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COMPARISON RESULTS FOR NONLINEAR ELLIPTIC

EQUATIONS INVOLVING A FINSLER-LAPLACIAN

JAROSLAV JAROŠ

Abstract. Picone identity for a Finsler-Lapace operator is established and com-
parison theorems of the Leighton type for a pair of nonlinear elliptic equations

involving such operators are obtained with the help of this new formula.

1. Introduction

The purpose of this paper is to present an identity of the Picone type for the
operator of the form

∆H,Av := div
(
A(x)H(∇v)∇ξH(∇v)

)
(1.1)

where A ∈ C1(Ω) with A(x) > 0 on Ω for some bounded domain in Rn, n ≥ 2,
with a piecewise smooth boundary ∂Ω, H : Rn → [0,+∞) is a convex function
of the class C1(Rn r {0}) which is positively homogeneous of degree 1, and ∇
and ∇ξ stand for usual gradient operators with respect to the variables x and ξ,
respectively. We refer to the operator ∆H,A as the (weighted) Finsler-Laplacian.
An example of H satisfying the above conditions is the lr-norm

H(ξ) = ‖ξ‖r =

( n∑
i=1

|ξi|r
)1/r

, r > 1,(1.2)

for which the operator ∆H,A has the form

∆H,Av = div
(
A(x)‖∇v‖2−rr ∇rv

)
where

∇rv :=

(∣∣∣∣ ∂v∂x1

∣∣∣∣r−2
∂v

∂x1
, . . . ,

∣∣∣∣ ∂v∂xn
∣∣∣∣r−2

∂v

∂xn

)
.(1.3)

Note that ∆H,A is a nonlinear operator unless r = 2 when it reduces to the usual
weighted Laplacian div(A∇v). Various elliptic problems involving the Finsler-
Laplacian ∆H,A with A ≡ 1 have been recently studied by several authors including
[3]–[5], [8]–[9], [12], [17]–[19].
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In the case of the Euclidean norm H(ξ) = ‖ξ‖2, ξ ∈ Rn, the following simple
formula (that became known as Picone’s identity) holds true (see [14]).

Lemma 1.1. If u, v and A∇v are differentiable in a given domain Ω ⊂ Rn and
v(x) 6= 0 in Ω, then

div

(
u2

v
A(x)∇v

)
=
u2

v
div (A(x)∇v) +A(x)‖∇u‖22 −A(x)‖∇u− u

v
∇v‖22.

(1.4)

Because of its simplicity and wide applicability, the identity (1.4) has become
one of the most popular tools of the qualitative and comparison theory of lin-
ear differential equations and continues to be the topic of various extensions and
generalizations; see, for example, [1]–[2], [6]–[7], [10]–[11], [13], [16], [20].

One of typical results that can easily be obtained by integrating (1.4) over Ω
and using the divergence theorem asserts that if the equation div(A∇v) +Cv = 0

where C ∈ C(Ω) has solutions satisfying v(x) 6= 0 in Ω, then

J [u; Ω] :=

∫
Ω

[
A(x)‖∇u‖22 − C(x)u2

]
dx > 0(1.5)

for all u ∈W 1,2
0 (Ω) r {0}.

An extended version of formula (1.4) which is sometimes called the “second
Picone’s identity” says that if a satisfies the same conditions as A and u, v, a∇u
and A∇v are differentiable in Ω with v(x) 6= 0, then

div

(
ua(x)∇u− u2

v
A(x)∇v

)
= udiv(a(x)∇u)− u2

v
div(A(x)∇v)

+
(
a(x)−A(x)

)
‖∇u‖22

+A(x)‖∇u− u

v
∇v‖22.

(1.6)

Formula (1.6) provides a tool for simple proofs of comparison theorems concern-
ing a pair of elliptic equations involving the weighted Laplacians div(a∇u) and
div(A∇v), respectively. An example of such results is the Leighton-type integral
comparison theorem which asserts that if

V [u; Ω] :=

∫
Ω

[(
a(x)−A(x)

)
‖∇u‖22 +

(
(C(x)− c(x)

)
u2
]
dx ≥ 0(1.7)

for some nontrivial solution u of div(a∇u) + cu = 0 satisfying u = 0 on ∂Ω, then
any solution v of the equation div (A∇v) + Cv = 0 either has a zero in Ω or it
is a constant multiple of u. In particular, if a(x) ≥ A(x) and C(x) ≥ c(x) for all
x ∈ Ω, then the condition (1.7) is clearly satisfied and from the above result we
get the classical Sturm-Picone comparison theorem.

For a survey of other applications of identities (1.4) and (1.6), see [16].
The purpose of this paper is to generalize identity (1.4) to the case where the

Euclidean norm ‖.‖2 is replaced by an arbitrary norm H(.) in Rn and to obtain the



RESULTS FOR NONLINEAR ELLIPTIC EQUATIONS 83

Leighton-type comparison result concerning a pair of nonlinear degenerate elliptic
equations of the form

div
(
a(x)H(∇u)∇ξH(∇u)

)
+ c(x)u = 0(1.8)

and

div
(
A(x)H(∇v)∇ξH(∇v)

)
+ C(x)v = 0(1.9)

where a, c, A,C and H are as above.
The paper is organized as follows. In Section 2 we survey basic properties of

general norms in Rn. Section 3 contains an extension of Picone’s identity to the
Finsler-Laplace operator and comparison results for nonlinear elliptic equations
obtained with the help of this new identity. In Section 4 we show how the compar-
ison principle developed in the preceding section yields the nonexistence of positive
solutions in exterior domains for a class of equations of the form (1.9).

2. Preliminaries

In this section we recall some of elementary properties of general norms in Rn
which are needed in the sequel. For the proofs see, for instance, [3] or [8].

Let H be an arbitrary norm in Rn, i.e., a convex function H : Rn → [0,∞)
satisfying H(ξ) > 0 for all ξ 6= 0 which is positively homogeneous of degree 1, so
that

H(tξ) = |t|H(ξ) for all ξ ∈ Rn and t ∈ R.(2.1)

Since all norms in Rn are equivalent, for H there exist positive constants α and
β such that

α‖ξ‖2 ≤ H(ξ) ≤ β‖ξ‖2
for all ξ ∈ Rn. Let 〈, 〉 denote the usual inner product in Rn and define the dual
norm H0 of H by

H0(x) = sup
ξ 6=0

〈x, ξ〉
H(ξ)

for x ∈ Rn.(2.2)

The set WH := {x ∈ Rn : H0(x) < 1} is sometimes called the Wulff shape (or
equilibrium crystal shape) of H.

If we assume that H ∈ C1(Rn r {0}), then from (2.1) it follows that

∇ξH(tξ) = sgn t ∇ξH(ξ) for all ξ 6= 0 and t 6= 0(2.3)

and

〈ξ,∇ξH(ξ)〉 = H(ξ) for all ξ ∈ Rn(2.4)

where the left-hand side is defined to be 0 if ξ = 0. Moreover,

H0(∇ξH(ξ)) = 1 for all ξ ∈ Rn r {0}.(2.5)

Similarly, if H0 is of class C1 for x 6= 0, then

H(∇H0(x)) = 1 for all x ∈ Rn r {0}.(2.6)
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Also, the identities

H
[
H0(x)∇H0(x)

]
∇ξH

[
H0(x)∇H0(x)

]
= x,(2.7)

and

H0

[
H(ξ)∇ξH(ξ)

]
∇H0

[
H(ξ)∇ξH(ξ)

]
= ξ,(2.8)

hold for all x, ξ ∈ Rn, where H(0)∇ξH(0) and H0(0)∇H0(0) are defined to be 0.
From the definition (2.2) we easily obtain the Hölder-type inequality

〈x, ξ〉 ≤ H(ξ)H0(x) for all x, ξ ∈ Rn(2.9)

with equality holding if and only if

x = H(ξ)∇ξH(ξ).(2.10)

In the proof of our main result we will need the following simple lemma which
is a consequence of the well-know result from the convex analysis asserting that a
continuously differentiable function F defined in an open convex subset of Rn is
strictly convex there if and only if

F (y)− F (x)−
〈
∇F (x), y − x

〉
> 0(2.11)

for all x 6= y.

Lemma 2.1. Let H be a norm in Rn such that H ∈ C1(Rn r {0}) and H2 is
strictly convex. If

H(x)2 − 2
〈
x,H(y)∇H(y))

〉
+H(y)2 = 0(2.12)

for some x, y ∈ Rn, y 6= 0, and H(x) = H(y), then x = y.

Proof. Let x, y ∈ Rn with y 6= 0 satisfy H(x) = H(y) and (2.12). Adding and
subtracting 2〈y,H(y)∇H(y)〉 in (2.12) and using (2.4), we obtain

0 = 2H(y)2 − 2
〈
y,H(y)∇H(y)

〉
+ 2
〈
y − x,H(y)∇H(y)

〉
= 2H(y)2 − 2H(y)〈y,∇H(y)〉+ 2

〈
y − x,H(y)∇H(y)

〉
= 2
〈
y − x,H(y)∇H(y)

〉
.

(2.13)

Notice that 2H(y)∇H(y) = ∇
(
H(y)

)2 6= 0. Indeed, if ∇
(
H(y)

)2
were the zero

vector for some y ∈ Rn, i.e., even strictly convex function H(y)2 attained its global
minimum at y, then y would necessarily be equal to 0, a contradiction. Therefore,
by strict convexity of H2, x = y, and the proof is complete. �

Another elementary inequality that will be needed in the sequel is an immediate
consequence of the property |H(y) − H(x)| ≤ H(y − x) which holds for each
x, y ∈ Rn and any norm H.

Lemma 2.2. If H is an arbitrary norm in Rn, then

|H(y)2 −H(x)2| ≤
[
H(x) +H(y)

]
H(y − x)(2.14)

for any x, y ∈ Rn.
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3. Basic identity and comparison theorems

Let Ω ⊂ Rn be a bounded domain with a piecewise boundary. The following is an
extension of Picone’s identity (1.4) to the Finsler-Laplace operator ∆H,A given by
(1.1).

Theorem 3.1 (Finsler-Picone identity). Let H be an arbitrary norm in Rn
which is of class C1 for x 6= 0. If u, v and AH(∇v)∇ξH(∇v) are differentiable in
a given domain Ω and v(x) 6= 0 in Ω, then

div

(
u2

v
A(x)H(∇v)∇ξH(∇v)

)
=
u2

v
∆H,Av +A(x)H(∇u)2

−A(x)

{
H(∇u)2 − 2

u

v

〈
∇u,H(∇v)∇ξH(∇v)

〉
+
u2

v2
H(∇v)2

}
.

(3.1)

Moreover, the bracketed expression in (3.1), denoted by Φ(u, v), is nonnegative in
Ω. If, in addition, H2 is strictly convex in Rn, then Φ(u, v) = 0 in Ω if and only
if u is a constant multiple of v in each component of Ω.

Proof. The relation (3.1) can be easily verified by a direct computation. To
prove that Φ(u, v) ≥ 0, notice that it can be rewritten as Φ(u, v) = Φ1(u, v) +
Φ2(u, v), where

Φ1(u, v) = H(∇u)2 − 2H(∇u)H
(u
v
∇v
)

+H
(u
v
∇v
)2

=

[
H(∇u)−H

(u
v
∇v
)]2

and

Φ2(u, v) = 2
{
H(∇u)H

(u
v
∇v
)
−
〈
∇u,H

(u
v
∇v
)
∇ξH

(u
v
∇v
)〉}

.

Clearly, Φ1(u, v) ≥ 0 in Ω. The nonnegativity of Φ2(u, v) follows from the Hölder
inequality (2.9).

Finally, the equality case in Φ(u, v) ≥ 0 can occur only if both Φ1(u, v) = 0 and
Φ2(u, v) = 0 in Ω. The first condition is satisfied if and only if

H(∇u) = H
(u
v
∇v
)

in Ω.(3.2)

If
(
u∇v/v

)
(x0) 6= 0 for some x0 ∈ S, then by Lemma 2.1, we have ∇u = u∇v/v

at x0, or equivalently, ∇(u/v)(x0) = 0. On the other hand, if u∇v/v = 0, then
from (3.2), we get ∇u = 0 which again implies ∇(u/v) = 0. Summarizing the
above observations we get ∇(u/v) = 0 in Ω which forces u/v to be constant in
each component of Ω. �

In the special case when H(ξ) is an r-norm (1.2), the identity (3.1) becomes

div

(
u2

v
‖∇v‖2−rr ∇rv

)
=
u2

v
div
(
‖∇v‖2−rr ∇rv

)
+ ‖∇u‖2r

−
{
‖∇u‖r2 − 2

u

v

〈
‖∇v‖2−rr ∇rv,∇u

〉
+
u2

v2
‖∇v‖2r

}
,(3.3)

where ∇rv is defined by (1.3).
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In what follows, we always assume that the norm H(ξ) is continuously differ-
entiable for ξ 6= 0 and that H(ξ)2 is strictly convex in Rn.

As an immediate consequence of the Finsler-Picone identity (3.1) we get the
following necessary condition for the existence of zero-free solutions (in Ω) of the
equation (1.9).

Theorem 3.2. If (1.9) possesses a solution v which satisfies v(x) 6= 0 in Ω,
then

(3.4) JH [u; Ω] :=

∫
Ω

[
A(x)H(∇u)2 − C(x)u2

]
dx > 0,

for all 0 6≡ u ∈ D(Ω) := {φ ∈ C1(Ω) : u = 0 on ∂Ω}.

Proof. Integrating (3.1) over Ω and making use of the divergence theorem yields

JH [u; Ω] =

∫
Ω

A(x)Φ(u, v)dx ≥ 0.

Since A(x) > 0, v(x) 6= 0 in Ω and u = 0 on ∂Ω, equality JH [u; Ω] = 0 cannot
occur and the proof is complete. �

The above theorem can be reformulated as a criterion for the existence of zeros
of solutions of (1.9) in Ω. Such a result belongs to “weaker” Sturmian conlusions
in the sense that it establishes the existence of a zero in Ω∪ ∂Ω rather than in Ω.
Under the additional assumption that the boundary of a domain Ω is smooth, we
can prove the following stronger result.

Theorem 3.3. Let ∂Ω ∈ C1. Assume that there exists a nontrivial function
u ∈ C1(Ω) vanishing on ∂Ω and satisfying

JH [u; Ω] :=

∫
Ω

[
A(x)H(∇u)2 − C(x)u2

]
dx ≤ 0.(3.5)

Then every solution v of (1.9) must have a zero in Ω unless v is a constant multiple
of u.

Proof. Suppose that there exists a solution v of (1.9) such that v(x) 6= 0 in Ω.
Let {uk} denote a sequence of C∞0 (Ω) functions converging to u in the norm

‖w‖ :=

(∫
Ω

[
H(∇w)2 + w2

]
dx

) 1
2

.

First, an integration of the identity (3.1) with u = uk over Ω yields

JH [uk; Ω] =

∫
Ω

A(x)
[
H(∇uk)2 +H

(uk
v
∇v
)2

− 2
u2
k

v2

〈
H(∇v)∇ξH(∇v),∇uk

〉]
dx ≥ 0.

(3.6)
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Next, we show that limk→∞ JH [uk; Ω] = JH [u; Ω] = 0. Since A and C are uni-
formly bounded, there is a constant K1 > 0 such that∣∣JH [uk; Ω]− JH [u; Ω]

∣∣ ≤ K1

∫
Ω

|H(∇uk)2 −H(∇u)2|dx

+K1

∫
Ω

∣∣u2
k − u2

∣∣dx.(3.7)

Observing that∣∣H(∇uk)2 −H(∇u)2
∣∣ ≤ [H(∇uk) +H(∇u)

]
H(∇(uk − u))(3.8)

(cf. (2.14)) and using the Cauchy-Schwartz inequality, we get∫
Ω

∣∣H(∇uk)2 −H(∇u)2
∣∣dx

≤
(∫

Ω

[
H(∇uk) +H(∇u)

]2
dx

) 1
2
(∫

Ω

H(∇(uk − u))2dx

) 1
2

.

(3.9)

Similarly,∫
Ω

∣∣u2
k − u2

∣∣dx ≤ (∫
Ω

(|uk|+ |u|)2dx

) 1
2
(∫

Ω

(uk − u)2dx

) 1
2

.(3.10)

Collecting (3.7), (3.9) and (3.10) yields∣∣JH [uk; Ω]− JH [u; Ω]
∣∣ ≤ K2

(
‖uk‖+ ‖u‖

)
‖uk − u‖

for some positive constant K2 which does not depend on k. It follows that
limk→∞ JH [uk; Ω] = JH [u; Ω]. From (3.6) we have JH [u; Ω] ≥ 0, which together
with (3.5) implies that JH [u; Ω] = 0.

Let S be an arbitrary domain with S̄ ⊂ Ω. Then for sufficiently large k, the
support of uk contains S̄, so that

0 ≤
∫
S

A(x)Φ(uk, v)dx ≤
∫

Ω

A(x)Φ(uk, v)dx = JH [uk; Ω](3.11)

for all such k. Applying (3.8) and Hölder inequality, we can show analogously as
in the first part of the proof that∫

S

A(x)Φ(uk, v)dx→
∫
S

A(x)Φ(u, v)dx as k →∞.

Letting k →∞ in (3.11), we obtain that∫
S

A(x)Φ(u, v)dx = 0.

Since A(x) > 0 in Ω, it follows that Φ(u, v) ≡ 0 identically in S. By the last
assertion in Theorem 3.1, v must be a constant multiple of u in S and thus in Ω.
This completes the proof. �

Our next result is the Leighton-type integral comparison theorem.
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Theorem 3.4. Let ∂Ω ∈ C1. Assume that there exists a nontrivial solution u
of (1.8) vanishing on ∂Ω and satisfying

VH [u; Ω] :=

∫
Ω

[(
a(x)−A(x)

)
H(∇u)2 +

(
C(x)− c(x)

)
u2
]
dx ≥ 0.(3.12)

Then every solution v of (1.9) must have a zero in Ω unless v is a constant multiple
of u.

Proof. If the function u is a nontrivial solution of Eq. (1.8) which satisfies u = 0
on ∂Ω, it follows from the divergence theorem that

FH [u; Ω] :=

∫
Ω

[
a(x)H(∇u)2 − c(x)u2

]
dx = 0.(3.13)

Thus, the condition (3.12) implies

JH [u; Ω] = FH [u; Ω]− VH [u; Ω] ≤ 0,

and the assertion follows from Theorem 3.3. �

The pointwise comparison principle of the Sturm-Picone type for the pair of
nonlinear elliptic equations (1.8) and (1.9) with general norms in the principal
differential operators is an immediate consequence of Theorem 3.4.

Corollary 1. Assume that a(x) ≥ A(x) and C(x) ≥ c(x) in Ω and (1.8) has
a nontrivial solution u such that u = 0 on ∂Ω. Then any solution v of (1.9) is
either zero at some point in Ω or else v = ku for a nonzero constant k.

4. Nonexistence of positive solutions in exterior domains

Let Ωr := {x ∈ Rn : H0(x) > r}, r ≥ r0 > 0, be the exterior of the H0-ball with
radius r centered at the origin. We apply Theorem 3.4 to demonstrate that the
equation

div
(
A(x)H(∇v)∇ξH(∇v)

)
+ C(x)v = 0, x ∈ Ωr0 ,(4.1)

may have no positive solutions in Ωr for any r > r0. This is done by comparing
(4.1) with another equation of the same form which is H0-radially symmetric in
the sense that its coefficients ã and c̃ depend only on H0(x):

div
(
ã(H0(x))H(∇u)∇ξH(∇u)

)
+ c̃(H0(x))u = 0, x ∈ Ωr0 .(4.2)

If u = y(H0(x)) is an H0-radially symmetric solution of (4.2), then y(r) is easily
seen to satisfy the linear ODE(

rn−1ã(r)y′
)′

+ rn−1c̃(r)y = 0, r ≥ r0,(4.3)

where ′ = d/dr.

Theorem 4.1. Assume that there exist continuous real-valued functions ã and
c̃ defined on [r0,∞) with ã(r) > 0 in [r0,∞) such that (4.3) is oscillatory in the
sense that any of its solutions has a sequence of zeros clustering at infinity. Let

max
H0(x)=r

A(x) ≤ ã(r) and min
H0(x)=r

C(x) ≥ c̃(r), r ≥ r0 > 0.(4.4)
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Then (4.2) cannot have solutions v such that v(x) 6= 0 in Ωr for any r ≥ r0.

Proof. Let y(r) be an oscillatory solution of (4.3) on [r0,∞) and {ri} be the se-
quence of its consecutive zeros satisfying r0 ≤ r1 < . . . < ri < . . ., limi→∞ ri =∞.
Then the function u defined by u(x) := y(H0(x)) is an H0-radially symmetric
solution of (4.2) in Ωr0 such that u(x) = 0 on Sri := {x ∈ Rn : H0(x) = ri},
i = 1, 2, . . .. Define

Ωri,ri+1 := {x ∈ Rn : ri < H0(x) < ri+1}, i = 1, 2, . . . .

Let v be a solution of (4.2) in Ωr for some r ≥ r0. Then Ωri,ri+1
⊂ Ωr for

sufficiently large i and

VH [u; Ωri,ri+1
] =

∫
Ωri,ri+1

[(
A(x)− ã(H0(x)

)
H(∇u)2

−
(
C(x)− c̃(H0(x))

)
u2
]
dx ≤ 0

(4.5)

because of (4.4). Theorem 3.4 now implies that v must vanish at some points of
Ωri,ri+1

for all i large enough, and the proof is complete. �

An alternative way how to reduce the problem of the existence (nonexistence)
of positive solutions of the PDE (4.1) in exterior domains to the one-dimensional
oscillation problem is to replace ã(r) and c̃(r) in (4.3) by the spherical means ā(r)
and c̄(r) of the coefficients A(x) and C(x) over the Wulff sphere Sr := {x ∈ Rn :
H0(x) = r}, respectively, defined by

ā(r) :=
1

αnrn−1

∫
Sr

A(x)dσ, c̄(r) :=
1

αnrn−1

∫
Sr

C(x)dσ,(4.6)

where αn is the surface area of the unit H0-sphere S1.

Theorem 4.2. If the linear ODE(
rn−1ā(r)y′

)′
+ rn−1c̄(r)y = 0, r ≥ r0 > 0,(4.7)

with ā and c̄ given by (4.6) is oscillatory, then the equation (4.2) cannot have
positive (or negative) solutions in Ωr for any r > r0.

Proof. Let y(r) be an oscillatory solution of (4.7) and (r0 ≤) r1 <
r2 < . . . ri < . . . be its consecutive zeros with ri → ∞ as t → ∞. Integrating
(4.7) from ri to ri+1 by parts, we have∫ ri+1

ri

rn−1
[
ā(r)y′(r)2 − c̄(r)y2

]
dr = 0, i = 1, 2, . . . .

Define the function u by u(x) := y(H0(x)). Then

JH [u; Ωri,ri+1 ] =

∫
Ωri,ri+1

[
A(x)H(∇u)2 − C(x)u2

]
dx

=

∫ ri+1

ri

[
y′(r)2

∫
Sr

A(x)dSr − y(r)2

∫
Sr

C(x)dSr
]
dr

= αn

∫ ri+1

ri

rn−1
[
ā(r)y′(r)2 − c̄(r)y(r)2

]
dr = 0.
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Thus, the condition (3.5) of Theorem 3.3 is satisfied and consequently, any solution
v of (4.1) must have zero in Ωri,ri+1

which means that it cannot be positive (or
negative) through Ωr for any r ≥ r0. This completes the proof. �

There is a large body of literature on oscillation of the linear Sturm-Liouville
equation (

p(t)y′
)′

+ q(t)y = 0(4.8)

where p and q are continuous functions on [t0,∞) with p(t) > 0 for t ≥ t0 (see, for
instance, [15] and references therein). Any of the available oscillation criteria for
(4.8) when applied to (4.3) or (4.7) yield the corresponding nonexistence result for
the original PDE (4.1). For example, the application of the well-known Leighton-
Wintner criterion which says that the satisfaction of the conditions∫ ∞

t0

[1/p(t)]dt = +∞,
∫ ∞
t0

q(t)dt = +∞(4.9)

implies oscillation of Eq.(4.8) gives the following result.

Corollary 2. Suppose that the continuous functions ã(r) and c̃(r) defined on
[r0,∞) with ã(r) > 0 in [r0,∞) satisfy (4.4),∫ ∞

r0

r1−nã(r)−1dr =∞,(4.10)

and ∫ ∞
r0

rn−1c̃(r)dr =∞.(4.11)

Then (4.1) has no positive solutions in the domain Ωr for any r ≥ r0.
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