CONVERGENCE OF THE INCREMENTS
OF A WIENER PROCESS
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ABSTRACT. Let Az o) = (2a¢ (log(t/at) + aloglogt + (1 — a)logloga;))” 2 where 0 < o < 1 and
W (t) is a standard Wiener process. Suppose that a; is a nondecreasing function of ¢ such that 0 < a; <t

and a¢/t is nonincreasing. In this paper, we study the almost sure behaviour of
lim supy, _, oo SUPo<s<ay, Aty,a) W (it + 8) — W(tg)| where {t;} is an increasing sequence diverging
to oo.

1. INTRODUCTION

Let {W (t),t > 0} be a standard Wiener process. Suppose that a; is a nondecreasing function of ¢
such that 0 < a; <t and t/a; is nonincreasing. In [1] Bahram established the following law of the
iterated logarithm

lim sup Ag,q)|[W(t +as) = W(t)| =1 almost surely (a.s.)
t—00

and
limsup sup Ao)|W(t+s)-W(t)=1 aus,

t—oo 0<s<a:
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where

1
2

At,a) = (2a¢ (log(t/as) + aloglogt + (1 — a)loglog ay)) and 0<a<l1.

In the present paper, we look at this problem over a monotonic sequence (tx), motivated by Gut
(1986). Let Y (t) = W(t+as) — W(t), t > 0. We show that limsup;,_, . A,,a)|Y (tx)| depends
on both (¢x) and the function a;, ¢ > 0. The main results of the paper are presented in the next
section. In Section 3, similar results are obtained for partial sums of i.i.d. the random variables
by appealing to strong approximation theory.

Throughout the paper, €, ¢, 6 and K (integer), with or without the suffix, stand for positive
constants; i.0. means infinitely often; for each u > 0, we define the functions log u = log(max(u, 1)),
loglog u = log log(max(u, 3)), g(t) = (tlogt)/a; and g, (t)=t(logt)*(logas)*~*/a; with0 < a < 1,
so that A o) = (2a¢log ga (t))_% .

2. MAIN RESULTS

Theorem 2.1. Let a;, t > 0 be a nondecreasing function of t with 0 < a; < t and a4/t
nonincreasing. Let (t;) be any increasing sequence diverging to oo such that

trpt1 — U

lim sup < 1.

k— o0 a’tk
Go back Then

limsup Ay, o) [Y(tr)| =1 a.s.
k—o0

Full Screen

and
Close

limsup sup A, o)W (ts +5) = W(te)| =1 a.s.,

k—oo 0<s<ay,

Quit




where

At,a) = (2a¢(log(t/at) + aloglogt + (1 — a) loglogat))_% and 0<a<1.

Proof of Theorem 2.1. We establish that for any 0 < &1 < 1,

(1) P( sup Ao |W(te +5) = W(tg)| >14+e1 i0.)=0
0<s<a¢,

and

(2) P()\(tk,a)|W(tk -+ atk) —W(tg)| >1—e1 io0.)=1,

which in turn imply the theorem. By Theorem 2.1 of Bahram (see [1]) we have

limsup sup Ay ,a)|W(t+s)-W(Et)|=1 as.,

t—oo 0<s<ay

from which (1) follows.
To prove (2), we proceed as follows. Define a sequence (ux) by u; = a, for some t; > 0 and
Uk41 = Uk + Ay, , kK > 1. Using the well known probability inequality

ﬁ (é _ %) _— (-?) < P(W(1) > )

© 1 :
< exp (_w_) for >0
— 27-‘-x 2 k) — )

(see, e.g., [4, p.175]), one can find constants ¢;, ; and K; such that for all k£ > K,




Pty (un)| > 1= 1) > c1(log ga(ur)) = exp(—(1 — £1)log ga(ur))
_(1_51)2—51
> ¢ (ga(uk))

( x(log uy) log O ) —(1=e1)?=8

logag, \* 1 \@—0’+e
k
( Uk (10gUk> logauk)

> ¢ logay,) 1 )0
= ur \ logug / logay,

=c1(g(ug))” (1-e1)? —51
where §; is chosen such that (1 —e1)? +6; < 1.
Set
S = Z (g(uk))—(l—az)’ where 1—ey = (1 . 81)2 46,
k=K,

From the fact that a;/t is nonincreasing, we have

S> ) (glw) =Y Shtl — Tk

1
k=K1 b U 10g U
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Observing that
i Ug 41 — Uk >/°° dt
Wi, Wk logur, — J. tlogt
/°° dt
—_— = OO’
. tlogt
one gets S = co. Let us write

S= 3 (gluze—1)) "7 + Y (gluzk)) ") = 51 + S

k> Ky k> K,

for some ¢ > 0 and that

The fact S = oo implies that at least one of Si, Sy is co. Let Sy = co. By the monotonicity of
at/t, one can observe that g(usx) < g(usg—1), which in turn implies that S; = co. Similarly, with
S1 = oo one can show that S = co. Hence S = oo implies that both S; = co and Sy = co.

Let (t},) be a subsequence of (t;) such that uy <t} < up4q for all k large. We now claim that
such a subsequence exists. Otherwise, it would mean the existence of a subsequence (uj(m)) of
(ug) such that no member of (Z) belongs to the interval [ug(p,), Uk(m)+1], m > 1, i.e., there exists
a subsequence (t() of (t) such that iy < Ug(m) < Ukm)+1 < tk@)+1. In turn we have

te()+1 — th@) S Wk(m)+1 — Uk(m)

Aty 1) Qg (1m)

which implies that

liminf O T o e k)4 T Ukm)
k—00 Aty T k—oo Aoy, (m) ’



contradicting the condition

ter1 — Uk

lim sup <1

k— o0 atk

of the theorem. Hence such a sequence (¢} ) necessarily exists.
Consider the odd subsequence (t}, ;) of (t,) and define the event

A = Ay, Y (top—1)| 2 1 —e1).
By (3), one can find constants cg, 02 and K5 such that for all k£ > K,
P(A) > e5(ga(thy—)) ")
> ea(g(tyy )"

with (1 —&1)% + 42 < 1.
From the fact that ugp—1 < th,_, < ugy for k large, one can find K3 such that for all £ > K3,

P(Ay) = ealg(ty—y) 07

where (1 —¢1)% + 0y = 1 — &.
Now Sy = oo implies that Y 72 . P(Ax) = oo. Also,

/
top—1 + ayy, | < U2k + Quyy
!/
= Ugk+1 < topyq

for all k£ > K3, implies that the events (Ag, k > K3) are mutually independent. By appealing to
Borel Cantelli Lemma, we have P(Ay ¢.0.) = 1, which in turn implies (2). O



Theorem 2.2. Let at, t > 0, be a nondecreasing function of t with 0 < a; < t and a/t is
nonincreasing. Let (ti) be an increasing sequence diverging to oo such that

t —t
liminf 22— % 5 9,
k—o00 G,
Then
limsup Az, o) Y (tx| = limsup sup Mg, o)W (te +5) = W(ty)| =¢*  a.s.,
k—oc0 k— o0 Ogsgatk
where

¢* = inf {fy >0: Z(ga(tk))_72 <oo, 0<a< 1} .
k

Proof of Theorem 2.2. Equivalently, we establish that

(4) P( sup  A,a)[W(te +5) = W(tg)| > " +e1 i0.)=0
0<s<at,

for any £; > 0 and that
(5) P()\(tk,a)|Y(tk)| >e* —¢g i.O.) =1

for any 0 < &; < £*, when £* > 0.
We have (see, e.g., [2, p. 448])

P( sup )‘(tk,a)|W(tk +35)—=W(tg)| =" +¢1)
(6) OSSSatk
< 2P(/\(tk,a)|Y(tk)| >e* + 61).




By (3), one can find constants ¢ and K4 such that for all k£ > Ky,

Pt oY 1(t6)] > " +£1) < c3(10g ga(tr)) 7 exp{—(c* + &1)* 1og g (tx)}
< e3(galty)) "V

From the definition of £*, it follows that

3 galte)) " < o0,

k>K4

Now (4) is immediate by appealing to Borel-Cantelli Lemma. This completes the proof of the
theorem when £* = 0.

Consider the case ¢* > 0. The condition liminfz_, > 1 implies that there exists K5

tht1—tk
at

k
such that tgy1 > tr + aq, for all k > K5. This in turn implies that (Y (¢;),k > Kj5) is a sequence
of mutually independent random variables. By (3), one can find ¢4, 63 and Kg such that for all
k 2 K67

P(M Y ()] > € = £1) 2 calgalte) T 70 7% > ¢y (g(t)) = 7o) %
where 63 can be chosen such that (¢* + ;)% + 63 < *. Consequently,

> PAY ()] 2 e* — 1) = 0.
k=Ke

By appealing to Borel-Cantelli Lemma, (5) follows. ]



<>

3. SIMILAR RESULT FOR PARTIAL SUMS

Let (X,,,n > 1) be a sequence of i.i.d. random variables defined on a common probability space
(Q,F,P) and let S, =7 | Sj, n > 1. Assume that E(X;)=0, E(X}) = 1 and E(e"*") < oo for
[t| < to, for some ty > 0. Let a,, be a nondecreasing function of n, n > 1, such that (i) 0 < a,, < n,
) = 00. Let

N\ a . . oy s a
(ii) %= nonincreasing and (iii) lim, oo (@

1
~3
An,a) = <2an (log (al) + aloglogn + (1 — ) loglogan>> and 0 <a<l1.
‘We have the following theorem.

Theorem 3.1. Let (ny) be an increasing sequence of positive integers. Then
(a) Hmsup Any, ) [Sny+an, = Sn|=lmsup  sup  Agn, o) [Snit+n — Sny | =1 a.s.,
k—o0 k—oco 1<s<an,

. Nk+1 — N
when lim sup AL ST

k— o0 ank
. . o
(b) Hmsup Any o) [Sns+an,— Sny|=Hmsup sup A(n,a)[Snptn — Sni|=€" a.s.,
k=00 k—00 1<s<an,
Ng+1 — N

when lim inf k > 1 where

k—o0 Qpyy,

_72
. an
* = inf 0: k h 0<a<l;.
€* =in {’y > gk <nk(lognk)"(logank)(1—o‘)) < 00 where 0 < a < }

Proof of Theorem 3.1. Note that ﬁ; — oo implies that A, o) logn — 0 as n — oo. In view of

the fact that E(e’*1) < oo for |t| < tg, for some to > 0, the result follows from Theorems 2.1 and
2.2 above from Komlés, Major and Tusnddy ([5, 6]). The details are omitted. O
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