Also an application of (1.11) and (2.1) with y = y2n gives

fc(y
2
n − p) = fc((1− β2

n)y3n + β2
nTy

3
n − (1− β2

n + β2
n)p

≤ (1− β2
n)fc(y

3
n − p) + β2

nfc(Ty
3
n − p)

≤ (1− β2
n)fc(y

3
n − p) + δβ2

nfc(y
3
n − p)

= [1− β2
n(1− δ)]fc(y3n − p).

(2.4)

Similarly, an application of (1.11) and (2.1) with y = y3n gives

fc(y
3
n − p) ≤ (1− β3

n)fc(y
4
n − p) + β3

nfc(Ty
4
n − p)

≤ (1− β3
n)fc(y

4
n − p) + δβ3

nfc(y
4
n − p)

= (1− β3
n)fc(y

4
n − p) + δβ3

nfc(y
4
n − p)

= [1− β3
n(1− δ)](y4n − p).

(2.5)

Continuing the above process, we have

fc(xn+1 − p) ≤ [1− αn(1− δ)][1− β1
n(1− δ)][1− β2

n(1− δ)][1− β3
n(1− δ)]

. . . [1− βk−2n (1− δ)]fc(yk−1n − p).(2.6)
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An application of (1.11) and (2.1) also gives

fc(y
k−1
n − p) ≤ (1− βk−1n )fc(xn − p) + βk−1n fc(Txn − p)

≤ (1− βk−1n )fc(xn − p) + δβk−1n fc(xn − p)

= (1− βk−1n )fc(xn − p) + δβk−1n fc(xn − p)

= [1− βk−1n (1− δ)]fc(xn − p).

(2.7)

Substituting (2.7) in (2.6), we have

fc(xn+1 − p) ≤ [1− αn(1− δ)][1− β1
n(1− δ)][1− β2

n(1− δ)][1− β3
n(1− δ)]

. . . [1− βk−2n (1− δ)][1− βk−1n (1− δ)]fc(xn − p)
≤ [1− αn(1− δ)]fc(xn − p)

≤
n∏
j=0

[1− αj(1− δ)]fc(x0 − p)

≤ e−(1−δ)
∑∞

j=0 αj fc(x0 − p).

(2.8)

Since 0 ≤ δ < 1, αj ∈ [0, 1) and
∑∞
n=0 αn = ∞, so e−(1−δ)

∑∞
j=0 αj → 0 as n → ∞. Thus

limn→∞ fc(xn+1 − p) = 0.
Therefore, {xn}∞n=0 converges strongly to p. �

Theorem 2.1 leads to the following corollaries:

Corollary 2.2. Let (X, fc) be a complete metrisable locally convex space, K a closed convex
subset of X and T : K → K be an operator with a fixed point p satisfying the condition

fc(p− Ty) ≤ δfc(p− y)(2.9)
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for each y ∈ K and 0 ≤ δ < 1. For x0 ∈ K, let {xn}∞n=0 be the SP-iteration scheme defined by
(1.4) converging to p (that is, Tp = p), where {αn}∞n=0, {βn}∞n=0, {γn}∞n=0 are real sequences in
[0,1]. Then the SP-iteration scheme converges strongly to p.

Corollary 2.3. Let (X, fc) be a complete metrisable locally convex space, K a closed convex
subset of X and T : K → K be an operator with a fixed point p satisfying the condition

fc(p− Ty) ≤ δfc(p− y)(2.10)

for each y ∈ K and 0 ≤ δ < 1. For x0 ∈ K, let {xn}∞n=0 be the Mann iteration scheme defined by
(1.1) converging to p (that is, Tp = p), where {αn}∞n=0 is a real sequences in [0, 1]. Then the Mann
iteration scheme converges strongly to p.

Remark 1. Our Theorem 2.1 improves several known results in literature including the results
of Berinde [2] and Rhoades [18, Theorem 2] by extending the space to complete metrisable locally
convex spaces. The fact that there are complete metrisable spaces including many useful function
spaces that are not normable makes our Corollary 2.2 a useful generalization of Berinde’s theorem
[2].
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