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SOME RESULTS OF F -BIHARMONIC MAPS

YINGBO HAN and SHUXIANG FENG

Abstract. In this paper, we give the notion of F -biharmonic maps, which is a gen-

eralization of biharmonic maps. We derive the first variation formula which yields

F -biharmonic maps. Then we investigate the harmonicity of F -biharmonic maps
under the curvature conditions on the target manifold (N,h). We also introduce the

stress F -bienergy tensor SF,2. Then, by using the stress F -bienergy tensor SF,2, we

obtain some nonexistence results of proper F -biharmonic maps under the assump-
tion that SF,2 = 0. Moreover, we derive some monotonicity formulas for the special

case of the biharmonic map, i.e., where F -biharmonic map with F (t) = t. Then,

by using these monotonicity formulas, we obtain new results on the non existence
of proper biharmonic isometric immersions from complete manifolds.

1. Introduction

Harmonic maps play a central roll in variational problems for smooth maps be-
tween manifolds u : (M, g)→ (N,h) as the critical points of the energy functional
E(u) = 1

2

∫
M
‖du‖2dvg. On the other hand, in 1981, J. Eells and L. Lemaire [7]

proposed the problem to consider the k-harmonic maps which are critical maps of
the functional

Ek(u) =

∫
M

‖(d+ δ)ku‖2

2
dvg

for smooth maps u : M → N . G. Y. Jiang [9] studied the first and second variation
formulas of the bienergy E2 where critical maps of E2 are called biharmonic maps.
There have been extensive studies on biharmonic maps (for instance, see [9, 13,
14, 15, 16, 18, 19]).

Let F : [0,∞) → [0,∞) be a C3 function such that F ′ > 0 on (0,∞). For a
smooth map u : (M, g)→ (N,h) between Riemannian manifolds (M, g) and (N,h),
we define the F -k-energy EF,k(u) of u by

EF,k(u) =

∫
M

F (
‖(d+ δ)ku‖2

2
)dvg,
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which is Ek(u) if F (t) = t. When k = 1, we have

EF,1(u) =

∫
M

F

(
‖du‖2

2

)
dvg = EF (u),

which was introduced by M. Ara in [1]. The critical maps of EF (u) are called
F -harmonic maps which are the generalization of harmonic maps, p-harmonic
maps or exponentially harmonic maps. There have been extensive studies in this
area (for instance, [4, 5, 11, 12]). When k = 2, we have

EF,2(u) =

∫
M

F

(
‖τ(u)‖2

2

)
dvg,

where τ(u) = −δdu = trace ∇̃(du). It is the bienergy of G.Y. Jiang [9], the
p-bienergy of P. Hornung and R. Moser [6] or exponentially bienergy when F (t) = t,

F (t) = (2t)
p
2 or F (t) = et. We say that u is an F -biharmonic map if

d

dt
EF,2(ut)|t=0 = 0

for any compactly supported variation ut : M → N with u0 = u. In this note,
we derive the first variation formula which yields F -biharmonic maps. Then we
investigate the harmonicity of F -biharmonic maps under the curvature conditions
on the target manifold (N,h). We also introduce the stress F -bienergy tensor SF,2.
Then, by using the stress F -bienergy tensor SF,2, we obtain some non existence
results of proper F -biharmonic maps under the assumption SF,2 = 0. Also, we
derive some monotonicity formulas for the special case of a biharmonic map, i.e.,
an F -biharmonic map with F (t) = t. Then, by using these monotonicity formu-
las, we investigate the harmonicity of biharmonic isometric maps from complete
manifolds.

Remark 1.1. In [17], the authors introduced f -biharmonic maps which are
critical points of the bi-f -energy functional

E2
f (u) =

1

2

∫
M

‖τf (u)‖2dvg,

where τf (u) = fτ(u) + du(grad f) and f ∈ C∞(M). We think that it is more
reasonable to call them “bi-f -harmonic maps” as parallel to “biharmonic maps”.

2. The first variation formula

Let∇ and N∇ always denote the Levi-Civita connections ofM andN , respectively.

Let ∇̃ be the induced connection on u−1TN defined by ∇̃XW = N∇du(X)W ,

where X is a tangent vector of M and W is a section of u−1TN . We choose a
local orthonormal frame field {ei} on M . We define the F -bitension field τF,2(u)
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of u by

τF,2(u) = −J(F ′
(
‖τ(u)‖2

2

)
τ(u))

= −4̃(F ′
(
‖τ(u)‖2

2
)τ(u)

)
−
∑
i

RN (du(ei), F
′
(
‖τ(u)‖2

2

)
τ(u))du(ei),

where J is the Jacobi operator of the second variation for the energy E(u) =
1
2

∫
M
‖du‖2dvg, 4̃ = −

∑
i(∇̃ei∇̃ei−∇̃∇eiei) is the rough Laplacian on the section

of u−1TN and RN (X,Y ) = [N∇X ,N ∇Y ]− N∇[X,Y ] is the curvature operator on
N .

Under the notation above we have the following theorem

Theorem 2.1 (The first variation formula). Let u : M → N be a smooth map.
Then

d

dt
EF,2(ut) |t=0 =

∫
M

h(τF,2(u), V )dvg,(1)

where V = d
dtut|t=0.

Proof. Let Ψ: (−ε, ε)×M → N be defined by Ψ(t, x) = ut(x), where (−ε, ε)×M
is equipped with the product metric. We extend the vector fields ∂

∂t on (−ε, ε), X
on M naturally on (−ε, ε)×M , and denote those also by ∂

∂t , X. Then

dΨ

(
∂

∂t

)
=

d

dt
ut|t=0 = V.

We shall use the same notations ∇ and ∇̃ for the Levi-Civita connection on
(−ε, ε)×M and the induced connection on Ψ−1TN , respectively.

We compute

∂

∂t
F

(
‖τ(ut)‖2

2

)
= F ′

(
‖τ(ut)‖2

2

)
1

2

∂

∂t
‖τ(ut)‖2

= F ′
(
‖τ(ut)‖2

2

)
h
(
∇̃ ∂

∂t
τ(ut), τ(ut)

)
=
∑
i

F ′
(
‖τ(ut)‖2

2

)
h
(
∇̃ ∂

∂t
[(∇̃eidΨ)(ei)], τ(ut)

)
=
∑
i

h
(
∇̃ ∂

∂t
∇̃eidΨ(ei)− ∇̃ ∂

∂t
dΨ(∇eiei

)
, F ′

(
‖τ(ut)‖2

2
)τ(ut)

)
=
∑
i

h(RN
(
dΨ

(
∂

∂t

)
, dΨ(ei))dΨ(ei), F

′
(
‖τut‖2

2

)
τ(ut)

)
+
∑
i

h

(
∇̃ei∇̃eidΨ

(
∂

∂t

)
− ∇̃∇eieidΨ(

∂

∂t

)
, F ′

(
‖τ(ut)‖2

2
)τ(ut)

)
,

(2)
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where we use

∇̃ ∂
∂t
dΨ(ei)− ∇̃eidΨ

(
∂

∂t

)
= dΨ

[
∂

∂t
, ei

]
= 0

and

∇̃ ∂
∂t
dΨ(∇eiei)− ∇̃∇eieidΨ

(
∂

∂t

)
= dΨ

[
∂

∂t
,∇eiei

]
= 0

for the fifth equality.
Let Xt and Yt be two compactly supported vector fields on M such that

g(Xt, Z) = h(∇̃ZdΨ
(
∂
∂t

)
, F ′

(
‖τut‖2

2 )τ(ut)
)

and g(Yt, Z) = h
(
dΨ
(
∂
∂t

)
,

∇̃Z
(
F ′
(
‖τ(ut)‖2

2

)
τ(ut)

))
for any vector field Z on M . Then the divergence

of Xt and Yt are given by the following:

div(Xt) =
∑
k

g(∇ekXt, ek) =
∑
k

ekg(Xt, ek)−
∑
k

g(Xt,∇ekek)

=
∑
k

ekh

(
∇̃ekdΨ

(
∂

∂t

)
, F ′

(
‖τ(ut)‖2

2

)
τ(ut)

)
−
∑
k

h

(
∇̃∇ekekdΨ

(
∂

∂t

)
, F ′(

‖τ(ut)‖2

2
)τ(ut)

)
=
∑
k

h

(
∇̃ek∇̃ekdΨ

(
∂

∂t

)
− ∇̃∇ekekdΨ

(
∂

∂t

)
, F ′
(
‖τ(ut)‖2

2

)
τ(ut)

)
+
∑
k

h

(
∇̃ekdΨ

(
∂

∂t

)
, ∇̃ek

[
F ′
(
‖τ(ut)‖2

2

)
τ(ut)

])

(3)

and

div(Yt) =
∑
k

g(∇ekYt, ek) =
∑
k

ekg(Yt, ek)−
∑
k

g(Yt,∇ekek)

=
∑
k

ekh

(
dΨ(

∂

∂t

)
, ∇̃ek

[
F ′
(
‖τ(ut)‖2

2
)τ(ut)

])
−
∑
k

h(dΨ(
∂

∂t
), ∇̃∇ekek(F ′

(
‖τ(ut)‖2

2
)τ(ut))

)
=
∑
k

h

(
dΨ

(
∂

∂t

)
, ∇̃ek∇̃ek

[
F ′
(
‖τut‖2

2

)
τ(ut)

]
− ∇̃∇ekek

[
F ′
(
‖τ(ut)‖2

2

)
τ(ut)

])
+
∑
k

h

(
∇̃ekdΨ

(
∂

∂t

)
, ∇̃ek

[
F ′
(
‖τ(ut)‖2

2

)
τ(ut)

])
.

(4)
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From (2), (3) and (4), we have

∂

∂t
F

(
‖τ(ut)‖2

2

)
=
∑
i

h

(
RN

(
dΨ

(
∂

∂t

)
, dΨ(ei)

)
dΨ(ei), F

′
(
‖τ(ut)‖2

2

)
τ(ut)

)
+
∑
i

h

(
dΨ

(
∂

∂t

)
, ∇̃ei∇̃ei

[
F ′
(
‖τ(ut)‖2

2

)
τ(ut)

]
− ∇̃∇eiei

[
F ′
(
‖τ(ut)‖2

2

)
τ(ut)

])
+ div(Xt)− div(Yt).

(5)

By (5) and Green’s theorem, we have

d

dt
EF,2(ut)|t=0

=

∫
M

∂

∂t
F

(
‖τ(ut)‖2

2

)∣∣∣∣
t=0

dvg

=

∫
M

h

(
−4̃

[
F ′
(
‖τ(u)‖2

2

)
τ(u)

]
−
∑
i

RN
(
du(ei),

[
F ′
(
‖τ(u)‖2

2

)
τ(u)

])
du(ei), V

)
dvg

=

∫
M

h(τF,2(u), V )dvg.

This proves Theorem 2.1. �

The first variation formula allows us to define the notion of an F -biharmonic
map for the functional EF,2(u).

Definition 2.2. A smooth map u is called an F -biharmonic map for the func-
tional EF,2(u) if it is a solution of the Euler-Lagrange equation τF,2(u) = 0.

Remark 2.3. By Definition 2.2, we know that any harmonic map is an F -
biharmonic map.

Proposition 2.4. Let u : M → N be a smooth map. If ‖τ(u)‖2 is constant,
then u is F -biharmonic if and only if it is biharmonic.

Proof. Since ‖τ(u)‖2 is constant, we have

τF,2(u) = F ′
(
‖τ(u)‖2

2

)[
−4̃(τ(u))−

∑
i

RN (du(ei), τ(u))du(ei)

]

= F ′
(
‖τ(u)‖2

2

)
τ2(u),

so we know that u is F -biharmonic if and only if it is biharmonic. �
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Remark 2.5. When ‖τ(u)‖2 is non-constant, we have

τF,2(u) = F ′
(
‖τ(u)‖2

2

)[
−4̃(τ(u))−

∑
i

RN (du(ei), τ(u))du(ei)

]

−
[
4̃F ′

(
‖τ(u)‖2

2

)]
τ(u) + ∇̃

gradF ′
(

‖τ(u)‖2
2

)τ(u)

= F ′
(
‖τ(u)‖2

2

)
τ2(u)−

[
4̃F ′

(
‖τ(u)‖2

2

)]
τ(u) + ∇̃

gradF ′
(

‖τ(u)‖2
2

)τ(u).

From this equation, we know that there are many differences between F -biharmonic
maps and biharmonic maps when F (t) = (2t)

p
2 , (p > 2) or F (t) = et.

3. Non-existence results for F -biharmonic maps

From the definition of an F -biharmonic map, we know that a harmonic map
is F -biharmonic map, so a basic question in theory is to understand under what
conditions the converse is true. A first general answer to this problem for F (t) = t,
proved by G. Y. Jiang [9], is the following theorem

Theorem 3.1 ([9]). Let u : (M, g)→ (N,h) be a smooth map. If M is compact,

orientable and the sectional curvature of (N,h) is non-positive, i.e., RiemN ≤ 0,
then u is a biharmonic map if and only if it is harmonic.

In this section, we will obtain the following results

Theorem 3.2. Let u : (M, g) → (N,h) be a smooth map. If M is compact,

orientable and the sectional curvature of (N,h) is non-positive, i.e., RiemN ≤ 0,
then u is an F -biharmonic map if and only if it is harmonic.

Proof. Computing the Laplacian of the function ‖F ′(‖τ(u)‖2
2 )τ(u)‖2, we have

4
∥∥∥∥F ′(‖τ(u)‖2

2

)
τ(u)

∥∥∥∥2

= 2
∑
k

h

(
∇̃ek

[
F ′
(
‖τ(u)‖2

2

)
τ(u)

]
, ∇̃ek

[
F ′
(
‖τ(u)‖2

2

)
τ(u)

])
+ 2h

(
−4̃

[
F ′
(
‖τ(u)‖2

2

)
τ(u)

]
, F ′

(
‖τ(u)‖2

2

)
τ(u)

)
.

(6)

Since u is an F -biharmonic map, we have

τF,2(u) = − 4̃
(
F ′
(
‖τ(u)‖2

2

)
τ(u)

)
−
∑
i

RN
(
du(ei), F

′
(
‖τ(u)‖2

2

)
τ(u)

)
du(ei) = 0.

(7)
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From (6) and (7), we have

4‖ F ′
(
‖τ(u)‖2

2

)
τ(u)

∥∥∥∥2

= 2
∑
k

h(∇̃ek
[
F ′
(
‖τ(u)‖2

2

)
τ(u)

]
, ∇̃ek

[
F ′
(
‖τ(u)‖2

2
)τ(u)

])
+ 2

∑
i

h(RN
(
du

(
ei), F

′
(
‖τ(u)‖2

2

)
τ(u)

)
du(ei), F

′
(
‖τ(u)‖2

2

)
τ(u)

)
.(8)

Since the section curvature of N is non-positive, i.e., RiemN ≤ 0 and by (8), we
have

4‖F ′
(
‖τ(u)‖2

2

)
τ(u)‖2 ≥ 0(9)

By the Green’s theorem
∫
M
4‖F ′

(
‖τ(u)‖2

2

)
τ(u)‖2dvg = 0 and (9), we have

4‖F ′
(
‖τ(u)‖2

2

)
τ(u)‖2 = 0,

so then ‖F ′
(
‖τ(u)‖2

2

)
τ(u)‖2 is constant. From (8), we have

∇̃ek
[
F ′
(
‖τ(u)‖2

2

)
τ(u)

]
= 0, for k = 1, . . . ,m.(10)

Setting X =
∑
i h
(
du(ei), F

′
(
‖τ(u)‖2

2

)
τ(u)

)
ei, we have

div(X) =
∑
k

g(∇ekX, ek)

= h

(
τ(u), F ′

(
‖τ(u)‖2

2

)
τ(u)

)
+
∑
i

h

(
du(ei), ∇̃ei

[
F ′
(
‖τ(u)‖2

2

)
τ(u)

])
= h

(
τ(u), F ′

(
‖τ(u)‖2

2

)
τ(u)

)
= F ′

(
‖τ(u)‖2

2

)
‖τ(u)‖2.

(11)

Integrating (11) over M , we have

0 =

∫
M

div(X)dvg =

∫
M

F ′
(
‖τ(u)‖2

2

)
‖τ(u)‖2dvg.(12)

From F ′(t) > 0 on (0,∞) and (12), we have τ(u) = 0.
�
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When u is a Riemannian immersion and dimM=dimN − 1, we can replace
the hypothesis RiemN ≤ 0 with the hypothesis RicciN ≤ 0, and we obtain the
following theorem.

Theorem 3.3. Let u : (M, g) → (N,h) be a Rimannian immersion. If M

is compact, orientable, RicciN ≤ 0 and dimM = dimN − 1, then u is an F -
biharmonic map if and only if it is harmonic.

Proof. Since u is a Riemannian immersion and dimM = dimN − 1, we have∑
i

h

(
RN

(
du(ei), F

′
(
‖τ(u)‖2

2

)
τ(u)

)
du(ei), F

′
(
‖τ(u)‖2

2

)
τ(u)

)
= −RicciN

(
F ′
(
‖τ(u)‖2

2

)
τ(u), F ′

(
‖τ(u)‖2

2

)
τ(u)

)
.

(13)

From (8), (13) and RicciN ≤ 0, we have

4
∥∥∥∥F ′(‖τ(u)‖2

2

)
τ(u)

∥∥∥∥2

≥ 0.

Applying the same argument as in the proof of Theorem 3.2, we get the result. �

Theorem 3.4. Let (M, g) be an m-dimensional complete manifold with
Vol(M, g) =∞. If u : (M, g)→ (N,h) is an F -biharmonic map, the sectional cur-

vature of (N,h) is non-positive, i.e., RiemN ≤ 0 and
∫
M

∥∥∥F ′ (‖τ(u)‖2
2

)
τ(u)

∥∥∥2

dvg<

∞, then u is harmonic.

Proof. Since u is an F -biharmonic map, we have

τF,2(u) = − 4̃
(
F ′
(
‖τ(u)‖2

2

)
τ(u)

)
−
∑
i

RN
(
du(ei), F

′
(
‖τ(u)‖2

2

)
τ(u)

)
du(ei) = 0.

(14)

Take any point x0 ∈ M and for every r > 0, let us consider the following cut off
function λ(x) on M :

0 ≤ λ(x) ≤ 1, x ∈M,

λ(x) = 1, x ∈ Br(x0),

λ(x) = 0, x ∈M −B2r(x0),

|∇λ| ≤ 2
r , x ∈M,

(15)

where Br(x0) = {x ∈M : d(x, x0) < r} and d is the distance of (M, g).
Let X be a compactly supported vector field on M such that

g(X,Y ) = h

(
∇̃Y

[
F ′
(
‖τ(u)‖2

2

)
τ(u)], λ2[F ′

(
‖τ(u)‖2

2

)
τ(u)

])
.
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Then the divergence of X is given by the following expression

div(X)

=
∑
k

g(∇ekX, ek) =
∑
k

ekg(X, ek)−
∑
k

g(X,∇ekek)

=
∑
k

ekh

(
∇̃ek

[
F ′
(‖τ(u)‖2

2

)
τ(u)

]
, λ2
[
F ′
(‖τ(u)‖2

2

)
τ(u)

])
−
∑
k

h

(
∇̃∇ek ek

[
F ′
(‖τ(u)‖2

2

)
τ(u)

]
, λ2
[
F ′
(‖τ(u)‖2

2

)
τ(u)

])
= h

(
−4̃

[
F ′
(‖τ(u)‖2

2

)
τ(u)

]
, λ2
[
F ′
(‖τ(u)‖2

2

)
τ(u)

])
+
∑
k

h

(
∇̃ek

[
F ′
(‖τ(u)‖2

2

)
τ(u)

]
, ∇̃ek

(
λ2
[
F ′
(‖τ(u)‖2

2

)
τ(u)

]))
.

(16)

From (14) and (16), we have

div(X)

=
∑
k

h

(
RN

(
du(ek), F ′

(‖τ(u)‖2

2

)
τ(u)

)
du(ek), λ2

[
F ′
(‖τ(u)‖2

2

)
τ(u)

])
+
∑
k

h

(
∇̃ek

[
F ′
(‖τ(u)‖2

2

)
τ(u)

]
, ∇̃ek

(
λ2
[
F ′
(‖τ(u)‖2

2

)
τ(u)

]))
.

(17)

Integrating (17) over M and RiemN ≤ 0, we get

∑
k

∫
M

h

(
∇̃ek

[
F ′
(‖τ(u)‖2

2

)
τ(u)

]
, ∇̃ek

(
λ2
[
F ′
(‖τ(u)‖2

2

)
τ(u)

]))
dvg

= −
∑
k

∫
M

h

(
RN

(
du(ek), F ′

(‖τ(u)‖2

2

)
τ(u)

)
du(ek), λ2

[
F ′
(‖τ(u)‖2

2

)
τ(u)

])
dvg

=
∑
k

∫
M

h

(
RN

(
F ′
(‖τ(u)‖2

2

)
τ(u), du(ek)

)
du(ek), λ2

[
F ′
(‖τ(u)‖2

2

)
τ(u)

])
dvg

≤ 0.

(18)

From (18), we have

0 ≥
∑
k

∫
M

h

(
∇̃ek

[
F ′
(‖τ(u)‖2

2

)
τ(u)

]
, ∇̃ek

(
λ2
[
F ′
(‖τ(u)‖2

2

)
τ(u)

]))
dvg

=
∑
k

∫
M

λ2

∥∥∥∥∇̃ek[F ′
(‖τ(u)‖2

2

)
τ(u)

]∥∥∥∥2 dvg
+ 2

∑
k

∫
M

λek(λ)h

(
∇̃ek

[
F ′
(‖τ(u)‖2

2

)
τ(u)

]
,
[
F ′
(‖τ(u)‖2

2

)
τ(u)

])
dvg.

(19)
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Therefore, we have

∑
k

∫
M

λ2

∥∥∥∥∇̃ek[F ′
(‖τ(u)‖2

2

)
τ(u)

]∥∥∥∥2 dvg
≤ −2

∑
k

∫
M

λek(λ)h

(
∇̃ek

[
F ′
(‖τ(u)‖2

2

)
τ(u)

]
,
[
F ′
(‖τ(u)‖2

2

)
τ(u)

])
dvg

= −
∑
k

∫
M

2h

(
λ∇̃ek

[
F ′
(‖τ(u)‖2

2

)
τ(u)

]
, ek(λ)

[
F ′
(‖τ(u)‖2

2

)
τ(u)

])
dvg

≤
∑
k

∫
M

{
1

2
λ2

∥∥∥∥∇̃ek[F ′
(‖τ(u)‖2

2

)
τ(u)

]∥∥∥∥2

+ 2[ek(λ)]2
∥∥∥∥F ′

(
‖τ(u)‖2

2

)
τ(u)

∥∥∥∥2
}
dvg,

(20)

where we use the following Cauchy-Schwarz inequality

±2h(V,W ) ≤ ε‖V ‖2 +
1

ε
‖W‖2

for the second inequality and ε = 1
2 .

From (20), we have∑
k

∫
M

λ2
∥∥∥∇̃ek[F ′(‖τ(u)‖2

2

)
τ(u)

]∥∥∥2

dvg

≤ 4

∫
M

∑
k

[ek(λ)]2
∥∥∥F ′(‖τ(u)‖2

2

)
τ(u)

∥∥∥2

dvg,

≤ 16

r2

∫
M

∥∥∥F ′(‖τ(u)‖2

2

)
τ(u)

∥∥∥2

dvg.

(21)

Since
∫
M
‖F ′
(
‖τ(u)‖2

2

)
τ(u)‖2dvg < ∞ and (M, g) is complete, then we have

(r →∞) ∫
M

∑
k

∥∥∥∇̃ek[F ′(‖τ(u)‖2

2

)
τ(u)

]∥∥∥2

dvg = 0.

For every vector field X on M , we have

∇̃X
[
F ′
(‖τ(u)‖2

2

)
τ(u)

]
= 0.

So we know that
∥∥∥F ′(‖τ(u)‖2

2

)
τ(u)

∥∥∥2

is constant, say C. Therefore, if Vol(M, g)=∞
and C 6= 0, then∫

M

∥∥∥F ′(‖τ(u)‖2

2

)
τ(u)

∥∥∥2

dvg = C2 Vol(M, g) =∞,
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which yields a contradiction. Thus, we have
∥∥∥F ′(‖τ(u)‖2

2

)
τ(u)

∥∥∥2

= C = 0. From

F ′(t) > 0 on (0,∞) and
∥∥∥F ′(‖τ(u)‖2

2

)
τ(u)

∥∥∥2

= 0, we know that τ(u) = 0, i.e. u is

harmonic. �

From Theorem 3.4, we have the following corollaries:

Corollary 3.5. Let (M, g) be an m-dimensional complete manifold with
Vol(M, g) = ∞. If u : (M, g) → (N,h) is an exponentially biharmonic map, the
sectional curvature of (N,h) is non-positive, i.e.,

RiemN ≤ 0 and

∫
M

‖τ(u)‖2 e‖τ(u)‖2 dvg <∞,

then u is harmonic.

Corollary 3.6. Let (M, g) be an m-dimensional complete manifold with
Vol(M, g) = ∞. If u : (M, g) → (N,h) is a p-biharmonic map, the sectional

curvature of (N,h) is non-positive, i.e., RiemN ≤ 0 and
∫
M
‖τ(u)‖2p−2dvg < ∞,

then u is harmonic.

Corollary 3.7 ([15]). Let (M, g) be an m-dimensional complete manifold with
Vol(M, g) = ∞. If u : (M, g) → (N,h) is a biharmonic map, the sectional curva-

ture of (N,h) is non-positive, i.e., RiemN ≤ 0 and
∫
M
‖τ(u)‖2dvg <∞, then u is

harmonic.

4. Stress F -bienergy tensor

The stress bienergy tensor and the conservation law of a biharmonic map between
Riemannian manifolds were first studied by G.Y. Jiang in [10]. Following Jiang’s
notion, we define the stress F -bienergy tensor of a smooth map as follows.

Definition 4.1. Let u : (M, g) → (N,h) be a smooth map between two Rie-
mannian manifolds. The stress F -bienergy tensor of u is defined by

SF,2(X,Y )

= F
(‖τ(u)‖2

2

)
g(X,Y ) +

∑
k

h
(
du(ek), ∇̃ek

[
F ′
(‖τ(u)‖2

2

)
τ(u)

])
g(X,Y )

− h
(
du(X), ∇̃Y

[
F ′
(‖τ(u)‖2

2

)
τ(u)

])
− h
(
du(Y ), ∇̃X

[
F ′
(‖τ(u)‖2

2

)
τ(u)

])
for any X,Y ∈ Γ(TM).

Remark 4.2. When F (t) = t, we have SF,2(X,Y ) = S2(X,Y ), where S2 is stress
bienergy tensor in [10].

Theorem 4.3. For any smooth map u : (M, g)→ (N,h)

(divSF,2)(X) = −h(τF,2(u), du(X))− F ′′
(‖τ(u)‖2

2

)
X
(‖τ(u)‖4

4

)
for any vector field X ∈ Γ(TM).
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Proof. We choose a local orthonormal frame field {ei} on M with ∇eiei|x = 0
at a point x ∈M . Let X be a vector field on M . At x, we compute

(divSF,2)(X)

=
∑
i

(∇eiSF,2)(ei, X)

=
∑
i

eiSF,2(ei, X)− SF,2(ei,∇eiX)

=
∑
i

ei

[
F

(
‖τ(u)‖2

2

)
g(ei, X) +

∑
k

h

(
du(ek), ∇̃ek

[
F ′
(‖τ(u)‖2

2

)
τ(u)

])
g(ei, X)

− h

(
du(ei), ∇̃X

[
F ′
(‖τ(u)‖2

2

)
τ(u)

])
− h

(
du(X), ∇̃ei

[
F ′
(‖τ(u)‖2

2

)
τ(u)

])]
−
∑
i

[
F

(
‖τ(u)‖2

2

)
g(ei,∇eiX)

+
∑
k

h

(
du(ek), ∇̃ek

[
F ′
(‖τ(u)‖2

2

)
τ(u)

])
g(ei,∇eiX)

−h
(
du(ei), ∇̃∇eiX

[
F ′
(‖τ(u)‖2

2

)
τ(u)

])
− h

(
du(∇eiX), ∇̃ei

[
F ′
(‖τ(u)‖2

2

)
τ(u)

])]
= X

(
F

(
‖τ(u)‖2

2

))
+
∑
k

h

(
(∇̃du)(X, ek), ∇̃ek

[
F ′
(‖τ(u)‖2

2

)
τ(u)

])
+
∑
k

h

(
du(ek), ∇̃X∇̃ek

[
F ′
(‖τ(u)‖2

2

)
τ(u)

])
− h

(
τ(u), ∇̃X

[
F ′
(‖τ(u)‖2

2

)
τ(u)

])
−
∑
i

h

(
du(ei), ∇̃ei∇̃X

[
F ′
(‖τ(u)‖2

2

)
τ(u)

])
−
∑
k

h

(
(∇̃du)(X, ek), ∇̃ek

[
F ′
(‖τ(u)‖2

2

)
τ(u)

])
+
∑
i

h

(
du(ei), ∇̃∇eiX

[
F ′
(‖τ(u)‖2

2

)
τ(u)

])
−
∑
i

h

(
du(X), ∇̃ei∇̃ei

[
F ′
(‖τ(u)‖2

2

)
τ(u)

])
]

= − F ′′
(‖τ(u)‖2

2

)
X
(‖τ(u)‖4

4

)
+ h

(
4̃
[
F ′
(‖τ(u)‖2

2

)
τ(u)

]
+
∑
i

RN
(
du(ei),

[
F ′
(‖τ(u)‖2

2

)
τ(u)

])
du(ei), du(X)

)

= − h(τF,2(u), du(X))− F ′′
(‖τ(u)‖2

2

)
X
(‖τ(u)‖4

4

)
.

�

From Theorem 3.1, we know that if u : M → N is an F -biharmonic map, then

(divSF,2)(X) = −F ′′
(‖τ(u)‖2

2

)
X
(‖τ(u)‖4

4

)
.(22)



SOME RESULTS OF F -BIHARMONIC MAPS 59

Proposition 4.4. Let c : I ⊂ R→ (N,h) be a curve parametrized by arc-length.

Assume that SF,2 = 0 and lF = inft≥0
tF ′(t)
F (t) > 0. Then c is geodesic.

Proof. A direct computation shows that

0 = SF,2

( ∂
∂t
,
∂

∂t

)
= F

(‖τ(c)‖2

2

)
− h
(
dc
( ∂
∂t

)
, ∇̃ ∂

∂t

[
F ′
(‖τ(c)‖2

2
)τ(c)

])
= F

(‖τ(c)‖2

2

)
+ h
(
τ(c),

[
F ′
(‖τ(c)‖2

2

)
τ(c)

])
,

> (1 + 2lF )F
(‖τ(c)‖2

2

)
.

If F (‖τ(c)‖2
2 ) = 0, then τ(c) = 0. �

Proposition 4.5. Let u : (M2, g) → (N,h) be a map from a surface. Then
SF,2 = 0 implies u is harmonic.

Proof. The trace of SF,2 gives the equality

0 = traceSF,2 = F
(‖τ(u)‖2

2

)
+ 2
〈
du, ∇̃

[
F ′
(‖τ(u)‖2

2

)
τ(u)

]〉
− 2
〈
du, ∇̃

[
F ′
(‖τ(u)‖2

2

)
τ(u)

]〉
= F

(‖τ(u)‖2

2

)
,

so we have τ(u) = 0. �

Proposition 4.6. Let u : (Mm, g) → (N,h), m 6= 2. Then SF,2 = 0 if and
only if

2

m− 2
F
(‖τ(u)‖2

2

)
g(X,Y ) + h

(
du(X), ∇̃Y [F ′

(‖τ(u)‖2

2

)
τ(u)]

)
+ h
(
du(Y ), ∇̃X

[
F ′
(‖τ(u)‖2

2

)
τ(u)

])
= 0

(23)

for any X,Y ∈ Γ(TM).

Proof. Since SF,2 = 0, we have traceSF,2 = 0. Therefore,∑
k

h
(
du(ek), ∇̃ek

[
F ′
(‖τ(u)‖2

2

)
τ(u)

])
= − m

m− 2
F
(‖τ(u)‖2

2

)
.

Substituting it into the definition of SF,2, we obtain

0 = SF,2(X,Y ) = − 2

m− 2
F
(‖τ(u)‖2

2

)
g(X,Y )

− h
(
du(X), ∇̃Y

[
F ′
(‖τ(u)‖2

2

)
τ(u)

])
− h
(
du(Y ), ∇̃X

[
F ′
(‖τ(u)‖2

2

)
τ(u)

])
.

�
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Proposition 4.7. A map u : (Mm, g) → (N,h), m > 2, with SF,2 = 0 and
ranku ≤ m− 1 is harmonic.

Proof. Take p ∈ M . Since ranku(p) ≤ m − 1, there exists a unit vector

Xp ∈ Ker dup and for X = Y = Xp, (23) becomes F
(
‖τ(u)‖2

2

)
= 0, so τ(u) = 0.

�

Corollary 4.8. Let u : (Mm, g) → (Nn, h) be a submersion (m > n), if
SF,2 = 0, then u is harmonic.

Recall that for two 2-tensors T1, T2 ∈ Γ(T ∗M ⊗ T ∗M), their inner product is
defined as follows:

〈T1, T2〉 =
∑
ij

T (ei, ej)T2(ei, ej),(24)

where {ei} is an orthonormal basis of M with respect to g. For a vector field
X ∈ Γ(TM), by θX we denote its dual one form, i.e., θX(Y ) = g(X,Y ). The
covariant derivative of θX gives a 2-tensor field ∇θX

(∇θX)(Y,Z) = (∇ZθX)(Y ) = g(∇ZX,Y ).(25)

If X = ∇ϕ is the gradient of some function ϕ on M , then θX = dϕ and ∇θX =
Hessϕ.

Lemma 4.9 (cf. [2, 4]). Let T be a symmetric (0, 2)-type tensor field and let
X be a vector field. Then

div(iXT ) = (div T )(X) + 〈T,∇θX〉 = (div T )(X) +
1

2
〈T, LXg〉.(26)

Let D be any bounded domain of M with C1 boundary. By using the Stokes’
theorem, we immediately have the following integral formula∫

∂D

T (X, ν)dsg =

∫
D

[〈T, 1

2
LXg〉+ div(T )(X)]dvg(27)

where ν is the unit outward normal vector field along ∂D.
By (22) and (3), we have∫

∂D

SF,2(X, ν)dsg

=

∫
D

[
〈SF,2,

1

2
LXg〉 − F ′′

(‖τ(u)‖2

2

)
X
(‖τ(u)‖4

4

)]
dvg.

(28)

When F (t) = t, the equation (28) turns into the following equation∫
∂D

S2(X, ν)dsg =

∫
D

〈S2,
1

2
LXg〉dvg.(29)
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5. Monotonicity formulas for biharmonic maps

In this section, we investigate the special case of F -biharmonic maps, i.e., bihar-
monic maps.

Let (Mm, g) be a complete Riemannian manifold with pole x0. By r(x) denote
the g-distance function relative to the pole x0, that is, r(x) = distg(x, x0). Set
B(r) = {x ∈ Mm : r(x) ≤ r}. By λmax (resp. λmin) denote the maximum (resp.
minimal) eigenvalues of Hess(r2)− dr ⊗ dr at each point of M − {x0}.

Theorem 5.1. Let u : (M, g) → (N,h) be an isometric immersion. Assume
that there is a constant σ > 0 such that

m− 1

2
λmin + 1− 2 max{2, λmax} ≥ σ.(30)

If u is a biharmonic map and h(τ(u), ∇̃ ∂
∂r
du( ∂∂r )) ≥ 0, then we have∫

B(ρ1)

‖τ(u)‖2

2
dvg

ρσ1
≤

∫
B(ρ2)

‖τ(u)‖2

2
dvg

ρσ2
(31)

for any 0 < ρ1 ≤ ρ2.

Proof. Since u : Mm → N is an isometric immersion, we have τ(u) = mH,
where H is the mean curvature vector field of M in N , so we know that

h(τ(u), du(X)) = h(mH, du(X)) = 0(32)

for any tangent vector field X on M .
Taking D = B(r) and X = r ∂∂r in (29), we have∫

∂B(r)

S2

(
r
∂

∂r
,
∂

∂r

)
dsg =

∫
B(r)

〈S2,
1

2
Lr ∂∂r

g〉dvg

=
1

2

∫
B(r)

〈S2,Hess(r2)〉dvg.
(33)

Let {ei}mi=1 be an orthonormal basis on M and em = ∂
∂r . We may assume that

Hess(r2) becomes a diagonal matrix with respect to {ei}.

−1

2
〈S2,Hess(r2)〉 = − 1

2

∑
i,j

S2(ei, ej) Hess(r2)(ei, ej)

= − 1

2
{
∑
i

‖τ(u)‖2

2
Hess(r2)(ei, ei)

+
∑
k

h(∇̃ekτ(u), du(ek))
∑
i

Hess(r2)(ei, ei)

− 2
∑
i,j

h(du(ei), ∇̃ej τ(u)) Hess(r2)(ei, ej)}

(34)
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=− 1

2

{
−‖τ(u)‖2

2

∑
i

Hess(r2)(ei, ei)

+ 2
∑
i

h(τ(u), ∇̃eidu(ei)) Hess(r2)(ei, ei)
}

≥ ‖τ(u)‖2

2

[m− 1

2
λmin + 1− 2 max{2, λmax}

]
≥ σ
‖τ(u)‖2

2
,

(34)

where the equation (32) is used for the third equality and the equation (30) for
the last inequality.

On the other hand, by the coarea formula, we have

−
∫
∂B(r)

S2

(
r
∂

∂r
,
∂

∂r

)
dsg = −

∫
∂B(r)

{[‖τ(u)‖2

2
+
∑
k

h(du(ek), ∇̃ekτ(u))
]
g
(
r
∂

∂r
,
∂

∂r

)
− 2rh(du

( ∂
∂r

)
, ∇̃ ∂

∂r
τ(u)

)}
dsg

=

∫
∂B(r)

{
r
‖τ(u)‖2

2
− rh

(
τ(u), ∇̃ ∂

∂r
du
( ∂
∂r

))}
dsg

≤
∫
∂B(r)

r
‖τ(u)‖2

2
dsg

= r
d

dr

∫
B(r)

‖τ(u)‖2

2
dvg,

(35)

where the condition h(τ(u), ∇̃ ∂
∂r
du( ∂∂r )) ≥ 0 is used for the inequality.

From (33), (34) and (35), we have

σ

∫
B(r)

‖τ(u)‖2

2
dvg ≤ r

d

dr

∫
B(r)

‖τ(u)‖2

2
dvg(36)

i.e.

d

dr

∫
B(r)

‖τ(u)‖2

2
dvg

rσ
≥ 0.(37)

Therefore, ∫
B(ρ1)

‖τ(u)‖2

2
dvg

ρσ1
≤

∫
B(ρ2)

‖τ(u)‖2

2
dvg

ρσ2

for any 0 < ρ1 ≤ ρ2. �

Lemma 5.2 ([4, 8]). Let (Mm, g) be a complete Riemannian manifold with a
pole x0. By Kr denote the radial curvature of M as follows

(i) if −α2 ≤ Kr ≤ −β2 with α ≥ β > 0, then

β coth(βr)[g − dr ⊗ dr] ≤ Hess(r) ≤ αcoth(αr)[g − dr ⊗ dr],
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(ii) if − A
(1+r2)1+ε ≤ Kr ≤ B

(1+r2)1+ε with ε > 0, A ≥ 0 and 0 ≤ B < 2ε, then

1−B/2ε
r

[g − dr ⊗ dr] ≤ Hess(r) ≤ eA/2ε

r
[g − dr ⊗ dr],

(iii) if − a2

1+r2 ≤ Kr ≤ b2

1+r2 with a ≥ 0 and b2 ∈ [0, 1
4 ], then

1 +
√

1− 4b2

2r
[g − dr ⊗ dr] ≤ Hess(r) ≤ 1 +

√
1 + 4a2

2r
[g − dr ⊗ dr].

Lemma 5.3. Let (Mm, g) be a complete Riemannian manifold with a pole x0.
By Kr denote the radial curvature of M as follows

(i) if −α2 ≤ Kr ≤ −β2 with α ≥ β > 0 and (m− 1)β − 4α ≥ 0, then

(m− 1)

2
λmin + 1− 2 max{2, λmax} ≥ m−

4α

β
.

(ii) if − A
(1+r2)1+ε ≤ Kr ≤ B

(1+r2)1+ε with ε > 0, A ≥ 0 and 0 ≤ B < 2ε, then

(m− 1)

2
λmin + 1− 2 max{2, λmax} ≥ 1 + (m− 1)(1− B

2ε
)− 4e

A
2ε .

(iii) if − a2

1+r2 ≤ Kr ≤ b2

1+r2 with a ≥ 0 and b2 ∈ [0, 1
4 ], then

(m− 1)

2
λmin + 1− 2 max{2, λmax}

≥ [1 + (m− 1)
1 +
√

1− 4b2

2
− 4

1 +
√

1 + 4a2

2
.

Proof. If Kr satisfies (i), then by Lemma 5.2, for every r > 0, we have on
B(r)− {x0},

1

2
[(m− 1)λmin + 2− 4 max{2, λmax}]

≥ 1

2
[(m− 1)2βr coth(βr) + 2− 4× 2αr coth(αr)]

= 1 + βr coth(βr)
(
m− 1− 4α

β

coth(αr)

coth(βr)

)
≥ 1 + 1.

(
m− 1)− 4α

β

)
= m− 4α

β
.

where the second inequality is valid the increasing function βr coth(βr) → 1 as

r → 0, and coth(αr)
coth(βr) < 1 for 0 < β < α. Similarly, from Lemma 5.2, the above

inequality holds for the cases (ii) and (iii) on B(r). �

Theorem 5.4. Let (M, g) be an m-dimensional complete manifold with a pole
x0. Assume that the radial curvature Kr of M satisfies one of the following three
conditions:

(i) if if −α2 ≤ Kr ≤ −β2 with α ≥ β > 0 and (m− 1)β − 4α ≥ 0,
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(ii) if − A
(1+r2)1+ε ≤ Kr ≤ B

(1+r2)1+ε with ε > 0, A ≥ 0, 0 ≥ B < 2ε and

1 + (m− 1)(1− B
2ε )− 4 e

A
2ε > 0,

(iii) if − a2

1+r2 ≤ Kr ≤ b2

1+r2 with a ≥ 0, b2 ∈ [0, 1
4 ] and 1 + (m − 1) 1+

√
1−4b2

2 −
4 1+

√
1+4a2

2 > 0.

If u : (M, g) → (N,h) is a biharmonic isometric immersion and h(τ(u),

∇̃ ∂
∂r
du( ∂∂r )) ≥ 0, then∫

B(ρ1)

‖τ(u)‖2

2
dvg

ρΛ
1

≤

∫
B(ρ2)

‖τ(u)‖2

2
dvg

ρΛ
2

(38)

for any 0 < ρ1 ≤ ρ2, where

Λ =


m− 4α

β
, if Kr satisfies (i)

1 + (m− 1)
(

1− B

2ε

)
− 4 e

A
2ε , if Kr satisfies (ii)

1 + (m− 1)
1 +
√

1− 4b2

2
− 4

1 +
√

1 + 4a2

2
, if Kr satisfies (iii)

(39)

Proof. From the proof of Theorem 5.1 and Lemma 5.3, we have

d

dr

∫
B(r)

‖τ(u)‖2

2
dvg

rΛ
≥ 0.

Therefore, we get the monotonicity formula∫
B(ρ1)

‖τ(u)‖2

2
dvg

ρΛ
1

≤

∫
B(ρ2)

‖τ(u)‖2

2
dvg

ρΛ
2

for any 0 < ρ1 ≤ ρ2. �

Corollary 5.5. Let M,Kr and Λ be as in Theorem 5.4. Assume that u : (M, g)

→ (N,h) is a biharmonic isometric immersion and h(τ(u), ∇̃ ∂
∂r
du( ∂∂r )) ≥ 0. If∫

B(R)

‖τ(u)‖2

2
dvg = o(RΛ),

then u is harmonic.

We say the bienergy E2(u) of u is slowly divergent if there exists a positive
function ψ(r) with

∫∞
R0

dr
rψ(r) = +∞ (R0 > 0) such that

lim
R→∞

∫
B(R)

‖τ(u)‖2

2
ψ(r(x))

dvg <∞.(40)
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Theorem 5.6. Let u : (M, g) → (N,h) be a biharmonic isometric immersion.
Assume that there is a constant σ > 0 such that

m− 1

2
λmin + 1− 2 max{2, λmax} ≥ σ.

If E2(u) is slowly divergent and h(τ(u), ∇̃ ∂
∂r
du( ∂∂r )) ≥ 0, then u is harmonic, i.e.,

τ(u) = 0.

Proof. From the proof of Theorem 5.1, we have

σ

∫
B(r)

‖τ(u)‖2

2
dvg ≤ r

∫
∂B(r)

‖τ(u)‖2

2
dsg.(41)

Now suppose that u is not harmonic, so there exists R0 > 0 such that for R ≥ R0,

σ

∫
B(R)

‖τ(u)‖2

2
dvg ≥ c1,(42)

where c1 is a positive constant. From (41) and (42), we have

c1σ ≤ R
∫
∂B(R)

‖τ(u)‖2

2
dsg.(43)

for R ≥ R0 and

lim
R→∞

∫
B(R)

‖τ(u)‖2

2
ψ(r(x))

dvg =

∫ ∞
0

dR

ψ(R)

∫
∂B(R)

‖τ(u)‖2

2
dsg

≥
∫ ∞
R0

dR

ψ(R)

∫
∂B(R)

‖τ(u)‖2

2
dsg

≥ c1σ
∫ ∞
R0

dR

Rψ(R)
=∞,

which contradicts (40), therefore, u is harmonic. �

From the proof of Theorem 5.6, we immediately get the following theorem.

Theorem 5.7. Let M,Kr and Λ be as in Theorem 5.4. If u : (M, g)→ (N,h)
is a biharmonic isometric immersion, the bienergy E2(u) is slowly divergent and

h(τ(u), ∇̃ ∂
∂r
du( ∂∂r )) ≥ 0, then u is harmonic.
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