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FLUID-STRUCTURE-ACOUSTIC INTERACTION PROBLEM IN
MODELLING OF HUMAN VOCAL FOLDS VIBRATION∗

JAN VALÁŠEK† , PETR SVÁČEK† , AND JAROMÍR HORÁČEK‡

Abstract. This paper studies vibroacoustic sound produced by self-oscillating human vocal folds
model as one of major sound source responsible for human phonation. The human phonation is a
complex phenomenon described by interaction of three physical fields – elastic body deformation, fluid
flow and acoustics, and their mutual couplings. Therefore it is sometimes referred as fluid-structure-
acoustic interaction (FSAI) problem. Here we present FSI problem modelled by linear elasticity
theory (vocal fold) and the viscous incompressible airflow modelled by Navier-Stokes equations due
to typical low flow velocities of small Mach number. The arbitrary Lagrangian-Euler method (ALE)
for the purpose of numerical simulation of the time varying computational domain is applied. In
order to model one sound source mechanism of the human phonation the vibroacoustic problem is
solved in larger acoustic domain including vocal tract model. The sound source considered in this
model is the normal acceleration of the vibrating vocal folds boundary. The numerical models are
based on the finite element method. The results of vibroacoustic problem are shown and analyzed.
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1. Introduction. The human phonation is a complex phenomenon described by
interaction of three physical fields – elastic body deformation, fluid flow and acous-
tics, and their mutual couplings. Therefore it is sometimes referred as fluid-structure-
acoustic interaction (FSAI) problem, see e.g. [6]. The sound sources are produced by
three main mechanisms – the modulated air stream emerged by repetitively opening
and closing glottis, the eddy-induced sound of turbulent flow structures and the sound
from the vibrating vocal folds (VFs), see [1]. Although the sound of vibroacoustic
origin is hypothesized to be small, see [14, 1], nevertheless recent laboratory measure-
ments of VF replica combined with numerical modelling [7] showed that the acoustic
emission could be significant. It motivates our study of vibroacoustic problem.

The presented FSAI mathematical model of phonation is composed of linear elas-
ticity theory (vocal fold vibration), fluid flow described by viscous incompressible
Navier-Stokes equations and the classical acoustic wave equation with prescribed nor-
mal acceleration at the vocal fold boundary. The arbitrary Lagrangian-Euler method
(ALE) is applied for the purpose of including the time varying computational do-
main into fluid flow model. In order to simulate vibration-borne sound of the human
phonation the vibroacoustic problem is solved in larger acoustic domain including
vocal tract model, which acts as a filter of sound waves generated in the larynx, see
[11].

We disregard in this study the influence of acoustic pressure on the vocal fold
vibration what allows to decouple the acoustic problem and the fluid-structure in-
teraction (FSI) problem. For the modelling of open boundary problem at the vocal
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tract model outlet the perfectly matched layer (PML) technique is applied, see e.g.
[5]. The numerical approximation of all three subproblems is based on the finite el-
ement method (FEM), particularly in the fluid flow case the advanced stabilization
technique is used. The FSI numerical solution, implemented as strongly coupled par-
titioned scheme, is presented and analyzed. The results of vibroacoustic problem are
shown including the sound pressure level (SPL) at the vocal tract end.

The paper is structured as follows: In the next section the mathematical model of
the three physical problems as well as their interactions are given. Then the numerical
methods are described. In the end the numerical results of FSI and FSAI problems
are presented.

2. Mathematical model. We consider a two-dimensional FSAI problem. First,
the domain of FSI problem is introduced and the acoustic domain is described later.
The FSI domain is composed of the reference elastic structure domain Ωs

ref and the

reference fluid domain Ωf
ref , see Figure 2.1. The motion of the elastic body is described

in Lagrangian coordinates, i.e. the computational domain Ωs does not depend on time
and it is identical with its reference domain Ωs := Ωs

ref .

The reference fluid domain Ωf
ref is chosen as the domain filled with fluid at the

time instant t = 0 with the common interface ΓWref
= ΓW0 between the fluid and the

structure domain. The reference domain Ωf
ref is mapped at any time instant t to the

deformed domain Ωf
t with the interface ΓWt

using an ALE mapping At.

Fig. 2.1. Scheme of the FSI domain composed of elastic structure domain Ωs and fluid domain
Ωf . The FSI domain in reference state is shown on the left and the domain undergoing a deformation

at arbitrary time t is displayed on the right. The following boundaries are marked: the inlet Γf
In,

the outlet Γf
Out, the walls Γf

Dir, Γs
Dir and the interface ΓWt .

2.1. Elastic structure. The structure deformation described by displacement
u(X, t) = (u1, u2) of any point X ∈ Ωs obeys following partial differential equations

ρs
∂2ui
∂t2

−
∂τsij
∂Xj

= 0, in Ωs × (0,T), (i = 1, 2), (2.1)

where ρs is the structure density and τij are the components of the Cauchy stress
tensor. The stress tensor components can be expressed with the help of the Hooke’s
law and assuming the isotropic body as

τsij = λsdiv u δij + 2µsesij(u), (2.2)

where δij denotes Kronecker’s delta and esij(u) = 1
2

(
∂uj

∂Xi
+ ∂ui

∂Xj

)
is the small strain

tensor. The parameters λs, µs are the Lamé coefficients, see e.g. [8]. Problem (2.1) is
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supplied with the zero initial and the following boundary conditions

a) u(X, t) = uDir(X, t) for X ∈ Γs
Dir, (2.3)

b) τsij(X, t)n
s
j(X) = qsi (X, t), for X ∈ Γs

Wref
,

where the ΓWref
,Γs

Dir are disjoint parts of the boundary ∂Ωs and nsj(X) are the com-
ponents of the outward unit normal to ∂Ωs, see Figure 2.1.

2.2. ALE method. The ALE method is based on the use of ALE mapping At

which maps the reference fluid domain Ωf
ref onto the deformed domain Ωf

t at any

time instant t, i.e. Ωf
t = At(Ω

f
ref ). We assume, that ALE mapping is sufficiently

smooth, diffeomorphic mapping and it satisfies at any t ∈ [0,T]

At(∂Ωf
ref\ΓWref

) = ∂Ωf
ref\ΓWref

, At(ΓWref
) = ΓWt , (2.4)

where the location of ΓWt
is given by the displacement of the interface ΓWref

at time
instant t. The ALE domain velocity wD representing the velocity of a point x with a
given reference X ∈ Ωf

ref is defined by

wD(x, t) = ŵD(A−1
t (x), t), where x = At(X) ∈ Ωf

t , (2.5)

and ŵD(X, t) = ∂
∂tAt(X), for t ∈ (0,T) and X ∈ Ωf

ref . Finally, the ALE derivative,

i.e. the time derivative with respect to a fixed reference X ∈ Ωf
ref , satisfies (see e.g.

[3])

DA

Dt
f(x, t) =

∂f

∂t
(x, t) + wD(x, t) · ∇f(x, t). (2.6)

2.3. Fluid flow. The viscous incompressible fluid flow is modelled in the time
dependent domain Ωf

t by Navier-Stokes equations in the ALE form (see details [3])

DAv

Dt
+ ((v −wD) · ∇)v − νf∆v +∇p = 0, div v = 0 in Ωf

t , (2.7)

where v(x, t) is the fluid velocity, p denotes the kinematic pressure and νf is the
kinematic fluid viscosity.

The equations (2.7) are equipped with the zero initial condition and with the
following boundary conditions

a) v(x, t) = wD(x, t) for x ∈ Γf
Dir ∪ ΓWt

, (2.8)

b) (p− pref)n
f − νf ∂v

∂~nf
= −1

2
v(v · nf )− on Γf

In ∪ Γf
Out,

where the vector nf = (nfj ) denotes the outward unit normal to the boundary ∂Ωf ,

pref denotes a reference pressure and by (α)− the negative part of real number α ∈ R
is denoted, i.e. (α)− = min{0, α}. The condition (2.8 b) is the modified do-nothing
boundary condition according to [2], which increases the stability in the case of a
backward inlet through the outlet boundary. For the outlet part of boundary the
reference pressure is chosen pref = 0, while for the inlet we denote pin := pref > 0.
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2.4. Acoustics. The acoustic problem is modelled in the acoustic domain Ωa,
see Figure 2.2. The domain Ωa consists of two parts Ωa = Ωa

prop ∪ Ωa
pml, where

the domain of acoustic propagation Ωa
prop is comprised of two subsets Ωa

src and Ωa
air,

i.e. Ωa
prop = Ωa

src ∪ Ωa
air. The domain Ωa

src is equal to the reference fluid domain,

i.e. Ωa
src = Ωf

ref , and the acoustic sources are located at vibrating structure interface

ΓWref
⊂ Ωf

ref . The domain Ωa
air constitutes a model of the vocal tract behind the

glottis up to mouth including a free field region, i.e. the outer space. Finally the
PML domain Ωa

pml closes the free field part of domain Ωa
air and the outgoing sound

waves are here damped. We assume, that the boundary ∂Ωa is piecewise Lipschitz
continuous.

Fig. 2.2. Scheme of acoustic domain composed of three parts – the sound source region, the
vocal tract together with the free field, which is enclosed by the PML region. The positions of
microphones B and C are shown.

The sound propagation through homogeneous medium at rest is described by the
wave equation for acoustic pressure pa(X, t), see e.g. [6],

1

c20

∂2pa

∂t2
−∆pa = fa(X, t), in Ωa

prop × (0,T), (2.9)

where c0 is the speed of sound and function fa describes sound sources (due to airflow).
In this paper these sources are omitted , i.e. fa = 0, and only sound sources due to
vibrating interface ΓWref

of the elastic body are considered. Equation (2.9) is equipped
with zero initial conditions and following boundary conditions

a)
∂pa

∂na
(X, t) = 0, for X ∈ ∂Ωa \ ΓWref

, (2.10)

b)
∂pa

∂na
(X, t) = −ρf0

∂un
∂t

, for X ∈ ΓWref
,

where ρf0 is the fluid density, un denotes wall normal velocity and vector na = (naj ) is
unit outer normal to ∂Ωa. The condition (2.10 a) is so called sound hard boundary
condition and it represents fully reflecting walls. The second condition (2.10 b) gen-
eralizes the sound hard condition for the vibrating boundary, which creates acoustic
emissions from the vocal fold surface, see e.g. [6].

The “open boundary” is modelled using PML technique realized by few additional
layers of elements (domain Ωa

pml) where the sound waves are effectively damped to zero
by solution of modified wave equation, see e.g. [6]. A suitable choice of parameters is
used in order to avoid the reflection at the interface between Ωa

pml and Ωa
air, see [5].
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2.5. Coupling conditions. First the coupling conditions for FSI problem are
stated. The fluid and structure problems are coupled together with the aid of the
interface boundary conditions prescribed at the interface ΓWt

whose position is de-
termined in terms of the displacement u at time t as

ΓWt
=
{
x ∈ R2|x = X + u(X, t), X ∈ ΓWref

}
. (2.11)

At the interface ΓWt
the kinematic condition is prescribed as given by equation (2.8

a). The (dynamic) boundary condition at the interface ΓWref
has the form of equation

(2.3 b), where the vector of acting aerodynamic forces qs with components qsi is given
by

qsi =

2∑
j=1

ρf
(
pδij − νf

(
∂vi
∂xj

+
∂vj
∂xi

))
nfj (x). (2.12)

Further, the structure-acoustic coupling is realized by prescription of velocity
continuity in normal direction at the interface ΓWref

, which leads to the boundary
condition for acoustic pressure pa as given by equation (2.10 b), i.e.

∂pa

∂na
(X, t) = −ρf ∂

2u(X, t)

∂t2
· na, x ∈ ΓWref

, t ∈ (0,T). (2.13)

Similarly, the boundary condition which follows from the requirement of stress
continuity in normal direction at the interface ΓWref

τsij n
s
j = qsi + qai , (2.14)

where qai (X, t) = pvansi . However the acoustic pressure is usually much smaller com-
pared to the aerodynamic forces (high sound intensity of 100 dB corresponds to value
of pa = 2 Pa) thus the coupling represented by qai is neglected here, see e.g. [6].

3. Numerical modelling. The FEM is used for spatial discretization of all
three considered subproblems (2.1), (2.7) and (2.9). For the purpose of time dis-
cretization the time interval [0,T] is divided into N equidistant parts ∆t, i.e. tn =
n∆t,∆t = T

N for n = {0, 1, . . . , N}.

3.1. Elastic structure. The FE discretization is based on the weak reformu-
lation of equation (2.1), i.e. Eq. (2.1) is multiplied by a test function ψ from the
space V = {f ∈ H1(Ωs)|f = 0 on Γs

Dir}, integrated over the whole domain Ωs and
the Green’s theorem is used with the boundary condition (2.3 b) applied. The weak
formulation is then given by(

ρs
∂2u

∂t2
,ψ

)
Ωs

+ (λs(div u) I + 2µses(u), es(ψ))Ωs = (qs,ψ)ΓWref
, (3.1)

where the brackets (·, ·)D denotes the dot product in the Lebesque spaces L2(D) or
L2(D). We say that u ∈ H1(Ωs) is a weak solution of equation (2.1) if it fulfills the
boundary condition (2.3 a) and equation (3.1) is satisfied for any test function ψ ∈ V.

The space V is approximated by it’s finite element subspace Vh ⊂ V with
dim Vh = Nh. The approximate solution uh ∈ Vh is expressed using basis func-
tions ψj of space Vh in the form uh(X, t) =

∑Nh

j=1 αj(t)ψj(X). Equation (3.1) is
rewritten using this form as

Mα̈+ Cα̇+ Kα = b(t), (3.2)
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where the vector b(t) has components bi(t) = (qs,ψi)ΓWref
and the elements of ma-

trices M = (mij),K = (kij) are given by

mij = (ρsψj ,ψi)Ωs , kij = (λs(div ψj) δij + 2µses(ψj), e
s(ψi))Ωs . (3.3)

The model of proportional damping is utilized, i.e. the additionally added matrix C is
chosen as C = c1M+c2K with suitably chosen parameters c1, c2. The resulting system
of second order ordinary differential equations (3.2) is time discretized by Newmark
method, see [3].

3.2. Fluid flow. The fluid flow problem equation (2.7) is first discretized in
time. The ALE derivative at tn+1 is replaced by the backward difference formula of
second order (BDF2)

DAv

Dt
(tn+1) ≈ 3vn+1 − 4vn + vn−1

2∆t
, (3.4)

where vi ≈ v(·, ti) and for fixed time instant tn+1 we denote vi(x) = vi(Ati(A
−1
tn+1

(x))

for i ∈ {n − 1, n} and x ∈ Ωf
tn+1

. In what follows we are concerned with the dis-

cretization at time t = tn+1, and thus the time index n+1 is omitted, i.e. we write
Ωf := Ωf

tn+1
.

For weak formulation of (2.7) the function spaces for velocity and pressure are

chosen as X = {f ∈ H1(Ωf )| f = 0 on Γf
Dir ∪ Γf

Wtn+1
} and M = L2(Ωf ), respectively.

The weak form of (2.7) reads: find V = (v, p) ∈ H1(Ωf ) ×M , which approximately
satisfies boundary condition (2.8 a) and

a(V,Φ) + c(V ;V,Φ) = f(Φ) (3.5)

holds for any Φ = (ϕ, q) ∈ X ×M . The forms a(·, ·), c(·; ·, ·) and the functional f(·)
are given by

a(V,Φ) =

(
3v

2∆t
,ϕ

)
Ωf

+ νf (∇v,∇ϕ)Ωf − (p,divϕ)Ωf + (q,div v)Ωf ,

c(V ∗;V,Φ) =
1

2
(((v∗ − 2wD) · ∇)v,ϕ)Ωf − 1

2
((v∗ · ∇)ϕ,v)Ωf (3.6)

+
1

2
((v∗ · n)+v,ϕ)Γf

Out∪Γf
In
,

f(Φ) =
1

2∆t

(
4vn − vn−1,ϕ

)
Ωf + (pin,ϕ)Γf

In
,

where (α)+ denotes positive part of real number α, i.e. (α)+ = max{0, α}, and the
trilinear form c(·; ·, ·) represents convection term in skew-symmetric form, see e.g.
[13]. This specific form of convection is tied together with the directional do-nothing
boundary condition (2.8 b), see [2].

Finite element approximation and its stabilization. The weak formulation (3.5) is
discretized by the FEM. In order to prevent numerical instabilities a combination of
streamline-upwind/Petrov-Galerkin (SUPG), pressure-stabilization/Petrov-Galerkin
(PSPG) and ‘div-div’ stabilization is used, see [3], [13]. This approach provides robust
and accurate numerical method, which is consistent with the original problem. The
minielement Pbub

1 /P1 is used in practical computations, which satisfies the well-known
Babuška-Brezzi condition according to [4]. The arising nonlinear system of equations
is solved by the Picard iterations.
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3.3. Vibroacoustics. The acoustic problem (2.9) is treated similarly. First
(2.9) is weakly formulated: Find pa ∈ Y such that(

1

c20

∂2pa

∂t2
, η

)
Ωa

prop

+ (∇pa,∇η)Ωa
prop

=

(
ρf
∂2(u · ns)

∂t2
, η

)
ΓWref

, (3.7)

is satisfied for any η ∈ Y , where Y = H1(Ωa
prop).

Further, the space Y is approximated by its FE subspace Yh and approximate

solution pah is sought in the form pah(X, t) =
∑Na

h
j=1 γj(t)ηj(X), where ηj are FE basis

functions. This leads to the system of ODEs for unknown vector γ(t) = (γj)

Maγ̈ + Kaγ = ba(t), (3.8)

where matrices Ma and Ka are the mass and stiffness matrices, respectively, and the
components of right hand side vector ba(t) = (bai ) are given by

bai =

(
ρf0
∂2(u · ns)

∂t2
, ηi

)
ΓWref

, (3.9)

where ∂2u
∂t2 (tn) is approximated by the second order central scheme. The acoustic and

structure meshes are chosen to be consistent across the interface ΓWref
.

3.4. Numerical solution of coupled problem. As the influence of acoustic
field on the structure deformation is neglected, the FSAI problem decouples into
the solution of FSI problem and the acoustic problem with given sound sources at
boundary. Thus the numerical solution of FSAI problem consists of following steps:

1) Solve FSI problem. The partitioned approach is implemented in strong version
of coupling, so in every time step the inner iteration runs until the convergence of
aerodynamic forces is reached, see [13].

2) Prepare sound sources in the form of interface normal acceleration at acoustic
mesh nodes lying on the interface ΓWref

according to formula (3.9).
3) Solve sound propagation problem given by system (3.8) with prepared sources

according to (3.9). The propagation problem is solved on the whole acoustic domain
Ωa, i.e. with included vocal tract model, free field region and PML domain.

4. Numerical experiments.

4.1. FSI results. The vocal fold (VF) model and the fluid domain dimensions,
see Figure 4.1 left, is based on the geometric settings published in [15]. The VF
model is composed of four layers (with material parameters chosen from [12]) and
the initial glottal gap equals to 2.0 mm. Further the point A ([11.57,−1.50] mm) is
situated at the top of the bottom VF and used for analysis of numerically simulated
VF vibrations.

Analysis of FSI results. The numerical settings were following: the constant time
step ∆t is chosen as 2.5 · 10−5 s and T = 1.0 s, densities are set to ρs = 1000 kg/m

3

and ρf = 1.185 kg/m
3

and the kinematic fluid viscosity νf = 1.545 · 10−5 m2/s. The
damping parameters of all VF materials are selected as ε1 = 5 s−1, ε2 = 2.0 · 10−5 s.
The VF vibration is excited by the prescribed airflow pressure drop between the
inlet Γf

In and the outlet Γf
Out of the value pin = 1500 Pa. The VFs are released for

the interaction after 0.01 s of the computation, when the flow field was already fully
developed.

Figure 4.2 illustrates a typical behaviour of the flow induced vibration at the
point A. The vibrations with bounded amplitudes show that the chosen pin lies
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Fig. 4.1. Left: The computational fluid and structure domain with dimensions in mm shown.
Four different colours mark four layers of vocal fold model, further the location of point A is shown.
Right: Magnitude of airflow velocity shown for one time instant.

below phonation onset pressure threshold, for which unstable VF oscillation (typical
for human phonation) appears. The Fourier analysis of the displacement shows two
dominant frequencies f1 = 121 and f2 = 211 Hz, which agree well with the first two
VF eigenfrequencies, see [15]. The typical flow field pattern is plotted in Figure 4.1
right.

Fig. 4.2. Left: The time evolution of displacement of chosen point A in x- and y-direction
shown top and bottom, resp. Right: The normalized Fourier transform of the time signal (with full
length of 1 s) of displacement u1 (top) and u2 (bottom).

4.2. Vibroacoustics. The vibroacoustics is solved with the known interface
vibration determined using the previous FSI numerical solution. The time step is
chosen ∆ta = 5 · 10−5 s and the speed of sound c0 = 346 m/s is considered. A part of
acoustic domain Ωa – the vocal tract model of vowel [u:] is based on the MRI data
from [9], with an exception that the total length of vocal tract is longer than in paper
[9] due to inclusion of the FSI domain, see [12]. Two microphones B and C are placed
at the end of fluid flow domain and 2 cm in front of mouth, respectively, see Figure
2.2.

Vibroacoustic results. The Fourier transforms of acoustic signals measured at both
microphones B and C are shown in Figure 4.3. The frequency spectrum of acoustic
pressure in point B shows that the dominant frequencies correspond approximately to
the first two fundamental frequencies of VF vibration followed by first two resonant
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frequencies of vocal tract model (called formants) 283 Hz and 937 Hz. The Fourier
transform of signal from point C, i.e. point outside the vocal tract model, exhibits a
weakening of frequency 127 Hz (dominant frequency of VF motion) and strengthening
of frequencies 937 and 2519 Hz, i.e. the second and the fourth formants.

The sound pressure level (SPL) of sound induced by VF vibration is quite silent
reaching circa 20 dB, see Figure 4.4. The first two VF eigenfrequencies (f1, f2) are
the most dominant frequencies similarly as in [7]. The first two formants (F1, F2) are
also clearly visible in Figure 4.4, while the third and the fourth formant (F3, F4) of
vocal tract model is less significant but still present. These formants frequencies do
not agree well with the measured formants as reported in [9] due to the prolongation
of the acoustic domain.

Fig. 4.3. The normalised Fourier transform of pressure pva from the microphones B and C.
The frequencies f1 = 127 Hz and f2 = 233 Hz highlighted by dot lines correspond to the first two
dominant frequencies of VF vibration, the other frequency peaks marked by arrows are of acoustic
origin. The missed frequency range 1000 − 2200 Hz does not contain any resonant frequencies. The
right part of the figure has different scaling.

Fig. 4.4. The sound pressure level in frequency domain computed at the point C. The black
vertical lines demonstrate first three formants with frequencies 389 Hz, 987 Hz and 2299 Hz taken
from article [9]. The acoustic signal outside mouth shows quite low SPL of sound with vibration
origin against SPL of sound with aerodynamical origin, see e.g. [6]. This can be different with use
of a model with VF contact, see [10].

5. Conclusion. The mathematical model of the FSAI problem representing vi-
broacoustic problem of human phonation was described and it was numerically ap-
proximated by the (stabilized) FEM. The acoustic problem was decoupled from the
FSI part. The acoustic pressure simulation of the vowel [u:] phonation was performed
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and the frequency spectra show that the first two VF eigenfrequencies as well as the
first two formants are dominant. The resulting SPL in front of mouth based on the
FSI simulation without VF contact is quite low compared to the results in [7].
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