DUALS OF VECTOR VALUED FUNCTION SPACES ¢y (X,U, M), ¢(X,U, M)
AND [ (X,U,M) DEFINED BY ORLICZ FUNCTION

Y. YADAV anD J. K. SRIVASTAVA

ABSTRACT. In this paper we obtain the Kothe-Toeplitz duals of co(X,U, M), ¢(X,U, M) and
loo(X,U, M). We extend the definition of Maddox and study of function spaces and sequence spaces

defined also by Orlicz function. Further we characterize the continuous dual of co(X,U, M) and
o(X,U,M).

1. INTRODUCTION AND PRELIMINARIES

We recall that an Orlicz function is a function M: [0,00) — [0,00) which is continuous, non-
decreasing and convex with M (0) = 0, M (u) > 0 for all w > 0 and M (u) — oo as u — oo see [4].
The Theory of function spaces and sequence spaces using Orlicz function was extended by several
authors [1, 3, 5, 6, 8, 9, 10]. Some of them characterized their topological properties and some
their duals also.

Let U and V be Banach spaces over the field of complex number C and U* be the continuous dual
of U. L(U, V) is the linear space of all linear operators T: U — V. B(U,V) C L(U, V') denotes the
Banach space of all bounded linear operators 7" with a usual operator norm ||T|| = {||Tu|| | v € S},
where S = {u € U | ||Ju|| < 1}. 6 denotes the zero of all these spaces.
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Let X be an arbitrary set (not necessarily countable) and F(X) be the collection of all finite
subsets of X directed by inclusion relation.
We now introduce the following classes of U-valued functions using Orlicz function M.

co(X,U, M) ={f: X — U | there exists p > 0 such that for every € > 0
(1.1) there exists J € F(X) satisfying M (|| f(z)|/p) < €
for all z € X/J };

(X, U,M) ={f: X — U] there exists p > 0 such that e >0
(1.2) for every I € U: there exists J € F(X) satisfying
M(||f(z)=1/p) <eforalzeX/J};

(1.3) loo(X, U M) ={f: X > U | sggM(Hf(m)H/p) < oo for some p > 0}.

It is obvious that ¢o(X,U, M) C ¢(X,U, M) C lo(X,U, M).

For ¢: X — U, we say that ) _ é(z) is summable to u € U written as )y ¢(z) = u if
the directed system (s;);er(x) With respect to set theoretic inclusion converges to u € U, where
57 =Y ey @(x). Of course, if such u exists, then it is unique. Similarly, replacing U by C, we get
the case of scalars (see [2, p. 32]).

Theorem 1.1. ([2, p.32]) If ¢: X = U then ) ¢(x) is summable if and only if for every
e > 0, there exists a J € F(X) such that |3 ,c; ¢(z)|| < € for every J1 € F(X) satisfying
JNJ=¢.

In 1980 I.J. Maddox examined generalized Kothe-Toeplitz duals of X-termed sequence classes,
where X is a Banach space. Analogous by to the definition of Kéthe-Toeplitz duals and group
norm defined by I. J. Maddox for X-valued sequence, for function spaces definitions are as follows.



Definition 1.2. ([7]) Let A: X — L(U,V) not necessarily all A(z) be bounded. Suppose
E(X,U) is a non-empty set of U-valued functions on X. Then the generalized Kéthe-Toeplitz
duals, i.e., generalized a- and S-duals of F(X,U) are defined by

EYX,U)={A: X—>L(U,V) : Z |A(x)p(x)]| is summable for all p€ E(X,U)}
zeX
EY(X,U)={A: X5 L(U,V): Y A(z)¢(x) issummablein V forall g€ E(X, U)},
zeX
respectively, [7].

Definition 1.3. [7] The group norm of the family of operators {A(z) : z € X} € B(U,V) is

defined by

|A(z) : xz € X|| = sup”ZA(x) u(x)”
zeJ
where the supremum is taken over all J € F(X) and all u(z) € S.

The property of group norm for function spaces [7] analogous to sequences are as follows:

Lemma 1.4. If {A(z) : x € X} is a family of operators in B(U,V') then
(i) for any J € F(X), [A(x)| < |{A(z) : x € X|J}|| for allz € X N J,
(ii) for any Jy,Jo € F(X) with J; C Ja,

I{A(@) : 2 € X\ Jo}l| < [{A(2) : 2 € X N i},
(iii) for any J,J1 € F(X), with 1 NJ = ¢ and u(z) €U, x € Jy,

|| ZA(I)U(:E)” < |HA(2) : € X ~\ J}|| max{||lu(z)| : € J1 }.
rcJy



Lemma 1.5. For any family {A(z) : © € X} of operators in B(U,V) exactly only one of the
following is true.

(i) |{A(z) :xz € X N J}|| = oo for all J € F(X),
(if) [[{A(z):z e X N\ J}|| < oo for all J € F(X).

2. TOPOLOGICAL STRUCTURE AND KOTHE-TOEPLITZ DUALS

We easily see that co(X,U, M), ¢(X,U, M) and l(X,U, M) form linear spaces over the field C
with respect to point wise vector operations. Clearly the function §: X — U where 6(z) = 0 for
all z € X, is the zero (functions) of these linear spaces. We can easily show that co(X,U, M),
c¢(X,U, M) and I (X,U, M) turn out to be a Banach space under the norm

%] 0o :inf{p>0: ZM<M> < 1}

zeX P

for f € co(X,U, M), ¢(X,U, M) and I (X, U, M), (see [8]).

Theorem 2.1. Let A: X — L(U,V). Then A € ¢§(X,U,M), ¢c*(X,U, M) and IS (X,U, M) if
and only if

(i) there exists J € F(X) such that A(z) € B(U,V) for allx € X \ J, and

(i) Dpexs I1A@)] < oo.

Proof. We give the proof for co(X,U, M) only and the rest follows. For sufficiency of the
conditions, take f € ¢o(X,U, M) and p > 0 arbitrary. Then for given € > 0, we can find J; € F(X),
J1 D J, satisfying M (@) < e for all x € X \ J;. Further we can choose r > ¢ and ¢y > 0 to

be fixed positive real number such that r% ¢ (%) > e, where ¢ is the kernel associated with M.



Hence, M (w) <r% q(%) for all z € X \ J;. Using the integral representation of Orlicz
function, we easily get || f(x)|| < ptor for all z € X \ J; and so

Yo lA@F @I < Y IA@F @) +ptor Y A@)] < oo,

zeX reJy reX\Jy
which clearly implies that A € ¢§(X,U, M).

For necessity of the conditions let A € ¢§ (X, U, M). If (i) fails, then there exists a sequence ()
of distinct terms in X such that A(zg) ¢ B(U,V) and so for each k > 1, we can find u(zy) € S,
where S is the closed unit sphere S[0, 1] in U such that

[A(z) u(zr)l| > .
Let p > 0 and consider the function f: X — U defined by

fa) k= u(xy), for x =z, k> 1,
xTr) =
0, otherwise
is in ¢o(X,U, M) because for © # zp, k > 1, M (M) = 0 and for each x = =z, we have
M(M) = M(ﬁ) < iM (%) But +M (%) — 0 as k — oo, therefore, we can find K

such that %M (%) < ¢ for every k > K. Now if we take J = {z1,%2,...,%k—1}, then we have

M (M) < e for all z € X \ J. On the other hand, we have

|A(zg) f(zp)|| = |k~ A(zg) u(zr)|| > 1 for each k > 1,
which implies that A ¢ (X, U, M), a contradiction.
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Similarly if (ii) fails then there exists a sequence of pairwise disjoint sets (J(IV))n>2, J(N) €
F(X) with J(1) = J such that
> llA@) >2N, N=234,...
z€J(N)

Now for each z € X, we choose u(x) € S such that ||A(z)|| < 2||A(z)u(z)||. Further take p > 0.
It is straightforward to verify that the function f: X — U defined by

N~tu(z), xe€J(N), N=2,3,...,
fz) = :
0, otherwise,
is in ¢o(X,U, M), but
o0 1 oo
Yo lA@ @)=Y 5 Y lA@INT' > Y1
xeEX N=2 z€J(N) N=2
contradicts that A € ¢§(X,U, M). Hence, it follows the necessity of (i) and (ii). This completes
the proof. O

If we take A: X — B(U,V) in the above Theorem 2.1, then we have the following.

Theorem 2.2. If A: X — B(U,V), then each one form c§(X,U, M), c*(X,U, M)
and 1% (X, U, M) equals Ho(X, B(U,V)), where

Ho(X,B(U,V)) = {A: X - B(U,V)| Y _ || A(@)| < oo}
z€X
Theorem 2.3. Let A: X — L(U,V). Then A € cg(X, U, M) if and only if
(i) there exists J € F(X) such that A(z) € B(U,V) for allx € X \ J,



(i) [{A(z) : ze X\ J}|| =L < 0.

Proof. Suppose that (i) and (ii) hold, f € ¢o(X,U, M), p > 0 associated with f and € > 0. Now

for M (%) > 0 we can find J; D J such that M (M) <M <%) for all x € X \ J;. Since M is

non-decreasing, we have || f(z)|| < e for all x € X \ J;.
Now for any Jo € F(X) with Jo N J; = ¢, by Lemma 1.4 (iii), we get

HE:AWHQMSHbﬂﬂ:wéX\JMﬁgWﬂ@H<L&

zE€Jy

Hence by Theorem 1.1, 37 _ A(x) f(x) is summable and consequently, A € cg (X,U,M).

The necessity of (i) can be established on the lines of Theorem 2.1. For necessity of (ii), suppose
that |[{A(z) : z € X \ J}|| = 0.

Then by Lemma 1.5, there exists a sequence (J(N)) in F(X) with J(1) = J of pairwise disjoint
sets such that for each N > 2, || 32 ¢ ;v) A@)u(z)|| > N, where u(z) € S for z € J(N). Let
p > 0. Then we easily see that f: X — U defined by

fx) =

N~tu(z), x € J(N), N>2,
0, otherwise,

is in ¢o(X, U, M), but for each N > 2, [|3°, c;n) A(2)f(z)|| > 1 shows that }° . A(z)f(z) is
not summable. Hence A ¢ ¢5 (X, U, M). This completes the proof. O

Theorem 2.4. If V =C, i.e., B(U,V) = U*, then we have

(X, U, M) = B(X,U,M) = Hy(X,U").



Proof. Hy(X,U*) = ¢§(X,U,M) C cg (X,U, M) follows immediately from Theorem 2.2 and
completeness of U. Now suppose that F': X — U* belongs to cg(X, U, M), but F ¢ Hy(X,U*).
Then we can find a sequence (J(N)), N > 2, of pairwise disjoint sets in F(X) such that

> IF@)>2N, N=234,...
z€J(N)
Further we take p > 0 and for each z € J(N), we choose u(z) € S such that |F(z)| < 2|F (z)u(z)|
and define f: X — U by

Fo) = { sen(F(z)u(z)) N~ u(z), r€ J(N), N>2,

0, otherwise.

We easily see that f € ¢o(X,U, M), but for each N > 2,

> F@f@= Y IFeu@IN> 3 F@INT > 1

z€J(N) z€J(N) z€J(N)

shows that ) . F(z)f(z) is not summable, which contradicts that F' € cg (X,U, M) (see Theo-
rem 1.1). This completes the proof. O

Theorem 2.5. Let A: X — L(U,V). Then A € #(X,U, M) if and only if

(i) there ewists J € F(X) such that A(z) € B(U,V) for allx € X \ J,
(ii) [[{A(z):z e X \ J}|| < o0, and
(iii) > ,cxs A(@)u is summable in V for every u € U.

Proof. To show (iii), it is necessary we take u € U and consider f,,: X — U defined by f,(2) = u
for each x € X. Then f, € ¢(X,U, M), and so }___y A(z)u is summable in V.
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Further since ¢?(X,U, M) C cg (X,U, M), the necessity of (i) and (ii) follows from the Theo-
rem 2.3.

For the sufficiency let f € ¢(X,U, M). Then there exist p > 0 and [ € U such that for every
given € > 0 we can find J; € F(X), J D Jp satisfying M (w < eforall z € X \ J;.
Now consider ¢: X — U and f;: X — U defined by ¢(z) = f(z) = and fi(z) =1 for all x € X
respectively. Obviously, f; € ¢(X,U, M) and 9 € ¢o(X,U, M) and hence ¢ € ¢(X,U, M). Clearly
[ =+ fi. Moreover by Theorem 2.3, 37\ A(z)i(x) is summable in U. Similarly by (iii),
> zex A(z)l is summable in U. Thus we note that

Yo A@)f@) =Y A@(f@) -1+ Y A@)filz) = Y Al@)yb(z) + ) A=)l
reX reX reX reX reX
is summable in U. Hence A € ¢?(X,U, M). This completes the proof. ]
In the special case when V = C| i.e., B(U,V) = U*, proof of the Theorem 2.6 given below
follows easily from making use of Theorem 2.1.
Theorem 2.6. IfV =C, i.e., B(U,V) =U*, then we have
(X, U,M) =P (X,U M) = Hy(X,U").
Proof. By Theorem 2.1, we have Hy(X,U*) = ¢*(X,U, M) and by completeness of C we im-
mediately get
(X, U, M) c P (X,U,M).
Since ¢?(X,U, M) C cg(X, U,M) is always true, but cg(X, U, M) = Hy(X,U*) follows from

Theorem 2.4. Thus we get Ho(X,U*) = ¢¥(X,U,M) C ?(X,U,M) C Ho(X,U*). Hence
(X, U, M) = *(X,U, M) = Hy(X,U*). O

Theorem 2.7. Let A: X — L(U,V). Then A € 1% (X,U, M) if and only if



(i) there exists J € F(X) such that A(z) € B(U,V) for allx € X \ J; and
(ii) for each & > 0, there exist K = K() € F(X), J C K such that
Ry =|{A(z):z € X N\ H}| <¢ for all H € F(X) with K C H.

Proof. Suppose (i) and (ii) hold, f € l(X,U, M) and p > 0 is associated with f. Then we
have L > 0 such that sup, . y M (nf(pw) I) =L, ie, M ('f(p“)”) <Lforalze X.

Further we can choose r > L and ty > 0 a fixed positive real number such that r%’ q (%0) > L,
where ¢ is the kernel associated with M. Hence for each z € X, M <M;)”) <rl g(%).

Thus using the integral representation of Orlicz function M, we get
[lf(@)] < prto for all z € X.

Then by Lemma 1.5 (iii), for any G € F(X) with G N H = ¢, we have

1> A@)f(2)|| < R max{||f(2)|| : = € G} < eprto.

zeG

Thus, || > cqA(@)f(2)| < eprty for all G € F(X) with GN H = ¢, and so by Theorem 1.1,
> wexu A(x) f(x) is summable. Hence ) .y A(z)f(z) is summable.

Conversely (i) can be established on the lines of Theorem 2.1. Now to prove the necessity of
(ii), we first show that Ry < co. Suppose on contrary that Ry = co. Then we can find a sequence
of pairwise disjoint sets (F),) in F(X ~\ J) and sets {u,(z) : x € F,,} C S such that

(2.1) | Z A(z)un(z)|| >1  for eachn > 1.
man



Let p > 0. Then f: X — U defined by

u(z), x € Fp,u(z) = up(x),n > 1,
0, otherwise

is in loo (X, U, M) but by (2.1) for each n > 1, ||>° . A(z)f(z)| > 1 shows that >~ A(x)f(x)
is not summable (see Theorem 1.1). This proves our assertion, i.e., Ry < co.

Now suppose (ii) does not hold, i.e., there exists € > 0 such that for every given K D J,
K € F(X), we can find H € F(X), H D K such that Ry > . For n = 1, take K; D J such
that Ry, > e. So there exist F; € F(X \ K;) and Gy = {ui(z) : € F;} C S such that
IS ek, A (@) > =

Next take Ky = K; U F then there exist Fy € F(X \ K3) and Gy = {us(x) : @ € Fy} C S such
that [, cp, A(x) us(2)]] > <.

If we continue this process, then we get sequences (F,,) and (G,,) such that for K,, = K3 UF; U
-+« U F,_q, there exist F,, € F(X \ K,,) and G,, = {un(z) : ¢ € F,,} C S for which

(2.2) | Z A(z)un(2)]| > €.
:Ean
Let p > 0. Then the function f: X — U defined by
u(z), x € Fy, u(x) =up(z) € Gp, n>1
fz) = :
0, otherwise,

is in loo(X,U, M), where as due to (2.2) for each n > 1, [|3° p A(x)f(z)|| > ¢ shows that
> sex A(@) f(z) is not summable, i.e., A ¢ 15 (X,U, M). This completes the proof. O



Theorem 2.8. If V =C, i.e., B(U,C) =U*, then we have
1% (X,U,M) =12 (X,U,M) = Hy(X,U*).
Proof. In view of Theorem 2.7 and completeness of C, we have
Ho(X,U*) =1%(X,U,M) C I?(X,U,M).
Now suppose F € I8 (X,U, M), but F ¢ Ho(X,U*), then }___ [|F(z)|| = oco.
So we get a pairwise disjoint sequence (J,) € F(X) such that > ; |[F(z)||>1 for each n > 1.

For each # € X, let u(z) € S be such that ||F(z)|| < 2|F(z)u(z)|. Let p > 0. Then the function
f: X — U is defined by

flz) =

sgn(F (z)u(x)) u(z), € Jy, n>1
0, otherwise.

We note that [|f(z)|| =0 for x € X N U2, J, and || f(z)|| <1if z € J,, n > 1. This shows that
sup,ex M <Mpz)”) < oo and hence f € l(X,U, M). But on the other hand, we have

DNF@F@I=D] Y IF@F@12Y 5 D IF@I>)_ 5 =00,

rzeX n=1z€eJ, n=1 zeJ, n=1
this contradicts that F' € 12 (X,U, M). Hence 12 (X,U,M) C Hy(X,U*). This completes the
proof of the theorem. O

3. CONTINUOUS DUAL OF ¢y (X,U, M) AND ¢(X,U, M)

In the following theorems continuous duals ¢§(X,U, M) and ¢*(X, U, M) of the topological linear
spaces (co(X,U, M), || - ||oo) and (e¢(X,U, M), || - ||o), respectively, are investigated.



Theorem 3.1. ¢{(X,U, M), the continuous dual of (co(X,U, M), | - ||cc), is isomorphic to
HO(Xa U*)

Proof. Let F € c¢§(X,U,M) and for each z € X, define ¢(z): U — C by ¢(z)u = F(0%).
Each ¢(x) is linear on U. Further if (u,) is a sequence in U which converges to u € U, then

M(M)—)Oasn—)ooforeachp>0. So for given 0 < &€ < 1, we can find p., 0 < p. < ¢
andNElsuchthatM(”'“L—Z"”)<6<1foralln2N. Let y € X and fix it. Now

dun () — §
I5g 31 =t p >0 sup M<ll i (a) mn) 1)

zeX P
:inf{p>0:M<M>§l}<pg<£.

Thus for each z € X, §%» — 6% in co(X,U, M) as n — co. So we have F(0%") — F(0%) as n — 00
which clearly implies that ¢(z)u, — ¢(z)u as n — co. Hence ¢(x) € U* for each z € X. Moreover,
since ¢o(X, U, M) is an AK-function space, for each f € ¢o(X,U, M), we have s;(f) — f, and so

F(f) = Flimss (1) =t P 60) = ¥ oo (o)
z€J T€X

Thus .y ¢(x) f(x) is summable for every f € co(X,U, M) and therefore by Theorem 2.4 we
get ¢ € Ho(X,U™).

Conversely, if ¢ € Ho(X,U*), then by Theorem 2.4 3 _ é(x)f(x) is summable for every
[ € co(X,U,M). Now F defined by F(f) = > .x ¢(x) f(z) is clearly a linear functional on
co(X,U,M). Since ¢ € Ho(X,U*), > cx llo(@)|| = L < .

Let € > 0 be given. Suppose that for f € ¢o(X,U, M), || f|loc < &. Then we get |F(f)| <
> zex lé(@)|[ | f(z)]| < eH which shows that F is continuous. Hence F' € cj(X, U, M).




Thus for each F' € ¢(X, U, M), there exists ¢ € Hyo(X,U™*) and vice-versa. Hence the correspon-
dence F' — ¢ clearly determines an isomorphism of ¢fj(X, U, M) onto Ho(X,U*). This completes
the proof. O

Theorem 3.2. F € ¢*(X,U, M) is the continuous dual of (¢(X,U, M), ||-||0) #f and only if there
exist ¢ € Ho(X,U*) and g € U* such that F(f) = g(1)+>_,cx ¢(x) f(x) for every f € c(X,U, M),
where | € U satisfies that for every e > 0, there exists J € F(X) such that for all z € X \ J,

M (W) < ¢ for some p > 0.

Proof. Let F € ¢*(X,U,M) and f € ¢(X,U,M). Let | € U be as in the statement of the
theorem. Clearly F € ¢(X,U, M) and the function ¢p: X — U, ¢(z) = f(x) — 1 is in ¢o(X, U, M).
Thus by Theorem 3.1, we have ¢ € Ho(X,U*) such that F(¢) = Y v ¢(z)(f(z) — 1) and right
hand side is summable. Since ¢ € Ho(X,U*), > cx ¢(x)u is summable. Clearly, §: X — U
defined by &;(z) = [ for each z € X is in ¢(X,U, M) and f = ¢ + . Thus

F(f)=F@)+F&) =Y ¢@)(f(x) - 1)+ F(&)

zeX

—FE&) - Y @i+ 3 o) fla) = o) + 3 6@)f (@)

reX zeX zeX

where we write g(I) = F(&) — >, cx ¢(x)l. g is linear on U. For continuity of g, suppose that the
sequence (uy,) in U converges to 0 as n — co. Clearly (&, ) converges to function 0 in ¢(X, U, M)
and hence F(§,, ) converges to 0 as n — oo. Further

zeX

< Juall Y- llé@),  n=1,

reX




shows that > .y ¢(z)u, converges to 0 as n — oo. Hence g(u,) — 0 as n — oo, ie., g is
continuous on U. For converse part, suppose that ¢ € Ho(X,U*) and g € U*. Then

Y lé@)] =L < oo

reX

We now define F' on ¢(X,U, M) by F(f) = g(I) +>_,cx ¢(x) f(x), f€c(X,U, M). Clearly, F is
well defined and linear (see Theorem 2.1) on ¢(X, U, M).
Let 0 < € < 1. Suppose that for f € ¢(X,U, M), ||fllc < € and p is associated with f. Now

consider M (%) > 0. Since f € ¢(X,U, M), there exists [ € U such that for M (%) > 0 there exists
J € F(x) satisfying M ( |f (xp)_ll) <M (%), for all x € X . J. M is non-decreasing, therefore

also by the definition of norm, we have sup,¢ y M ( ’ﬂ(fx”) 1y <1, ie., M( |’ﬂfx”) ) < 1.
Now we can find 7 > 1 and ¢y > 0 which is a fixed real number such that r%q (%) > 1.
Hence, M (%) < r%g (%) which gives us that for each 2 € X, | f(z)| < erto. Then we
have

1 < 1F (@) = Ul + [[f (@) <e+erto=e(l+rto)
and so we clearly get that ||l|| < e. Now the continuity of F' easily follows from

|F(¢)| = ‘g(l) + D o@)f(@)] < llgll 12l + sup £l > le@l

rxeX zeX
< e[llgll (1 4 rto) + rtoL].

Hence, F € ¢*(X,U, M). This completes the proof. O
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