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ON A POSTERIORI ERROR ESTIMATES FOR SPACE–TIME
DISCONTINUOUS GALERKIN METHOD

VÍT DOLEJŠÍ∗, FILIP ROSKOVEC† , AND MILOSLAV VLASÁK‡

Abstract. We deal with nonlinear nonstationary convection–diffusion problem. We discretize
this problem by discontinuous Galerkin method in space and in time and, assuming the error is
measured as a mesh dependent dual norm of residual, we present a posteriori estimate to this error
measure. This a posteriori error estimate is cheap, robust with respect to degeneration to hyperbolic
problem and fully computable. Moreover, we present a local asymptotic efficiency of this estimate.
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1. Introduction. We consider nonstationary nonlinear convection–diffusion e-
quation, which represents a model problem for the system of the compressible Navier-
Stokes equations. This problem we discretize by discontinuous Galerkin finite element
method in space as well as in time and derive a posteriori error analysis.

The class of discontinuous Galerkin methods seems to be one of the most promis-
ing candidates to construct high order accurate schemes for solving convection-diffu-
sion problems. For a survey about DG methods, see [2], [3] or [14]. A priori analysis
of discontinuous Galerkin methods was presented in many papers, see, e.g. [5], [11]
and [15].

In this paper we shall focus on a posteriori numerical analysis of the proposed
problem. Our aim is to derive a guaranteed, cheap and fully computable upper bound
to chosen error measure that provides local efficiency at least asymptotically. To
achieve these properties we use the technique of so-called equilibrated flux recon-
struction. For the description of basic idea in the context of elliptic problems see
e.g. [6] or more recent paper [8], where robustness with respect to the polynomial
degree is shown. This technique, which is usually used for stationary problems only,
we apply to nonstationary problem. Robust a posteriori estimates for linear unsteady
advection–diffusion problems can be found in [16], see also references therein. We have
been largely influenced by [4] and [7], where only lower order time discretizations are
considered, and by [1], where discontinuous Galekin time discretization is analyzed
and nodal superconvergence is derived via a posteriori error estimates.

2. Continuous problem. Let Ω ⊂ Rd (d = 1, 2, 3) be a bounded polyhedral
domain with Lipschitz continuous boundary ∂Ω and T > 0. Let us consider the
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following initial–boundary value problem

∂u

∂t
−∇ · σ(u,∇u) = f in Ω× (0, T ),(2.1)

u = 0 in ∂Ω× (0, T ),

u = 0 in Ω× {0}.

We assume that the right–hand side satisfies f ∈ C(0, T, L2(Ω). Moreover, we assume
that σ(v,∇v) = K(v)∇v − F (v), where K is a bounded matrix–valued function and
F is a once continuously differentiable vector–valued function. Such a problem can
be viewed as a model problem for compressible Navier–Stokes equations.

Let us denote by (., .) and ‖.‖ the L2(Ω) scalar product and norm, respectively.
Let us denote the time derivative u′ = ∂u

∂t . Let us define spaces X = L2(0, T,H1
0 (Ω)),

Y = {v ∈ X : v′ ∈ L2(0, T, L2(Ω)), v(0) = 0}.(2.2)

Definition 2.1. We call u ∈ Y the weak solution of problem (2.1), if∫ T

0

(f, v)− (u′, v)− (σ(u,∇u),∇v)dt = 0, ∀v ∈ X.(2.3)

We assume that problem (2.3) has a unique weak solution.

3. Discretization. We consider a space partition Th consisting of a finite num-
ber of closed, d -dimensional simplices K with mutually disjoint interiors and covering
Ω̄, i.e.

Ω = ∪K∈ThK.(3.1)

We assume conforming properties, i.e. neighbouring elements share an entire edge or
face. We set hK = diam(K) and h = maxKhK . By ρK we denote the radius of the
largest d-dimensional ball inscribed into K. We assume shape regularity of elements,
i.e.

hK/ρK ≤ C, ∀K ∈ Th,(3.2)

where the constant does not depend on Th for h ∈ (0, h0). We define unit normal
vector n to arbitrary edge (or face for d = 3) of Th. For inner edges the direction is
arbitrary, for outer edges we assume n be unit outer normal vector. By nK we denote
unit outer normal to element K ∈ Th.

We set the space for the semi–discrete solution

Xh = {v ∈ L2(Ω) : v|K ∈ P p(K)},(3.3)

where the space P p(K) denotes the space of polynomials up to the degree p ≥ 1 on
K. For a function v ∈ Xh we define on inner edges the one–sided limits

vL(x) = lim
t→0+

v(x− nt), vR(x) = lim
t→0+

v(x+ nt),(3.4)

jump and mean value

[v] = vL − vR, 〈v〉 =
1

2
(vL + vR).(3.5)
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On outer edges we define

[v] = 〈v〉 = vL = lim
t→0+

v(x− nt).(3.6)

In order to discretize problem (2.3) in time, we consider a time partition 0 =
t0 < t1 < . . . < tr = T with time intervals Im = (tm−1, tm), time steps τm = |Im| =
tm − tm−1 and τ = maxm=1,...,r τm. The approximate solution will be sought in the
space of piecewise polynomial functions

Xτ
h = {v ∈ L2(0, T,Xh) : v|Im =

q∑
j=0

vj,mt
j , vj,m ∈ Xh}.(3.7)

For a function v ∈ Xτ
h we define the one–sided limits

vm± = v(tm±) = lim
t→tm±

v(t)(3.8)

and the jumps

{v}m = vm+ − vm− .(3.9)

We omit the subscript ± for continuous functions, since v(tm±) = v(tm).
To simplify further notation we define local L2 scalar products and L2 norms.

Let M ⊂ Ω, e.g. M = K or M = ∂K, and 1 ≤ m ≤ r. Then we define

(u, v)M =

∫
M

uvdx, (u, v)M,m =

∫
Im

∫
M

uvdxdt,(3.10)

with corresponding norms ‖.‖M , ‖.‖M,m.

3.1. Derivation of the space discretization. Let us consider auxiliary sta-
tionary problem

−∇ · σ(u,∇u) = f̃ in Ω,(3.11)

u = 0 in ∂Ω.

Considering the space discretization of (3.11) our aim is to find a suitable formulation
describing Ah(uh, vh) ≈ −(∇ · σ(uh,∇uh), vh) for uh, vh ∈ Xh. To do so, we follow
classical approach described in [2], where the second order differential problem is
decomposed into the system of first order and then each of the resulting relations is
discretized by usual approach with numerical fluxes well known from the finite volume
method.

We denote w = ∇u and from problem (3.11) we obtain first order system

−∇ · σ(u,w) = f̃ ,(3.12)

∇u = w.

To discretize this problem we assume K ∈ Th, vh ∈ Xh and we get for the exact
solution u and w from the first equation of (3.12)

(f̃ , vh)K = (−∇ · σ(u,w), vh)K ≈ (σ(u,w),∇vh)K − (σ̂ · nK , vh)∂K ,(3.13)
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where σ̂ = σ̂(u,w) is a numerical flux approximating σ(u,w) on ∂K. Similarly we
gain from the second equation of (3.12)

(K(u)w,∇vh)K = (K(u)∇u,∇vh)K = (∇u,K(u)T∇vh)K(3.14)

= −(u,∇ · (K(u)T∇vh))K + (uK(u)nK ,∇vh)∂K

≈ −(u,∇ · (K(u)T∇vh))K + (ûK(u)nK ,∇vh)∂K

= (K(u)∇u,∇vh)K + ((ûK(u)− uK(u))nK ,∇vh)∂K ,

where û = û(u) is again a numerical flux approximating u on ∂K. Now, since
σ(u,w) = K(u)w − F (u) it is possible to eliminate w and we get primal formula-
tion

(f̃ , v)K ≈ (σ(u,w),∇vh)K − (σ̂ · nK , vh)∂K(3.15)

≈ (K(u)∇u− F (u),∇vh)K

+((û− u)nK ,K(u)T∇vh)∂K − (σ̂ · nK , vh)∂K .

With different choices of the numerical fluxes û and σ̂ we obtain different variants of
discontinuous Galerkin discretization of auxiliary problem (3.11). The choice of the
numerical flux σ̂ on the edge e

σ̂ = 〈K(u)∇u〉+ αh−1e [u]n+ F (uL), if 〈F ′(u) · n〉 > 0,(3.16)

σ̂ = 〈K(u)∇u〉+ αh−1e [u]n+ F (uR), if 〈F ′(u) · n〉 ≤ 0,

where F (uR) on ∂Ω is set to F (0) and the choice of numerical flux û

û = 〈u〉+ θ[u]n · nK , e /∈ ∂Ω,(3.17)

û = 2θ[u]n · nK , e ∈ ∂Ω.

results in classical interior penalty Galerkin discretization of diffusion term −∇ ·
(K(u)∇u) and upwind discretization of convective term ∇ · F (u). Moreover, the
choice of the parameter θ leads to SIPG (θ = 0), IIPG (θ = 1/2) or NIPG (θ = 1)
variant. For other variants of discontinuous Galerkin method and their numerical
fluxes see, e.g. [2]. For the purpose of a posteriori numerical analysis we assume for
the rest of this paper that the numerical fluxes σ̂ and û are consistent and that the
numerical flux σ̂ is conservative.

3.2. Derivation of the time discretization and fully discrete problem.
Considering the time discretization we can proceed in a very similar way as in space
discretization. We assume auxiliary problem

u′ = f̃ , in (0, T ),(3.18)

u(0) = 0.

To discretize this problem we assume v ∈ Xτ
h and we get

(f̃ , v)K,m = (u′, v)K,m = −(u, v′)K,m + (um− , v
m
− )K − (um−1+ , vm−1+ )K(3.19)

≈ −(u, v′)K,m + (um− , v
m
− )K − (um−1− , vm−1+ )K

= (u′, v)K,m + ({u}m−1, vm−1+ )K ,

where again we can consider um− as an approximation of u(tm) by numerical flux.
Such a numerical flux is consistent and conservative.
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Combining the ideas of space and time discretization we gain following scheme:
Definition 3.1. We say that the function uτh ∈ Xτ

h is the discrete solution
of (2.3) obtained by space–time discontinuous Galerkin finite element method, if the
following conditions are satisfied∫

Im

((uτh)′, v) +Ah(uτh, v)dt+ ({uτh}m−1, vm−1+ ) =

∫
Im

(f, v)dt(3.20)

∀m = 1, . . . , r, ∀v ∈ Xτ
h ,

(uτh)0− = 0,

where

Ah(u, v) =
∑
K

(K(u)∇u− F (u),∇v)K(3.21)

−(σ̂ · nK , v)∂K + ((û− u)nK ,K(u)T∇v)∂K

with suitably chosen numerical fluxes σ̂ and û.
Since the numerical fluxes are assumed consistent, it is possible to see that the

sufficiently smooth exact solution u, i.e. u ∈ Y ∩L2(0, T,H2(Ω)), satisfies (3.20) too.

4. A posteriori analysis. In this section we shall propose suitable error mea-
sure and we shall derive a posteriori error estimate of this measure.

4.1. Error measure. Let dK,m > 0 be a user dependent parameter associated
to space-time element K × Im, e.g. d2K,m = h2K + τ2m or dK,m = 1 or dK,m = hK or

d2K,m = (h−2K +τ−2m )−1. As we will see later, the complete analysis will be independent
of the choice of dK,m, since it will be included into the error measure as well as into
the resulting a posteriori error estimate. It is possible to expect that this parameter
could emphasize certain aspects of the error measure, but this question is still open.
Let us define the space

Y τ = {v ∈ X : v′|Im ∈ L2(Im, L
2(Ω))}(4.1)

of piecewise continuous functions with respect to time. We define the norm

‖v‖2Z,K,m =
h2K‖∇v‖2K,m + τ2m‖v′‖2K,m

d2K,m
,(4.2)

‖v‖2Z =
∑
K,m

‖v‖2Z,K,m.

Since Y τ ⊂ X, we gain from (2.3) that the exact solution u ∈ Y satisfies∫
Im

(f, v)− (u′, v)− (σ(u,∇u),∇v)dt− ({u}m−1, vm−1+ ) = 0(4.3)

∀m = 1, . . . , r, ∀v ∈ Y τ .

The existence of the solution u of problem (4.3) comes clearly from the existence of
the solution of problem (2.3). Assuming σ monotone, i.e.

(σ(u,∇u)− σ(v,∇v),∇u−∇v) ≥ 0,(4.4)

it is possible to show that the solution of problem (4.3) is unique.
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It is natural to define error measure as residual of (4.3)

Res(w) = sup
06=v∈Y τ

1

‖v‖Z

∑
K,m

(f, v)K,m − (w′, v)K,m(4.5)

−(σ(w,∇w),∇v)K,m − ({w}m−1, vm−1+ )K

)

for w ∈ Xτ
h , w0

− = 0.
Unfortunately, such an error measure is suitable for measuring error for uτh ∈ Y τ ,

but the discrete solution uτh ∈ Xτ
h 6⊂ Y τ . To overcome this difficulty, we measure in

addition the distance of uτh from Y τ . To do so, we use

JK,m(v) =
d2K,m
h3K
‖[v]‖2∂K,m, J(v) =

∑
K,m

JK,m(v).(4.6)

J(v) is in fact a weighted element–wise version of the classical penalization term well
known from discontinuous Galerkin method. It is evident that for arbitrary v ∈ Xτ

h

holds: J(v) = 0, iff v ∈ Y τ . Using the partial error measures Res and J we can
construct the complete error measure

EST(uτh) =
√
J(uτh) + Res(uτh).(4.7)

It is possible to show that EST(uτh) = 0, iff uτh is equal to the exact solution u.

4.2. Reconstruction of the solution with respect to time. To be able to
produce a posteriori error estimates we need to reconstruct the solution uτh in such
a way that the reconstruction Rτh is conforming with respect to time, i.e. Rτh ∈
C(0, T, L2(Ω)) with Rτh(0) = 0, and that uτh ≈ Rτh.

Let rm ∈ P q+1(Im) be the right Radau polynomial on Im, i.e. rm(tm−1) = 1,
rm(tm) = 0 and rm is orthogonal on P q−1. Then there exists polynomial reconstruc-
tion Rτh = Rτh(uτh) such that on Im

Rτh(t) = uτh(t)− {uτh}m−1rm(t), ∀t ∈ Im.(4.8)

Then the resulting function Rτh is continuous with respect to time and satisfies the
initial condition, i.e. Rτh(0) = 0. Moreover,∫

Im

((Rτh)′, v)dt =

∫
Im

((uτh)′, v)− r′m({uτh}m−1, v)dt

=

∫
Im

((uτh)′, v)dt+

∫
Im

rm({uτh}m−1, v′)dt(4.9)

−rm(tm)({uτh}m−1, vm− ) + rm(tm−1)({uτh}m−1, vm−1+ )

=

∫
Im

((uτh)′, v)dt+ ({uτh}m−1, vm−1+ ), ∀v ∈ P q(Im, L2(Ω)).

Such a reconstruction is used to show equivalence among Radau IIA Runge–Kutta
method, Radau collocation method and discontinuous Galerkin method. For the
details see, e.g. [9] and [10]. Such a reconstruction is also used for proving a posteriori
nodal superconvergence in [1].



ON A POSTERIORI ERROR ESTIMATES FOR DGM 131

4.3. Reconstruction of the solution with respect to space. For similar
reasons we reconstruct also the spatial fluxes of the solution in such a way that
στh ∈ L2(0, T,H(div)) and σ(uτh,∇uτh) ≈ στh. Let RTNp(K) be the Raviar-Thomas-
Nedelec space of order p, i.e. RTNp(K) = Pp(K)d+xPp(K). Then we seek στh|K×Im ∈
P q(Im, RTNp(K)) such that

(στh · n, v)e,m = (σ̂ · n, v)e,m, ∀v ∈ P q(Im, P p(e)), ∀e ⊂ ∂K,(4.10)

(στh,∇v)K,m = (σ(uτh,∇uτh),∇v)K,m + ((û− uτh)nk,K(uτh)T∇v)∂K,m,

∀v ∈ P q(Im, P p(K)).

The reconstruction (4.10) is a space–time version of the reconstruction described
in [6]. From this we can see that such a reconstruction στh exists and using (2.3), (4.8)
and (4.10) we find that στh satisfies approximation property σ(uτh,∇uτh) ≈ στh in the
following sense:

(f − (Rτh)′ +∇ · στh, v)K,m(4.11)

= (f − (uτh)′ +∇ · στh, v)K,m − ({uτh}m−1, vm−1+ )K

= (f − (uτh)′, v)K,m − ({uτh}m−1, vm−1+ )K

−(στh,∇v)K,m + (στh · nK , v)∂K,m

= (f − (uτh)′, v)K,m − ({uτh}m−1, vm−1+ )K

−(σ(uτh,∇uτh),∇v)K,m − ((û− uτh)nk,K(uτh)T∇v)∂K,m

+(σ̂ · nK , v)∂K,m = 0, ∀v ∈ P q(Im, P p(K)).

4.4. Upper bound. Now, we are ready to derive upper bound to EST(uτh),
for uτh ∈ Xτ

h . Since EST consists of J and Res, we can provide the upper bound
individually. Moreover, J(uτh) can be considered as upper bound to itself, since it
depends only on known function uτh ∈ Xτ

h . It remains to provide a suitable upper
bound to Res(uτh), uτh ∈ Xτ

h , only.
Lemma 4.1. Let u ∈ Y be the solution of (2.3) and assume uτh ∈ Xτ

h to be
arbitrary. Let Rτh be the reconstruction obtained from uτh by (4.8) and στh be the
reconstruction obtained from uτh by (4.10). Then

Res(uτh) = sup
06=v∈Y τ

1

‖v‖Z

(∑
K,m

(f, v)K,m − ((uτh)′, v)K,m(4.12)

−(σ(uτh,∇uτh),∇v)K,m − ({uτh}m−1, vm−1+ )K

)

≤

(∑
K,m

(
CP dK,m‖f − (Rτh)′ +∇ · στh‖K,m +

dK,m
hK
‖στh − σ(uτh,∇uτh)‖K,m +

dK,m
τm
‖(Rτh − uτh)′‖K,m

)2
)1/2

,

where the constant CP is the constant from Poincare inequality.
Using the definition of Res (4.5) and in particular the definition of the norm ‖.‖Z

defined by (4.2), properties of the reconstructions Rτh and στh expressed by (4.9) and
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(4.11) it is quite simple to prove Lemma 4.1, but still the proof is rather long. For
these reasons we skip the proof in this paper.

Now, we are ready to present fully computable guaranteed upper bound for
EST(uτh).

Theorem 4.2 (Upper bound). Let u ∈ Y be the solution of (2.3) and assume
uτh ∈ Xτ

h to be arbitrary. Let Rτh be the reconstruction obtained from uτh by (4.8) and
στh be the reconstruction obtained from uτh by (4.10). Then

EST(uτh) ≤ J(uτh)1/2 +

(∑
K,m

(
CP dK,m‖f − (Rτh)′ +∇ · στh‖K,m +

dK,m
hK
‖στh − σ(uτh,∇uτh)‖K,m +

dK,m
τm
‖(Rτh − uτh)′‖K,m

)2
)1/2

(4.13)

In our case, where we assume the spatial mesh consists from simplices, we can bound
CP ≤ 1/π, see e.g. [13].

It should be mentioned that the estimate (4.13) is independent of the choice of
uτh ∈ Xτ

h . In other words, (4.13) holds for arbitrary function w ∈ Xτ
h instead of uτh and

not only for the discrete solution of problem (3.20). This property can be exploited in
further a posteriori considerations, where other aspects of the computation are taken
into account, e.g. numerical solution of the linear and nonlinear problems coming
from the discretization (3.20), see, e.g. [12].

4.5. Asymptotic local lower bound. The goal of this section is to show that
local individual terms from a posteriori estimate (4.13) are locally effective, i.e. pro-
vide local lower bound, at least in asymptotic sense, i.e. the bound holds up to some
generic constant C that might depend on the constants coming from the problem,
e.g. on |Ω|, on shape regularity of the mesh Th and on polynomial degree of functions
involved, e.g. on p and q, but is independent of the exact solution u, the discrete
solution uτh and space–time mesh sizes hK and τm. Most importantly this constant is
independent of Peclet number, i.e. a posteriori error estimate is robust for singularly
perturbed problems.

To be able to express locality of the result we will need following notation. Let
TK be a patch consisting of elements surrounding K and K itself. Let M ⊂ Ω, e.g.
M = K or M = TK . We define local version of space Y τ

Y τM,m = {v ∈ Y τ : supp(v) ⊂M × Im},(4.14)

local version of Res(w)

ResM,m(w) = sup
0 6=v∈Y τ

M,m

1

‖v‖Z

(∑
K,m

(f, v)K,m − (w′, v)K,m(4.15)

−(σ(w,∇w),∇v)K,m − ({w}m−1, vm−1+ )K

)
,

local version of J(w)

JM,m(w) =
∑

K⊂M,m

JK,m(w)(4.16)
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and local version of EST(w)

ESTM,m(w) = JM,m(w)1/2 + ResM,m(w).(4.17)

For the purpose of the effectivity analysis let us assume f to be a space–time
polynomial. Otherwise, it is necessary to deal with the classical oscillation term

sup
06=v∈Y τ

1

‖v‖Z

∫ T

0

(f − fτh , v)dt,(4.18)

where fτh is some polynomial approximation of f , not necessarily of degree p in space
and q in time. Moreover, σ(uτh,∇uτh) is not polynomial in general even if uτh is. We
define σ̄ ∈ P q(Im, RTNp(K)) on K × Im

(σ̄(uτh,∇uτh) · n, v)e,m = (σ(uτh,∇uτh) · n, v)e,m,(4.19)

∀v ∈ P q(Im, P p(e)), ∀e ⊂ ∂K,
(σ̄(uτh,∇uτh),∇v)K,m = (σ(uτh,∇uτh),∇v)K,m,

∀v ∈ P q(Im, P p(K)),

and for the purpose of the effectivity analysis we assume that

dK,m
hK
‖σ̄(uτh,∇uτh)− σ(uτh,∇uτh)‖K,m ≤ C ESTTK ,m(uτh).(4.20)

Theorem 4.3 (Local effectivity estimate). Let u ∈ Y be the solution of (2.3) and
assume uτh ∈ Xτ

h to be arbitrary. Let Rτh be the reconstruction obtained from uτh by
(4.8) and στh be the reconstruction obtained from uτh by (4.10). Let f be a space–time
polynomial and let (4.20) holds. Then

d2K,m‖f − (Rτh)′ −∇ · στh‖2K,m +
d2K,m
τ2m
‖Rτh − uτh‖2K,m(4.21)

+
d2K,m
h2K
‖στh − σ(uτh,∇uτh)‖2K,m + JK,m(uτh) ≤ C ESTTK ,m(uτh)2.

The proof of Theorem 4.3 is very technical and quite long. For these reasons we skip
it in this paper.

Using shape regularity of the mesh it is possible to show that∑
K,m

ResK,m(uτh) ≤
∑
K,m

ResTK ,m(uτh) ≤ C Res(uτh),(4.22)

∑
K,m

JK,m(uτh) ≤
∑
K,m

JTK ,m(uτh) ≤ C J(uτh).

Combining these facts with the local effectivity result (4.21) we gain following theorem
Theorem 4.4 (Global effectivity estimate). Let u ∈ Y be the solution of (2.3)

and assume uτh ∈ Xτ
h to be arbitrary. Let Rτh be the reconstruction obtained from uτh by

(4.8) and στh be the reconstruction obtained from uτh by (4.10). Let f be a space–time
polynomial and let (4.20) holds. Then∑

K,m

(
dK,m‖f − (Rτh)′ −∇ · στh‖K,m +

dK,m
τm
‖Rτh − uτh‖K,m(4.23)

+
dK,m
hK
‖στh − σ(uτh,∇uτh)‖K,m

)2

+ J(uτh) ≤ C EST(uτh)2.
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