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DUALS OF VECTOR VALUED FUNCTION SPACES c0(X,U,M),

c(X,U,M) AND l∞(X,U,M) DEFINED BY ORLICZ FUNCTION

Y. YADAV and J. K. SRIVASTAVA

Abstract. In this paper we obtain the Köthe-Toeplitz duals of c0(X,U,M),

c(X,U,M) and l∞(X,U,M). We extend the definition of Maddox and study of
function spaces and sequence spaces defined also by Orlicz function. Further we

characterize the continuous dual of c0(X,U,M) and c(X,U,M).

1. Introduction and Preliminaries

We recall that an Orlicz function is a function M : [0,∞) → [0,∞) which is con-
tinuous, non-decreasing and convex with M(0) = 0, M(u) > 0 for all u > 0 and
M(u)→∞ as u→∞ see [4]. The Theory of function spaces and sequence spaces
using Orlicz function was extended by several authors [1, 3, 5, 6, 8, 9, 10]. Some
of them characterized their topological properties and some their duals also.

Let U and V be Banach spaces over the field of complex number C and U∗ be the
continuous dual of U . L(U, V ) is the linear space of all linear operators T : U → V .
B(U, V ) ⊂ L(U, V ) denotes the Banach space of all bounded linear operators T
with a usual operator norm ‖T‖ = {‖Tu‖ | u ∈ S}, where S = {u ∈ U | ‖u‖ ≤ 1}.
θ denotes the zero of all these spaces.

Let X be an arbitrary set (not necessarily countable) and F(X) be the collection
of all finite subsets of X directed by inclusion relation.

We now introduce the following classes of U -valued functions using Orlicz func-
tion M .

c0(X,U,M) = {f : X → U | there exists ρ > 0 such that for every ε > 0

there exists J ∈ F(X) satisfying M (‖f(x)‖/ρ) < ε

for all x ∈ X/J } ;

(1.1)

c(X,U,M) = {f : X → U | there exists ρ > 0 such that ε > 0

for every l ∈ U : there exists J ∈ F(X) satisfying

M (‖f(x)− l‖/ρ) < ε for all x ∈ X/J } ;

(1.2)

l∞(X,U,M) ={f : X → U | sup
x∈X

M (‖f(x)‖/ρ) <∞ for some ρ > 0}.(1.3)
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It is obvious that c0(X,U,M) ⊂ c(X,U,M) ⊂ l∞(X,U,M).
For φ : X → U , we say that

∑
x∈X φ(x) is summable to u ∈ U written as∑

x∈X φ(x) = u if the directed system (sJ)J∈F(X) with respect to set theoretic
inclusion converges to u ∈ U , where sJ =

∑
x∈J φ(x). Of course, if such u ex-

ists, then it is unique. Similarly, replacing U by C, we get the case of scalars
(see [2, p. 32]).

Theorem 1.1. ([2, p. 32]) If φ : X → U then
∑
x∈X φ(x) is summable if and

only if for every ε > 0, there exists a J ∈ F(X) such that ‖
∑
x∈J1φ(x)‖ < ε for

every J1 ∈ F(X) satisfying J1 ∩ J = φ.

In 1980 I. J. Maddox examined generalized Köthe-Toeplitz duals of X-termed
sequence classes, where X is a Banach space. Analogous by to the definition
of Köthe-Toeplitz duals and group norm defined by I. J. Maddox for X-valued
sequence, for function spaces definitions are as follows.

Definition 1.2. ([7]) Let A : X → L(U, V ) not necessarily all A(x) be bounded.
Suppose E(X,U) is a non-empty set of U -valued functions on X. Then the gener-
alized Köthe-Toeplitz duals, i.e., generalized α- and β-duals of E(X,U) are defined
by

Eα(X,U)={A : X→L(U, V ) :
∑
x∈X
‖A(x)φ(x)‖ is summable for all φ∈E(X,U)}

Eβ(X,U)={A : X→L(U, V ) :
∑
x∈X

A(x)φ(x) is summable in V for allφ∈E(X,U)},

respectively, [7].

Definition 1.3. [7] The group norm of the family of operators {A(x) : x ∈ X}
⊂ B(U, V ) is defined by

‖A(x) : x ∈ X‖ = sup
∥∥∑
x∈J

A(x) u(x)
∥∥

where the supremum is taken over all J ∈ F(X) and all u(x) ∈ S.

The property of group norm for function spaces [7] analogous to sequences are
as follows:

Lemma 1.4. If {A(x) : x ∈ X} is a family of operators in B(U, V ) then

(i) for any J ∈ F(X), ‖A(x)‖ ≤ ‖{A(x) : x ∈ X|J}‖ for all x ∈ X r J ,
(ii) for any J1, J2 ∈ F(X) with J1 ⊂ J2,

‖{A(x) : x ∈ X r J2}‖ ≤ ‖{A(x) : x ∈ X r J1}‖,

(iii) for any J, J1 ∈ F(X), with J1 ∩ J = φ and u(x) ∈ U , x ∈ J1,∥∥∑
x∈J1

A(x)u(x)
∥∥ ≤ ‖{A(x) : x ∈ X r J}‖max{‖u(x)‖ : x ∈ J1}.
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Lemma 1.5. For any family {A(x) : x ∈ X} of operators in B(U, V ) exactly
only one of the following is true.

(i) ‖{A(x) : x ∈ X r J}‖ =∞ for all J ∈ F(X),
(ii) ‖{A(x) : x ∈ X r J}‖ <∞ for all J ∈ F(X).

2. Topological Structure and Köthe-Toeplitz Duals

We easily see that c0(X,U,M), c(X,U,M) and l∞(X,U,M) form linear spaces
over the field C with respect to point wise vector operations. Clearly the function
θ : X → U where θ(x) = 0 for all x ∈ X, is the zero (functions) of these linear
spaces. We can easily show that c0(X,U,M), c(X,U,M) and l∞(X,U,M) turn
out to be a Banach space under the norm

‖x‖∞ = inf

{
ρ > 0 :

∑
x∈X

M

(
‖f(x)‖
ρ

)
≤ 1

}
for f ∈ c0(X,U,M), c(X,U,M) and l∞(X,U,M), (see [8]).

Theorem 2.1. Let A : X → L(U, V ). Then A ∈ cα0 (X,U,M), cα(X,U,M) and
lα∞(X,U,M) if and only if

(i) there exists J ∈ F(X) such that A(x) ∈ B(U, V ) for all x ∈ X r J , and
(ii)

∑
x∈XrJ ‖A(x)‖ <∞.

Proof. We give the proof for c0(X,U,M) only and the rest follows. For suf-
ficiency of the conditions, take f ∈ c0(X,U,M) and ρ > 0 arbitrary. Then for

given ε > 0, we can find J1 ∈ F(X), J1 ⊃ J , satisfying M
(
‖f(x)‖
ρ

)
< ε for all

x ∈ X r J1. Further we can choose r > ε and t0 > 0 to be fixed positive real
number such that r t02 q

(
t0
2

)
> ε, where q is the kernel associated with M . Hence,

M
(
‖f(x)‖
ρ

)
< r t02 q

(
t0
2

)
for all x ∈ X r J1. Using the integral representation of

Orlicz function, we easily get ‖f(x)‖ ≤ ρt0r for all x ∈ X r J1 and so∑
x∈X
||A(x)f(x)‖ ≤

∑
x∈J1

‖A(x)f(x)‖+ ρt0r
∑

x∈XrJ1

‖A(x)‖ <∞,

which clearly implies that A ∈ cα0 (X,U,M).

For necessity of the conditions let A ∈ cα0 (X,U,M). If (i) fails, then there exists
a sequence (xk) of distinct terms in X such that A(xk) /∈ B(U, V ) and so for each
k ≥ 1, we can find u(xk) ∈ S, where S is the closed unit sphere S[0, 1] in U such
that

‖A(xk)u(xk)‖ > k.

Let ρ > 0 and consider the function f : X → U defined by

f(x) =

{
k−1u(xk), for x = xk, k ≥ 1,

θ, otherwise
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is in c0(X,U,M) because for x 6= xk, k ≥ 1, M
(
‖f(x)‖
ρ

)
= 0 and for each x = xk,

we have M
(
‖f(x)‖
ρ

)
= M

(
1
kρ

)
≤ 1

kM
(

1
ρ

)
. But 1

kM
(

1
ρ

)
→ 0 as k → ∞,

therefore, we can find K such that 1
kM

(
1
ρ

)
< ε for every k ≥ K. Now if we take

J = {x1, x2, . . . , xk−1}, then we have M
(
‖f(x)‖
ρ

)
< ε for all x ∈ X r J . On the

other hand, we have

‖A(xk) f(xk)‖ = ‖k−1A(xk)u(xk)‖ ≥ 1 for each k ≥ 1,

which implies that A /∈ cα0 (X,U,M), a contradiction.
Similarly if (ii) fails then there exists a sequence of pairwise disjoint sets

(J(N))N≥2, J(N) ∈ F(X) with J(1) = J such that∑
x∈J(N)

‖A(x)‖ > 2N, N = 2, 3, 4, . . .

Now for each x ∈ X, we choose u(x) ∈ S such that ‖A(x)‖ < 2‖A(x)u(x)‖.
Further take ρ > 0. It is straightforward to verify that the function f : X → U
defined by

f(x) =

{
N−1u(x), x ∈ J(N), N = 2, 3, . . . ,

θ, otherwise,

is in c0(X,U,M), but∑
x∈X
‖A(x)f(x)‖ ≥

∞∑
N=2

1

2

∑
x∈J(N)

‖A(x)‖N−1 >
∞∑
N=2

1

contradicts that A ∈ cα0 (X,U,M). Hence, it follows the necessity of (i) and (ii).
This completes the proof. �

If we take A : X → B(U, V ) in the above Theorem 2.1, then we have the
following.

Theorem 2.2. If A : X → B(U, V ), then each one form cα0 (X,U,M),
cα(X,U,M) and lα∞(X,U,M) equals H0(X,B(U, V )), where

H0(X,B(U, V )) =
{
A : X → B(U, V ) |

∑
x∈X
‖A(x)‖ <∞

}
.

Theorem 2.3. Let A : X → L(U, V ). Then A ∈ cβ0 (X,U,M) if and only if

(i) there exists J ∈ F(X) such that A(x) ∈ B(U, V ) for all x ∈ X r J ,
(ii) ‖{A(x) : x ∈ X r J}‖ = L <∞.

Proof. Suppose that (i) and (ii) hold, f ∈ c0(X,U,M), ρ > 0 associated with f

and ε > 0. Now for M
(
ε
ρ

)
> 0 we can find J1 ⊃ J such that M

(
‖f(x)‖
ρ

)
< M

(
ε
ρ

)
for all x ∈ XrJ1. SinceM is non-decreasing, we have ‖f(x)‖ < ε for all x ∈ XrJ1.
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Now for any J2 ∈ F(X) with J2 ∩ J1 = φ, by Lemma 1.4 (iii), we get∥∥∑
x∈J2

A(x)f(x)
∥∥ ≤ ‖{A(x) : x ∈ X r J}‖max

x∈J2
‖f(x)‖ < Lε.

Hence by Theorem 1.1,
∑
x∈X A(x) f(x) is summable and consequently, A ∈

cβ0 (X,U,M).
The necessity of (i) can be established on the lines of Theorem 2.1. For necessity

of (ii), suppose that ‖{A(x) : x ∈ X r J}‖ =∞.
Then by Lemma 1.5, there exists a sequence (J(N)) in F(X) with J(1) = J of

pairwise disjoint sets such that for each N ≥ 2, ‖
∑
x∈J(N)A(x)u(x)‖ > N , where

u(x) ∈ S for x ∈ J(N). Let ρ > 0. Then we easily see that f : X → U defined by

f(x) =

{
N−1u(x), x ∈ J(N), N ≥ 2,

θ, otherwise,

is in c0(X,U,M), but for each N ≥ 2, ‖
∑
x∈J(N)A(x)f(x)‖ > 1 shows that∑

x∈X A(x)f(x) is not summable. Hence A /∈ cβ0 (X,U,M). This completes the
proof. �

Theorem 2.4. If V = C, i.e., B(U, V ) = U∗, then we have

cα0 (X,U,M) = cβ0 (X,U,M) = H0(X,U∗).

Proof. H0(X,U∗) = cα0 (X,U,M) ⊂ cβ0 (X,U,M) follows immediately from The-
orem 2.2 and completeness of U. Now suppose that F : X → U∗ belongs to

cβ0 (X,U,M), but F /∈ H0(X,U∗). Then we can find a sequence (J(N)), N ≥ 2, of
pairwise disjoint sets in F(X) such that∑

x∈J(N)

‖F (x)‖ > 2N, N = 2, 3, 4, . . .

Further we take ρ > 0 and for each x ∈ J(N), we choose u(x) ∈ S such that
|F (x)| < 2|F (x)u(x)| and define f : X → U by

f(x) =

{
sgn(F (x)u(x))N−1u(x), x ∈ J(N), N ≥ 2,

θ, otherwise.

We easily see that f ∈ c0(X,U,M), but for each N ≥ 2,∑
x∈J(N)

F (x)f(x) =
∑

x∈J(N)

|F (x)u(x)|N−1 >
∑

x∈J(N)

1

2
‖F (x)‖N−1 > 1

shows that
∑
x∈X F (x)f(x) is not summable, which contradicts that F ∈

cβ0 (X,U,M) (see Theorem 1.1). This completes the proof. �

Theorem 2.5. Let A : X → L(U, V ). Then A ∈ cβ(X,U,M) if and only if

(i) there exists J ∈ F(X) such that A(x) ∈ B(U, V ) for all x ∈ X r J ,
(ii) ‖{A(x) : x ∈ X r J}‖ <∞, and
(iii)

∑
x∈XrJ A(x)u is summable in V for every u ∈ U .
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Proof. To show (iii), it is necessary we take u ∈ U and consider fu : X → U
defined by fu(x) = u for each x ∈ X. Then fu ∈ c(X,U,M), and so

∑
x∈X A(x)u

is summable in V .
Further since cβ(X,U,M) ⊂ cβ0 (X,U,M), the necessity of (i) and (ii) follows

from the Theorem 2.3.
For the sufficiency let f ∈ c(X,U,M). Then there exist ρ > 0 and l ∈ U

such that for every given ε > 0 we can find J1 ∈ F(X), J ⊃ J1 satisfying

M
(
‖f(x)−l‖

ρ

)
< ε for all x ∈ X r J1. Now consider ψ : X → U and fl : X → U

defined by ψ(x) = f(x) − l and fl(x) = l for all x ∈ X respectively. Obvi-
ously, fl ∈ c(X,U,M) and ψ ∈ c0(X,U,M) and hence ψ ∈ c(X,U,M). Clearly
f = ψ + fl. Moreover by Theorem 2.3,

∑
x∈X A(x)ψ(x) is summable in U . Simi-

larly by (iii),
∑
x∈X A(x)l is summable in U . Thus we note that∑

x∈X
A(x)f(x) =

∑
x∈X

A(x)(f(x)− l) +
∑
x∈X

A(x)fl(x) =
∑
x∈X

A(x)ψ(x) +
∑
x∈X

A(x)l

is summable in U . Hence A ∈ cβ(X,U,M). This completes the proof. �

In the special case when V = C, i.e., B(U, V ) = U∗, proof of the Theorem 2.6
given below follows easily from making use of Theorem 2.1.

Theorem 2.6. If V = C, i.e., B(U, V ) = U∗, then we have

cα(X,U,M) = cβ(X,U,M) = H0(X,U∗).

Proof. By Theorem 2.1, we haveH0(X,U∗) = cα(X,U,M) and by completeness
of C we immediately get

cα(X,U,M) ⊂ cβ(X,U,M).

Since cβ(X,U,M) ⊂ cβ0 (X,U,M) is always true, but cβ0 (X,U,M) = H0(X,U∗)
follows from Theorem 2.4. Thus we get H0(X,U∗) = cα(X,U,M) ⊂ cβ(X,U,M)
⊂ H0(X,U∗). Hence cα(X,U,M) = cβ(X,U,M) = H0(X,U∗). �

Theorem 2.7. Let A : X → L(U, V ). Then A ∈ lβ∞(X,U,M) if and only if

(i) there exists J ∈ F(X) such that A(x) ∈ B(U, V ) for all x ∈ X r J ; and
(ii) for each ε > 0, there exist K = K(ε) ∈ F(X), J ⊂ K such that

RH = ‖{A(x) : x ∈ X rH}‖ < ε for all H ∈ F(X) with K ⊂ H.

Proof. Suppose (i) and (ii) hold, f ∈ l∞(X,U,M) and ρ > 0 is associated

with f . Then we have L > 0 such that supx∈X M
(
‖f(x)‖
ρ

)
=L, i.e., M

(
‖f(x)‖
ρ

)
<L

for all x ∈ X.
Further we can choose r > L and t0 > 0 a fixed positive real number such that

r t02 q
(
t0
2

)
> L, where q is the kernel associated with M . Hence for each x ∈ X,

M
(
‖f(x)‖
ρ

)
< r t02 q

(
t0
2

)
.

Thus using the integral representation of Orlicz function M , we get

‖f(x)‖ ≤ ρrt0 for all x ∈ X.
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Then by Lemma 1.5 (iii), for any G ∈ F(X) with G ∩H = φ, we have∥∥∑
x∈G

A(x)f(x)
∥∥ ≤ RH max{‖f(x)‖ : x ∈ G} ≤ ερrt0.

Thus, ‖
∑
x∈GA(x)f(x)‖ < ερrt0 for all G ∈ F(X) with G ∩ H = φ, and so by

Theorem 1.1,
∑
x∈XrH A(x)f(x) is summable. Hence

∑
x∈X A(x)f(x) is summa-

ble.
Conversely (i) can be established on the lines of Theorem 2.1. Now to prove the

necessity of (ii), we first show that RH <∞. Suppose on contrary that RH =∞.
Then we can find a sequence of pairwise disjoint sets (Fn) in F(X r J) and sets
{un(x) : x ∈ Fn} ⊂ S such that∥∥∑

x∈Fn

A(x)un(x)
∥∥ > 1 for each n ≥ 1.(2.1)

Let ρ > 0. Then f : X → U defined by

f(x) =

{
u(x), x ∈ Fn, u(x) = un(x), n ≥ 1,

0, otherwise

is in l∞(X,U,M) but by (2.1) for each n ≥ 1, ‖
∑
x∈Fn

A(x)f(x)‖ > 1 shows that∑
x∈X A(x)f(x) is not summable (see Theorem 1.1). This proves our assertion,

i.e., RH <∞.
Now suppose (ii) does not hold, i.e., there exists ε > 0 such that for every given

K ⊃ J , K ∈ F(X), we can find H ∈ F(X), H ⊃ K such that RH > ε. For
n = 1, take K1 ⊃ J such that RK1

> ε. So there exist F1 ∈ F(X r K1) and
G1 = {u1(x) : x ∈ F1} ⊂ S such that ‖

∑
x∈F1

A(x)u1(x)‖ > ε.

Next take K2 = K1 ∪ F1 then there exist F2 ∈ F(X rK2) and G2 = {u2(x) :
x ∈ F2} ⊂ S such that ‖

∑
x∈F2

A(x)u2(x)‖ > ε.

If we continue this process, then we get sequences (Fn) and (Gn) such that for
Kn = K1 ∪ F1 ∪ · · · ∪ Fn−1, there exist Fn ∈ F(X r Kn) and Gn = {un(x) :
x ∈ Fn} ⊂ S for which ∥∥∑

x∈Fn

A(x)un(x)
∥∥ > ε.(2.2)

Let ρ > 0. Then the function f : X → U defined by

f(x) =

{
u(x), x ∈ Fn, u(x) = un(x) ∈ Gn, n ≥ 1

θ, otherwise,

is in l∞(X,U,M), where as due to (2.2) for each n ≥ 1, ‖
∑
x∈Fn

A(x)f(x)‖ > ε

shows that
∑
x∈X A(x)f(x) is not summable, i.e., A /∈ lβ∞(X,U,M). This com-

pletes the proof. �

Theorem 2.8. If V = C, i.e., B(U,C) = U∗, then we have

lα∞(X,U,M) = lβ∞(X,U,M) = H0(X,U∗).
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Proof. In view of Theorem 2.7 and completeness of C, we have

H0(X,U∗) = lα∞(X,U,M) ⊂ lβ∞(X,U,M).

Now suppose F ∈ lβ∞(X,U,M), but F /∈ H0(X,U∗), then
∑
x∈X ||F (x)‖ =∞.

So we get a pairwise disjoint sequence (Jn) ∈ F(X) such that
∑
x∈Jn ‖F (x)‖>1

for each n ≥ 1. For each x ∈ X, let u(x) ∈ S be such that ‖F (x)‖ ≤ 2|F (x)u(x)|.
Let ρ > 0. Then the function f : X → U is defined by

f(x) =

{
sgn(F (x)u(x))u(x), x ∈ Jn, n ≥ 1

θ, otherwise.

We note that ‖f(x)‖ = 0 for x ∈ X r ∪∞n=1Jn and ‖f(x)‖ ≤ 1 if x ∈ Jn, n ≥ 1.

This shows that supx∈XM
(
‖f(x)‖
ρ

)
<∞ and hence f ∈ l∞(X,U,M). But on the

other hand, we have∑
x∈X
‖F (x)f(x)‖ =

∞∑
n=1

∑
x∈Jn

‖F (x)f(x)‖ ≥
∞∑
n=1

1

2

∑
x∈Jn

‖F (x)‖ >
∞∑
n=1

1

2
=∞,

this contradicts that F ∈ lβ∞(X,U,M). Hence lβ∞(X,U,M) ⊂ H0(X,U∗). This
completes the proof of the theorem. �

3. Continuous Dual of c0 (X,U,M) and c(X,U,M)

In the following theorems continuous duals c∗0(X,U,M) and c∗(X,U,M) of the
topological linear spaces (c0(X,U,M), ‖·||∞) and (c(X,U,M), ‖·||∞), respectively,
are investigated.

Theorem 3.1. c∗0(X,U,M), the continuous dual of (c0(X,U,M), ‖ · ||∞), is
isomorphic to H0(X,U∗).

Proof. Let F ∈ c∗0(X,U,M) and for each x ∈ X, define φ(x) : U → C by
φ(x)u = F (δux). Each φ(x) is linear on U . Further if (un) is a sequence in U which

converges to u ∈ U , then M
(
‖un−u‖

ρ

)
→ 0 as n→∞ for each ρ > 0. So for given

0 < ε < 1, we can find ρε, 0 < ρε < ε and N ≥ 1 such that M
(
‖un−u‖
ρε

)
< ε < 1

for all n ≥ N . Let y ∈ X and fix it. Now

‖δun
y − δuy ‖ = inf

{
ρ > 0 : sup

x∈X
M

(‖δun
y (x)− δuy (x)‖

ρ

)
≤ 1

}
= inf

{
ρ > 0 : M

(
‖un − u‖

ρ

)
≤ 1

}
< ρε < ε.

Thus for each x ∈ X, δun
x → δux in c0(X,U,M) as n→∞. So we have F (δun

x )→
F (δux) as n → ∞ which clearly implies that φ(x)un → φ(x)u as n → ∞. Hence
φ(x) ∈ U∗ for each x ∈ X. Moreover, since c0(X,U,M) is an AK-function space,
for each f ∈ c0(X,U,M), we have sJ(f)→ f , and so

F (f) = F (lim sJ(f)) = limF

(∑
x∈J

δf(x)x

)
=
∑
x∈X

φ(x)f(x).
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Thus
∑
x∈X φ(x) f(x) is summable for every f ∈ c0(X,U,M) and therefore by

Theorem 2.4 we get φ ∈ H0(X,U∗).
Conversely, if φ ∈ H0(X,U∗), then by Theorem 2.4

∑
x∈X φ(x)f(x) is summable

for every f ∈ c0(X,U,M). Now F defined by F (f) =
∑
x∈X φ(x) f(x) is clearly a

linear functional on c0(X,U,M). Since φ ∈ H0(X,U∗),
∑
x∈X ‖φ(x)‖ = L <∞.

Let ε > 0 be given. Suppose that for f ∈ c0(X,U,M), ‖f ||∞ < ε. Then we
get |F (f)| ≤

∑
x∈X ‖φ(x)‖ ‖f(x)‖ < εH which shows that F is continuous. Hence

F ∈ c∗0(X,U,M).
Thus for each F ∈ c∗0(X,U,M), there exists φ ∈ H0(X,U∗) and vice-versa.

Hence the correspondence F → φ clearly determines an isomorphism of c∗0(X,U,M)
onto H0(X,U∗). This completes the proof. �

Theorem 3.2. F ∈ c∗(X,U,M) is the continuous dual of (c(X,U,M), ‖ ·
||∞) if and only if there exist φ ∈ H0(X,U∗) and g ∈ U∗ such that F (f) =
g(l) +

∑
x∈X φ(x)f(x) for every f ∈ c(X,U,M), where l ∈ U satisfies that for

every ε > 0, there exists J ∈ F(X) such that for all x ∈ X r J , M
(
‖f(x)−l‖

ρ

)
< ε

for some ρ > 0.

Proof. Let F ∈ c∗(X,U,M) and f ∈ c(X,U,M). Let l ∈ U be as in the
statement of the theorem. Clearly F ∈ c∗0(X,U,M) and the function ψ : X → U ,
ψ(x) = f(x)− l is in c0(X,U,M). Thus by Theorem 3.1, we have φ ∈ H0(X,U∗)
such that F (ψ) =

∑
x∈X φ(x)(f(x) − l) and right hand side is summable. Since

φ ∈ H0(X,U∗),
∑
x∈X φ(x)u is summable. Clearly, ξl : X → U defined by ξl(x) = l

for each x ∈ X is in c(X,U,M) and f = ψ + ξl. Thus

F (f) = F (ψ) + F (ξl) =
∑
x∈X

φ(x)(f(x)− l) + F (ξl)

= F (ξl)−
∑
x∈X

φ(x)l +
∑
x∈X

φ(x)f(x) = g(l) +
∑
x∈X

φ(x)f(x)

where we write g(l) = F (ξl) −
∑
x∈X φ(x)l. g is linear on U . For continuity of

g, suppose that the sequence (un) in U converges to 0 as n → ∞. Clearly (ξun)
converges to function θ in c(X,U,M) and hence F (ξun) converges to 0 as n→∞.
Further ∣∣∣∣∑

x∈X
φ(x)un

∣∣∣∣ ≤ ‖un‖∑
x∈X
||φ(x)‖, n ≥ 1,

shows that
∑
x∈X φ(x)un converges to 0 as n→∞. Hence g(un)→ 0 as n→∞,

i.e., g is continuous on U . For converse part, suppose that φ ∈ H0(X,U∗) and
g ∈ U∗. Then ∑

x∈X
‖φ(x)‖ = L <∞.

We now define F on c(X,U,M) by F (f) = g(l)+
∑
x∈X φ(x)f(x), f ∈c(X,U,M).

Clearly, F is well defined and linear (see Theorem 2.1) on c(X,U,M).
Let 0 < ε < 1. Suppose that for f ∈ c(X,U,M), ‖f‖∞ < ε and ρ is associated

with f . Now consider M
(
ε
ρ

)
> 0. Since f ∈ c(X,U,M), there exists l ∈ U such
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that for M
(
ε
ρ

)
> 0 there exists J ∈ F(x) satisfying M

(
‖f(x)−l‖

ρ

)
< M

(
ε
ρ

)
, for

all x ∈ X r J . M is non-decreasing, therefore also by the definition of norm, we

have supx∈XM(‖f(x)‖‖f‖ ) ≤ 1, i.e., M(‖f(x)‖‖f‖ ) ≤ 1.

Now we can find r > 1 and t0 > 0 which is a fixed real number such that
r t02 q

(
t0
2

)
≥ 1.

Hence, M
(
‖f(x)‖
‖f‖

)
< r t02 q

(
t0
2

)
which gives us that for each x ∈ X, ‖f(x)‖ ≤

εrt0. Then we have

‖l‖ ≤ ‖f(x)− l‖+ ‖f(x)‖ < ε+ εrt0 = ε(1 + rt0)

and so we clearly get that ‖l‖ < ε. Now the continuity of F easily follows from

|F (φ)| =
∣∣∣∣g(l) +

∑
x∈X

φ(x)f(x)

∣∣∣∣ ≤ ‖g‖ ‖l‖+ sup
x∈X
‖f(x)‖

∑
x∈X
‖φ(x)‖

< ε[‖g‖ (1 + rt0) + rt0L].

Hence, F ∈ c∗(X,U,M). This completes the proof. �
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