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CONVERGENCE OF THE INCREMENTS

OF A WIENER PROCESS

A. BAHRAM

Abstract. Let λ(t,α) = (2at (log(t/at) + α log log t+ (1− α) log log at))−
1
2 where

0 ≤ α ≤ 1 and W (t) is a standard Wiener process. Suppose that at is a nonde-

creasing function of t such that 0 < at ≤ t and at/t is nonincreasing. In this paper,

we study the almost sure behaviour of lim supk→∞ sup0≤s≤atk
λ(tk,α)|W (tk+ s)−

W (tk)| where {tk} is an increasing sequence diverging to ∞.

1. Introduction

Let {W (t), t ≥ 0} be a standard Wiener process. Suppose that at is a nondecreas-
ing function of t such that 0 < at ≤ t and t/at is nonincreasing. In [1] Bahram
established the following law of the iterated logarithm

lim sup
t→∞

λ(t,α)|W (t+ at)−W (t)| = 1 almost surely (a.s.)

and

lim sup
t→∞

sup
0≤s≤at

λ(t,α)|W (t+ s)−W (t)| = 1 a.s.,

where

λ(t,α) = (2at (log(t/at) + α log log t+ (1− α) log log at))
− 1

2 and 0 ≤ α ≤ 1.

In the present paper, we look at this problem over a monotonic sequence (tk),
motivated by Gut (1986). Let Y (t) = W (t + at) −W (t), t > 0. We show that
lim supk→∞ λ(tk,α)|Y (tk)| depends on both (tk) and the function at, t > 0. The
main results of the paper are presented in the next section. In Section 3, similar
results are obtained for partial sums of i.i.d. the random variables by appealing
to strong approximation theory.

Throughout the paper, ε, c, δ and K (integer), with or without the suffix, stand
for positive constants; i.o. means infinitely often; for each u ≥ 0, we define the func-
tions log u = log(max(u, 1)), log log u = log log(max(u, 3)), g(t) = (t log t)/at and

gα(t) = t(log t)α(log at)
1−α/at with 0 ≤ α ≤ 1, so that λ(t,α) = (2at log gα(t))

− 1
2 .
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2. Main results

Theorem 2.1. Let at, t > 0 be a nondecreasing function of t with 0 < at < t
and at/t nonincreasing. Let (tk) be any increasing sequence diverging to ∞ such
that

lim sup
k→∞

tk+1 − tk
atk

< 1.

Then

lim sup
k→∞

λ(tk,α)|Y (tk)| = 1 a.s.

and

lim sup
k→∞

sup
0≤s≤atk

λ(tk,α)|W (tk + s)−W (tk)| = 1 a.s.,

where

λ(t,α) = (2at(log(t/at) + α log log t+ (1− α) log log at))
− 1

2 and 0 ≤ α ≤ 1.

Proof of Theorem 2.1. We establish that for any 0 < ε1 < 1,

P ( sup
0≤s≤atk

λ(tk,α)|W (tk + s)−W (tk)| > 1 + ε1 i.o.) = 0(1)

and

P (λ(tk,α)|W (tk + atk)−W (tk)| > 1− ε1 i.o.) = 1,(2)

which in turn imply the theorem. By Theorem 2.1 of Bahram (see [1]) we have

lim sup
t→∞

sup
0≤s≤at

λ(tk,α)|W (t+ s)−W (t)| = 1 a.s.,

from which (1) follows.
To prove (2), we proceed as follows. Define a sequence (uk) by u1 = at1 for some

t1 > 0 and uk+1 = uk + auk
, k ≥ 1. Using the well known probability inequality

1√
2π

(
1

x
− 1

x3

)
exp

(
−x

2

2

)
≤ P (W (1) ≥ x)

≤ 1√
2πx

exp

(
−x

2

2

)
, for x ≥ 0,

(3)

(see, e.g., [4, p. 175]), one can find constants c1, δ1 and K1 such that for all k > K1,
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P (λ(tk,α)|Y (uk)| ≥ 1− ε1) ≥ c1(log gα(uk))
−1
2 exp(−(1− ε1)2 log gα(uk))

≥ c1
(
gα(uk)

)−(1−ε1)2−δ1
= c1

(
uk(log uk)α(log auk

)1−α

auk

)−(1−ε1)2−δ1
= c1

(
auk

uk

(
log auk

log uk

)α
1

log auk

)(1−ε1)2+δ1

≥ c1
(
auk

uk

(
log auk

log uk

)
1

log auk

)(1−ε1)2+δ1

= c1(g(uk))−(1−ε1)
2−δ1 ,

where δ1 is chosen such that (1− ε1)2 + δ1 < 1.
Set

S =

∞∑
k=K1

(g(uk))−(1−ε2), where 1− ε2 = (1− ε1)2 + δ1.

From the fact that at/t is nonincreasing, we have

S ≥
∞∑

k=K1

(g(uk))−1 =

∞∑
k=K1

uk+1 − uk
uk log uk

.

Observing that
∞∑

k=K1

uk+1 − uk
uk log uk

≥
∫ ∞
c

dt

t log t

for some c > 0 and that ∫ ∞
c

dt

t log t
=∞,

one gets S =∞. Let us write

S =
∑
k≥K1

(g(u2k−1))−(1−ε2) +
∑
k≥K1

(g(u2k))−(1−ε2) = S1 + S2.

The fact S = ∞ implies that at least one of S1, S2 is ∞. Let S2 = ∞. By
the monotonicity of at/t, one can observe that g(u2k) ≤ g(u2k−1), which in turn
implies that S1 = ∞. Similarly, with S1 = ∞ one can show that S2 = ∞. Hence
S =∞ implies that both S1 =∞ and S2 =∞.

Let (t′k) be a subsequence of (tk) such that uk ≤ t′k ≤ uk+1 for all k large. We
now claim that such a subsequence exists. Otherwise, it would mean the existence
of a subsequence (uk(m)) of (uk) such that no member of (tk) belongs to the interval
[uk(m), uk(m)+1], m ≥ 1, i.e., there exists a subsequence (tk(l)) of (tk) such that
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tk(l) < uk(m) < uk(m)+1 < tk(l)+1. In turn we have

tk(l)+1 − tk(l)
atk(l)

≥
uk(m)+1 − uk(m)

auk(m)

which implies that

lim inf
k→∞

tk(l)+1 − tk(l)
atk(l)

≥ lim inf
k→∞

uk(m)+1 − uk(m)

auk(m)
= 1,

contradicting the condition

lim sup
k→∞

tk+1 − tk
atk

< 1

of the theorem. Hence such a sequence (t′k) necessarily exists.
Consider the odd subsequence (t′2k−1) of (t′k) and define the event

Ak = (λ(t′2k−1,α)
|Y (t′2k−1)| ≥ 1− ε1).

By (3), one can find constants c2, δ2 and K2 such that for all k ≥ K2,

P (Ak) ≥ c2(gα(t′2k−1))−(1−ε1)
2−δ2

≥ c2(g(t′2k−1))−(1−ε1)
2−δ2

with (1− ε1)2 + δ2 < 1.
From the fact that u2k−1 < t′2k−1 < u2k for k large, one can find K3 such that

for all k ≥ K3,

P (Ak) ≥ c2(g(t′2k−1)−(1−ε2)

where (1− ε1)2 + δ2 = 1− ε2.
Now S2 =∞ implies that

∑∞
k=K3

P (Ak) =∞. Also,

t′2k−1 + at′2k−1
< u2k + au2k

= u2k+1 < t′2k+1

for all k ≥ K3, implies that the events (Ak, k ≥ K3) are mutually independent.
By appealing to Borel Cantelli Lemma, we have P (Ak i.o.) = 1, which in turn
implies (2). �

Theorem 2.2. Let at, t > 0, be a nondecreasing function of t with 0 < at ≤ t
and at/t is nonincreasing. Let (tk) be an increasing sequence diverging to ∞ such
that

lim inf
k→∞

tk+1 − tk
atk

> 1.

Then

lim sup
k→∞

λ(tk,α)|Y (tk| = lim sup
k→∞

sup
0≤s≤atk

λ(tk,α)|W (tk + s)−W (tk)| = ε∗ a.s.,

where

ε∗ = inf

{
γ > 0 :

∑
k

(gα(tk))−γ
2

<∞, 0 ≤ α ≤ 1

}
.
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Proof of Theorem 2.2. Equivalently, we establish that

P ( sup
0≤s≤atk

λ(tk,α)|W (tk + s)−W (tk)| ≥ ε∗ + ε1 i.o.) = 0(4)

for any ε1 > 0 and that

P (λ(tk,α)|Y (tk)| ≥ ε∗ − ε1 i.o.) = 1(5)

for any 0 < ε1 < ε∗, when ε∗ > 0.
We have (see, e.g., [2, p. 448])

P ( sup
0≤s≤atk

λ(tk,α)|W (tk + s)−W (tk)| ≥ ε∗ + ε1)

≤ 2P (λ(tk,α)|Y (tk)| ≥ ε∗ + ε1).
(6)

By (3), one can find constants c3 and K4 such that for all k ≥ K4,

P (λ(tk,α)|Y |(tk)| ≥ ε∗ + ε1) ≤ c3(log gα(tk))
−1
2 exp{−(ε∗ + ε1)2 log gα(tk)}

≤ c3(gα(tk))−(ε
∗+ε1)

2

.

From the definition of ε∗, it follows that∑
k≥K4

gα(tk))−(ε
∗+ε1)

2

<∞.

Now (4) is immediate by appealing to Borel-Cantelli Lemma. This completes the
proof of the theorem when ε∗ = 0.

Consider the case ε∗ > 0. The condition lim infk→∞
tk+1−tk
atk

> 1 implies that

there exists K5 such that tk+1 > tk + atk for all k ≥ K5. This in turn implies that
(Y (tk), k ≥ K5) is a sequence of mutually independent random variables. By (3),
one can find c4, δ3 and K6 such that for all k ≥ K6,

P (λ(tk,α)|Y (tk)| ≥ ε∗ − ε1) ≥ c4(gα(tk))−(ε
∗−ε1)2−δ3 ≥ c4(g(tk))−(ε

∗−ε1)2−δ3

where δ3 can be chosen such that (ε∗ + ε1)2 + δ3 < ε∗. Consequently,

∞∑
k=K6

P (λ(tk,α)|Y (tk)| ≥ ε∗ − ε1) =∞.

By appealing to Borel-Cantelli Lemma, (5) follows. �

3. Similar result for partial sums

Let (Xn, n ≥ 1) be a sequence of i.i.d. random variables defined on a common
probability space (Ω,F , P ) and let Sn=

∑n
j−1 Sj , n ≥ 1. Assume that E(X1)=0,

E(X2
1 ) = 1 and E(etX1) < ∞ for |t| ≤ t0, for some t0 > 0. Let an be a nonde-

creasing function of n, n ≥ 1, such that (i) 0 < an ≤ n, (ii) an
n nonincreasing and

(iii) limn→∞

(
an

logn

)
=∞. Let

λ(n,α) =

(
2an

(
log

(
n

an

)
+ α log log n+ (1− α) log log an

))− 1
2

and 0 ≤ α ≤ 1.
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We have the following theorem.

Theorem 3.1. Let (nk) be an increasing sequence of positive integers. Then

(a) lim sup
k→∞

λ(nk,α)|Snk+ank
−Snk

|=lim sup
k→∞

sup
1≤s≤ank

λ(nk,α)|Snk+n−Snk
|=1 a.s.,

when lim sup
k→∞

nk+1 − nk
ank

< 1.

(b) lim sup
k→∞

λ(nk,α)|Snk+ank
−Snk

|=lim sup
k→∞

sup
1≤s≤ank

λ(nk,α)|Snk+n−Snk
|=ε∗ a.s.,

when lim inf
k→∞

nk+1 − nk
ank

> 1 where

ε∗ = inf

{
γ > 0 :

∑
k

(
ank

nk(log nk)α(log ank
)(1−α)

)−γ2

<∞ where 0 ≤ α ≤ 1

}
.

Proof of Theorem 3.1. Note that an
logn → ∞ implies that λ(n,α) log n → 0 as

n → ∞. In view of the fact that E(etX1) < ∞ for |t| ≤ t0, for some t0 > 0, the
result follows from Theorems 2.1 and 2.2 above from Komlös, Major and Tusnädy
([5, 6]). The details are omitted. �
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