
Proceedings of ALGORITMY 2016
pp. 312–322

NONNEGATIVE MATRIX FACTORIZATION VIA NEWTON
ITERATION FOR SHARED-MEMORY SYSTEMS∗

MARKUS FLATZ† AND MARIÁN VAJTERŠIC‡

Abstract. Nonnegative Matrix Factorization (NMF) can be used to approximate a large
nonnegative matrix as a product of two smaller nonnegative matrices. This paper shows in detail
how an NMF algorithm based on Newton iteration can be derived utilizing the general Karush-Kuhn-
Tucker (KKT) conditions for first-order optimality. This algorithm is suited for parallel execution on
shared-memory systems. It was implemented and tested, delivering satisfactory speedup results.

Key words. Nonnegative Matrix Factorization, Parallel Computing, Newton Iteration

AMS subject classifications. 68W10, 15A23, 49M15

1. Introduction. The need to process large amounts of data is prevalent in
modern society. One important class of data is represented by nonnegative matrices,
which occur in many application areas. The processing and evaluation of such large
amounts of data is difficult and time-consuming. Therefore, parallelism is often
inevitable to solve such problems in practice.

The goal of Nonnegative Matrix Factorization (NMF) is to represent a large
nonnegative matrix in an approximate way as a product of two significantly smaller
nonnegative matrices, which are easier to handle and process. The idea of such a
factorization was published in 1994 under the name “Positive Matrix Factorization”
[7]. In 1999, an article in Nature [5] about Nonnegative Matrix Factorization caught
the attention of a wide audience. Several papers were written about NMF since
then, discussing its properties, algorithms, modifications and often also possible
applications. NMF and was successfully used in a variety of application areas, for
example in text mining, document classification, clustering, spectral data analysis,
face recognition and computational biology. In contrast to other methods such as
singular value decomposition (SVD) or principal component analysis (PCA), NMF has
the distinguishing property that the factors are guaranteed to be nonnegative, which
allows interpreting the factorization as an additive combination of features.

The paper is organized as follows: First, the NMF problem is defined in sec-
tion 2. Next, the Karush-Kuhn-Tucker (KKT) conditions for first-order optimality
are formulated in section 3. Their application to the NMF problem is discussed in
detail in section 4, leading to the parallel NMF algorithm based on Newton iteration
in section 5. The algorithm was implemented and tested on a parallel system, and
corresponding speedup measurements (on up to 64 processor cores) are included in
section 6. Section 7 contains the conclusion.

∗The second author was supported by the VEGA grant no. 2/0026/14 from the Scientific Grant
Agency of the Ministry of Education and Slovak Academy of Sciences, Slovakia.
†Department of Computer Sciences, University of Salzburg, Salzburg, Austria

(mflatz@cosy.sbg.ac.at).
‡Department of Computer Sciences, University of Salzburg, Salzburg, Austria and Mathe-

matical Institute, Department of Informatics, Slovak Academy of Sciences, Bratislava, Slovakia
(marian@cosy.sbg.ac.at).

312

NMF VIA NEWTON ITERATION FOR SHARED-MEMORY SYSTEMS 313

2. The NMF problem. Formally, NMF can be defined as [6]:
Definition 2.1 (NMF). Given a nonnegative matrix Y ∈ RI×T and a positive

integer J , find nonnegative matrices A ∈ RI×J and X ∈ RJ×T that minimize the
functional

(2.1) f(A,X) =
1

2
||Y −AX||2F .

Figure 2.1 illustrates the NMF problem. A matrix is called nonnegative if all its
elements are ≥ 0. For an I × T matrix M, ||M||F is the Frobenius norm of M.
Therefore, f(A,X) is the square of the Euclidean distance between Y and AX with
an additional factor 1

2 .

Y A

I

I

X J≈ ·

︸ ︷︷ ︸
T︸ ︷︷ ︸

T
︸ ︷︷ ︸

J

Figure 2.1. Illustration of the NMF problem.

In practical cases, the chosen J is usually much smaller than I and T . In general,
it is not possible to find A and X such that AX = Y, NMF is only an approximation,
for this reason it is sometimes called Approximative Nonnegative Matrix Factorization
or Nonnegative Matrix Approximation. Thus, AX can be seen as a compressed
representation of Y, with a rank of J or less. The NMF problem does not have a
unique solution, for example for any diagonal matrix D with positive diagonal values,
f(A,X) = f(AD,D−1X). The problem is convex in A and in X separately, but not
in both simultaneously [4]. Every column of A can be interpreted as a basis feature
of size I. In total, A contains J basis features. The multiplication of A with the
nonnegative matrix X yields a matrix AX, where every column of AX is an additive
(or non-subtractive) combination of weighted basis features (columns of A).

3. Karush-Kuhn-Tucker conditions for first-order optimality. Karush-
Kuhn-Tucker conditions are necessary conditions for first-order optimality. We present
these conditions after introducing some prerequisites. This section is based on [1]. The
goal is to

(3.1)
minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p,

where x ∈ Rn is the variable, whose domain D =
⋂m

i=0 dom(fi) ∩
⋂p

i=1 dom(hi)
is nonempty. The optimal value of (3.1) is denoted by p?. The Lagrangian L :
Rn × Rm × Rp → R is the function

(3.2) L(x, λ, ν) = f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x),

314 M. FLATZ AND M. VAJTERŠIC

with dom(L) = D × Rm × Rp. The Lagrange dual function g : Rm × Rp → R is
defined as

(3.3) g(λ, ν) = inf
x∈D

L(x, λ, ν) = inf
x∈D

(
f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

)
.

For any λ ≥ 0 and any ν, g(λ, ν) ≤ p?. The search for the best lower bound for p?

given by the Lagrange dual function g leads to the optimization problem

(3.4)
maximize g(λ, ν)
subject to λ ≥ 0 .

This is the Lagrange dual problem, while (3.1) is the primal problem. (λ?, ν?) are
called dual optimal if they are optimal for (3.4), and d? = g(λ?, ν?) is the resulting
optimal value of (3.4). The difference p? − d? is called the optimal duality gap. If the
optimal duality gap is zero, so-called strong duality holds.

Let x? be primal optimal, i.e., f0(x?) = p?, and (λ?, ν?) dual optimal. If strong
duality holds, then

(3.5)

f0(x?) = g(λ?, ν?) = inf
x∈D

(
f0(x) +

m∑
i=1

λ?i fi(x) +

p∑
i=1

ν?i hi(x)

)

≤ f0(x?) +

m∑
i=1

λ?i fi(x
?) +

p∑
i=1

ν?i hi(x
?) ≤ f0(x?) .

because of the definitions of strong duality, of the dual function and of the infimum,
and the last inequality holds because for all i = 1, . . . , p, hi(x

?) = 0, and for all
i = 1, . . . ,m, fi(x

?) ≤ 0 and λ?i ≥ 0 and therefore λ?i fi(x
?) ≤ 0. Since we have a chain

of = and ≤ with f0(x?) at the beginning and at the end, all the ≤ are in fact =. Hence,
we can conclude that

∑m
i=1 λ

?
i fi(x

?) = 0 and, since all λ?i fi(x
?) ≤ 0,

(3.6) λ?i fi(x
?) = 0, i = 1, . . . ,m .

This is called complementary slackness, and we have λ?i > 0 ⇒ fi(x
?) = 0 and

fi(x
?) < 0⇒ λ?i = 0.
Now, assume the functions f0, . . . , fm,h1, . . . ,hp are differentiable. Let x? and

(λ?, ν?) be any primal and dual optimal points with zero duality gap. Since x?

minimizes L(x, λ?, ν?) over x, its gradient must vanish at x?:

(3.7) ∇f0(x?) +

m∑
i=1

λ?i∇fi(x
?) +

p∑
i=1

ν?i∇hi(x
?) = 0 .

Following the definitions and statements above, the following conditions, called Karush-
Kuhn-Tucker (KKT) conditions, have to hold:

(3.8)

fi(x
?) ≤ 0, i = 1, . . . ,m

hi(x
?) = 0, i = 1, . . . , p
λ?i ≥ 0, i = 1, . . . ,m

λ?i fi(x
?) = 0, i = 1, . . . ,m

∇f0(x?) +
∑m

i=1 λ
?
i∇fi(x

?) +
∑p

i=1 ν
?
i∇hi(x

?) = 0 .

Additionally, if the primal problem is convex, then the KKT conditions are also
sufficient for the points to be primal and dual optimal.

NMF VIA NEWTON ITERATION FOR SHARED-MEMORY SYSTEMS 315

4. Karush-Kuhn-Tucker conditions for the NMF problem. The approach
depicted here is based on the technical report [6] and [2]. Starting from the definition
of NMF in Theorem 2.1, we introduce

(4.1) E = Y −AX .

The matrix E can be seen as error matrix, the goal, minimizing (2.1), can be written
as minimizing 1

2 ||E||
2
F . According to the definition of the Frobenius norm and of the

standard matrix multiplication,

(4.2) f(A,X) =
1

2

I∑
i=1

T∑
t=1

ei,t
2 =

1

2

I∑
i=1

T∑
t=1

yi,t − J∑
j=1

ai,j · xj,t

2

.

The partial derivative of f with respect to a single element ak,l of A, with 1 ≤ k ≤ I
and 1 ≤ l ≤ J , is

(4.3)

∂f

∂ak,l
(A,X) =

1

2

T∑
t=1

2 ·

yk,t − J∑
j=1

ak,j · xj,t

 · (−xl,t)
 =

= −
T∑

t=1

(
ek,t · (XT)t,l

)
=
(
−EXT

)
k,l

where (XT)t,l denotes the element of the (transposed) matrix XT with row index t

and column index l, and
(
−EXT

)
k,l

the element of −EXT with indices k and l. All

the ∂f
∂ak,l

can be combined to the I × J matrix

(4.4)
∂f

∂A
(A,X) =

∂f

∂a1,1

∂f
∂a1,2

· · · ∂f
∂a1,J

∂f
∂a2,1

∂f
∂a2,2

· · · ∂f
∂a2,J

...
...

. . .
...

∂f
∂aI,1

∂f
∂aI,2

· · · ∂f
∂aI,J

 = −EXT .

The partial derivative of f with respect to a single element xl,m of X, with
1 ≤ l ≤ J and 1 ≤ m ≤ T , is

(4.5)

∂f

∂xl,m
(A,X) =

1

2

I∑
i=1

2 ·

yi,m − J∑
j=1

ai,j · xj,m

 · (−ai,l)
 =

= −
I∑

i=1

(
(AT)l,i · ei,m

)
=
(
−ATE

)
l,m

.

All the ∂f
∂xl,m

can be combined to the J × T matrix

(4.6)
∂f

∂X
(A,X) = −ATE .

Combining (4.4) and (4.6), we get the gradient

(4.7) ∇f(A,X) =

(
∂f

∂A
(A,X),

∂f

∂X
(A,X)

)
=
(
−EXT , −ATE

)
.

316 M. FLATZ AND M. VAJTERŠIC

To use the Karush-Kuhn-Tucker conditions from section 3, we express the NMF
problem, minimizing f(A,X), as minimizing a function f0(n), where n is a vector of
length I · J + J · T containing the elements of the matrices A and X, with

(4.8)
n = (a1,1 a1,2 . . . a1,J a2,1 a2,2 . . . a2,J a3,1 . . . aI,J x1,1 x1,2 . . .

x1,T x2,1 x2,2 . . . x2,T x3,1 . . . xJ,T)T .

We define a restructuring function r : RIJ+JT → RI×J × RJ×T that maps such
a vector n back to a pair of matrices A and X. Thus we can define f0 based on this
restructuring function r and f from (2.1) as

(4.9) f0(n) = f(r(n)) .

Based on (4.3) and (4.5), the partial derivatives are

(4.10)

i = 1, . . . , IJ :
∂f0
∂ni

(n) =
(
−EXT

)
p,q

where p = ((i− 1) div J) + 1

and q = ((i− 1) mod J) + 1

i = IJ + 1, . . . , IJ + JT :
∂f0
∂ni

(n) =
(
−ATE

)
r,s

where r = ((i− IJ − 1) div T) + 1

and s = ((i− IJ − 1) mod T) + 1 .

The required nonnegativity of the matrices A and X in the definition of NMF
means that all elements of n have to be nonnegative, which can be expressed using
IJ + JT constraint functions fi : RIJ+JT → R, where for i = 1, . . . , (IJ + JT)

(4.11) fi(n) = −ni

with the requirement

(4.12) fi(n) ≤ 0 .

This way, the nonnegativity constraints fit the structure of the minimization problem
in (3.1). The partial derivatives of these constraint functions are

(4.13)

∂fi
∂ni

(n) = −1, i = 1, . . . , (IJ + JT)

∂fi
∂nj

(n) = 0, i, j = 1, . . . , (IJ + JT), i 6= j.

Based on the mapping from n to the matrices, we can express these constraints as

(4.14)

i = 1, . . . , IJ : fi(n) = − ap,q
where p = ((i− 1) div J) + 1

and q = ((i− 1) mod J) + 1

i = IJ + 1, . . . , IJ + JT : fi(n) = − xr,s
where r = ((i− IJ − 1) div T) + 1

and s = ((i− IJ − 1) mod T) + 1 .

NMF VIA NEWTON ITERATION FOR SHARED-MEMORY SYSTEMS 317

For the NMF problem, there are no constraints hi(n) = 0. The Lagrangian is
therefore L : RIJ+JT × RIJ+JT → R with

(4.15) L(n, λ) = f0(n) +

IJ+JT∑
i=1

λifi(n) .

The partial derivative of the Lagrangian with respect to an element ni of n is,
based on (4.10) and (4.13)

(4.16)

i = 1, . . . , IJ :
∂L

∂ni
(n, λ) =

(
−EXT

)
p,q
− λi

where p = ((i− 1) div J) + 1

and q = ((i− 1) mod J) + 1

i = IJ + 1, . . . , IJ + JT :
∂L

∂ni
(n, λ) =

(
−ATE

)
r,s
− λi

where r = ((i− IJ − 1) div T) + 1

and s = ((i− IJ − 1) mod T) + 1 .

For a primal optimal x? and a dual optimal λ? with zero duality gap, all the ∂L
∂ni

(n?, λ?)
are 0 and therefore

(4.17)

i = 1, . . . , IJ : λ?i =
(
−EXT

)
p,q

where p = ((i− 1) div J) + 1

and q = ((i− 1) mod J) + 1

i = IJ + 1, . . . , IJ + JT : λ?i =
(
−ATE

)
r,s

where r = ((i− IJ − 1) div T) + 1

and s = ((i− IJ − 1) mod T) + 1 .

For two matrices A and B of size I × T , their Hadamard product C = A ~ B is
another matrix of size I × T , where for all indices i and t, ci,t = ai,t · bi,t. Using this
notation, we get, based on (4.14) and (4.17),

(4.18)

i = 1, . . . , IJ : λ?i fi(n
?) =

(
−A ~

(
EXT

))
p,q

where p = ((i− 1) div J) + 1

and q = ((i− 1) mod J) + 1

i = IJ + 1, . . . , IJ + JT : λ?i fi(n
?) =

(
−X ~

(
ATE

))
r,s

where r = ((i− IJ − 1) div T) + 1

and s = ((i− IJ − 1) mod T) + 1 .

Following (3.8), the KKT optimality conditions are

(4.19)

fi(n
?) ≤ 0, i = 1, . . . ,m
λ?i ≥ 0, i = 1, . . . ,m

λ?i fi(n
?) = 0, i = 1, . . . ,m

∇f0(n?) +
∑m

i=1 λ
?
i∇fi(n

?) = 0 .

318 M. FLATZ AND M. VAJTERŠIC

The first and the fourth condition were already expressed and used above. The second
condition means that we have, based on (4.17) and the definition of E in (4.1),

(4.20) EXT = YXT −AXXT ≤ 0

and

(4.21) ATE = ATY −ATAX ≤ 0 .

The third condition, (4.18) and the definition of E in (4.1) lead to the two equations

(4.22) A ~
(
YXT −AXXT

)
= 0 .

(4.23) X ~
(
ATY −ATAX

)
= 0 .

Note that the simply setting A = 0 to fulfill (4.22) is, in general, no viable solution.
Because Y and X are both nonnegative, YXT would then have to be 0 as well to satisfy
(4.20). Similarly, setting X = 0 to fulfill (4.23) would require ATY = 0 to satisfy
(4.21). More importantly, although setting both A = 0 and X = 0 trivially satisfies
all the KKT conditions, it is not an optimal solution, since the KKT conditions are
necessary, but not sufficient, optimality conditions for the non-convex NMF problem.

5. NMF via Newton iteration. Defining the four matrices

(5.1) B = YXT , C = XXT , R = ATY , S = ATA ,

the conditions (4.20), (4.21), (4.22) and (4.23) can be written as

(5.2) B−AC ≤ 0 ,

(5.3) R− SX ≤ 0 ,

(5.4) A ~ (B−AC) = 0 ,

(5.5) X ~ (R− SX) = 0 .

In general, it is not possible to solve (5.4) by simply setting A = BC−1, because C−1,
the inverse of the nonnegative matrix C, may have negative elements, so BC−1 may
have negative elements, too, but A is required to be nonnegative. For the same reason,
X = S−1R is in general no valid solution of (5.5).

The NMF algorithm based on Newton iteration approximates equations (5.4) and
(5.5) via alternating direction iteration, i.e., first the matrix X is fixed to compute a
new A with the goal of fulfilling (5.4) while also taking (5.2) into account, then this A
is fixed to compute a new X to approximate (5.5) with consideration to (5.3). This
process is then repeated until some termination condition is met.

We want to focus on the computation of A first: (5.4) has the useful property that
every row of A is independent of the others, so all rows can be processed separately
and in parallel. So, every row a of A has to satisfy

(5.6) a ~ (b− aC) = 0

where b is the corresponding row of B. The size of the matrix A is I × J , where I is
the number of rows of the input matrix, typically a large value, and J is the chosen
parameter for NMF, which is usually much smaller. Therefore, the problem can be
split up into many small problems, each of them requires only working with vectors
(matrix rows) of size J and the matrix C of size J × J . The vector a can be written

NMF VIA NEWTON ITERATION FOR SHARED-MEMORY SYSTEMS 319

as a = z ~ z, where z does not have to fulfill a nonnegativity constraint. Because
C = XXT is symmetric and interpreting z and b as column vectors, the condition
can be written as

(5.7) (C (z ~ z)− b) ~ z =: d(z) = 0 .

The part of the constraint (5.2) concerning this single row is transformed into

(5.8) C (z ~ z)− b ≥ 0 .

The goal is now to find a root of the function d. To use Newton iteration, we need
the associated Jacobi matrix. For j = 1, 2, . . . , J , component dj of d can be written as

(5.9) dj =

((
J∑

k=1

cj,k · z2k

)
− bj

)
· zj .

Therefore, we get for i, j = 1, 2, . . . , J with i 6= j

(5.10)
∂dj
∂zi

= 2 · cj,i · zi · zj = (2 diag(z) C diag(z))j,i

which is the element of the matrix (2 diag(z) C diag(z)) with row index j and column
index i, where diag(z) is a diagonal matrix of size J × J with the elements of the
vector z on the main diagonal.

For i = j, the partial derivative is

(5.11)

∂dj
∂zj

= 2 · cj,j · zj · zj +

((
J∑

k=1

cj,k · z2k

)
− bj

)
=

= (2 diag(z) C diag(z))j,j + (C (z ~ z)− b)j =

= (2 diag(z) C diag(z) + diag(C (z ~ z)− b))j,j .

Since (diag(C (z ~ z)− b))j,i = 0 for i 6= j, we can combine (5.10) and (5.11), so
for all i, j = 1, 2, . . . , J

(5.12)
∂dj
∂zi

= (2 diag(z) C diag(z) + diag(C (z ~ z)− b))j,i .

Therefore, the Jacobi matrix is

(5.13)
Jd(z(i)) =

∂d

∂z
(z(i)) =

∂(d1, d2, . . . , dJ)

∂(z1, z2, . . . , zJ)
(z(i)) =

= 2 diag(z) C diag(z) + diag(C (z ~ z)− b) ,

so it is possible to use Newton iteration to find the root for this row, and also for the
other rows in parallel. For every row a standard Newton iteration step consists of
solving the following linear system for ∆z(i):

(5.14) Jd(z(i)) ·∆z(i) = −d(z(i))

and updating z(i+1) = z(i) + ∆z(i). Taking the constraint (5.8) into account, we get
Algorithm 1. In line 2 of the algorithm, an initial z that satisfies this constraint has

320 M. FLATZ AND M. VAJTERŠIC

to be generated. One possible way to achieve this is by assigning random values,
checking whether the constraint is fulfilled, and repeating the assignment and the
constraint check as often as necessary. Since C and b are both nonnegative, doubling
the range of the random number generator with each repetition makes the fulfillment
of the constraint increasingly likely, so usually the needed number of repetitions is low.
In line 6, a suitable α can be determined by starting with α = 1 and checking the
constraint, and, if necessary, repeatedly dividing α by 2 and checking again. If α falls
below a threshold, the loop from line 3 to 8 can be ended since in this case the solution
for this row is stable. A fixed maximum number of iterations is an additional suitable
local termination criterion with low overhead. In principle, it is also possible to use
the global goal (2.1) as termination criterion, but the cost of such a check makes this
inadvisable.

Algorithm 1: Newton iteration for the rows of A

1 for every row a of A do in parallel
// Treat z and the row b of B as column vectors.

2 Find z such that C (z ~ z)− b ≥ 0;
3 repeat
4 g← C (z ~ z)− b;

// Solve linear system from (5.14):

5 Solve for h: (2 diag(z) C diag(z) + diag(g)) h = −g ~ z;
6 Find α > 0 such that C ((z + αh) ~ (z + αh))− b ≥ 0;
7 z← z + αh;

8 until local termination criterion is met ;
// Treat z as row vector.

9 a← z ~ z;

10 end

The computation of X works in a similar way. Here, all columns of X can be
computed independently (as opposed to A, where we had independent rows). Based
on (5.5), we get for every column x of X

(5.15) x ~ (r− Sx) = 0

where r is the corresponding column of R. The matrix X has the size J × T , where T
is the (potentially very large) number of columns of the input matrix, and J is the
(usually significantly smaller) chosen parameter for NMF. Therefore, the computation
of X can again be split up into many (up to T) small problems, each of them requiring
only vectors of size J and the matrix S of size J×J . Again, we use the trick to express
the nonnegative vector x as x = u ~ u, with no nonnegativity constraint on u. Then
we get

(5.16) (S (u ~ u)− r) ~ u =: t(u) = 0 .

The part of the constraint (5.3) concerning this single column is transformed into

(5.17) S (u ~ u)− r ≥ 0 .

Since the function t from (5.16) has the same structure as d from (5.7), we can easily
infer its Jacobi matrix from (5.13):

(5.18) Jt(u
(i)) =

∂t

∂u
(u(i)) = 2 diag(u) S diag(u) + diag(S (u ~ u)− r) .

NMF VIA NEWTON ITERATION FOR SHARED-MEMORY SYSTEMS 321

Thus we can express the algorithm to compute the columns of X as shown in Algorithm
2. For finding the initial u in line 2, α in line 6 and for the termination criterion, the
ideas discussed for Algorithm 1 can be reused.

Algorithm 2: Newton iteration for the columns of X

1 for every column x of X do in parallel
2 Find u such that S (u ~ u)− r ≥ 0;
3 repeat
4 g← S (u ~ u)− r;
5 Solve linear system for h: (2 diag(u) S diag(u) + diag(g)) h = −g ~ u;
6 Find α > 0 such that S ((u + αh) ~ (u + αh))− r ≥ 0;
7 u← u + αh;

8 until local termination criterion is met ;
9 x← u ~ u;

10 end

All that remains to be done in between these alternating parallel Newton iterations
is the computation of the parameter matrices B, C, R and S. The complete NMF
algorithm is shown below in Algorithm 3, where we have parallel computations of A
and X interspersed with short sequential parts to compute the parameter matrices.
This can be accomplished by starting with a single thread that is at some point split
up into multiple threads to compute a parallel part. Afterwards, these threads are
joined together into a single thread again. This splitting and joining is repeated
multiple times. Such a behavior is very well-suited for a shared-memory programming
model such as OpenMP, and easy to implement using such an interface. Possible
global termination criteria are a fixed number of iterations or a threshold for the total
approximation error as given by (2.1).

Algorithm 3: Parallel NMF via Newton iteration using shared memory

1 X← rand(J, T);
2 repeat
3 B← YXT ;

4 C← XXT ;
5 Compute new A in parallel as shown in Algorithm 1;

6 R← AT Y;

7 S← AT A;
8 Compute new X in parallel as shown in Algorithm 2;

9 until global termination criterion is met ;

We note that it is also possible to compute an NMF via Newton iteration in
a distributed environment using message passing, as discussed in [6] and [3]. A
comparison of the two parallelization methods would require a detailed analysis of the
MPI algorithm. This is beyond the scope of this paper, so it will be a matter of a
future publication.

6. Experiments. The algorithm described above was implemented using the
programming language C, OpenMP and the AMD Core Math Library (ACML). While
the implementation also allows checking the error ||A−WH||F as termination criterion,
for the measurements, we chose to use a fixed number of iterations. The measurements
were done with an input matrix of size 24 576× 24 576, with J = 1 536. The program
runs on a single node, which means that we could use up to 64 processor cores in our
setup (four AMD Opteron 6274 processors with 16 cores each). Table 6.1 contains

322 M. FLATZ AND M. VAJTERŠIC

the results, and Figure 6.1 shows their graphical representation. All measurements
where executed at least three times, the table shows the median results. To solve this
relatively large problem, a single core needs about 1.1 · 106 seconds (13 days). On 64
cores, the runtime is approximately 10 hours. The efficiency continuously decreases
with the number of processor cores, but the worst-case efficiency of 47.7% for 64 cores
(a speedup of 30.5) is probably still acceptable for practical purposes.

Table 6.1
Speedup and efficiency for shared-memory NMF for I = 24 576, T = 24 576, J = 1 536.

cores duration [s] speedup efficiency
1 1 147 090 1.00 1.000
2 595 005 1.93 0.964
4 306 629 3.74 0.935
8 155 077 7.40 0.925

16 83 284 13.8 0.861
32 53 946 21.3 0.664
64 37 561 30.5 0.477

1 2 4 8 16 32 64
1

2

4

8

16

32

64

number of processor cores

sp
ee

d
u

p

0.00
0.16̇

0.3̇

0.50
0.6̇

0.83̇

1.00
effi

ci
en

cy

speedup

efficiency

Figure 6.1. Speedup and efficiency for shared-memory NMF (graph).

7. Conclusion. We showed in detail how the application of the general Karush-
Kuhn-Tucker conditions for first-order optimality to the NMF problem can lead to
an NMF algorithm based on Newton iteration. This algorithm can be executed in
parallel on shared-memory systems, in addition to its use for message-passing systems
that was presented previously. Speedup measurements show acceptable performance
for relatively large workloads.

REFERENCES

[1] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 7th ed.,
2009.

[2] M. Chu, F. Diele, R. Plemmons, and S. Ragni, Optimality, Computation, and Interpretations
of Nonnegative Matrix Factorizations, Unpublished Report, (2004).

[3] M. Flatz and M. Vajteršic, A parallel algorithm for Nonnegative Matrix Factorization based
on Newton iteration, in Proceedings of the IASTED International Conference Parallel and
Distributed Computing and Networks (PDCN 2013), ACTA Press, 2013, pp. 600–607.

[4] P. O. Hoyer., Non-negative matrix factorization with sparseness constraints, Journal of Machine
Learning Research, 5 (2004), pp. 1457–1469.

[5] D. D. Lee and H. S. Seung, Learning the parts of objects by non-negative matrix factorization,
Nature, 401 (1999), pp. 788–791.

[6] G. Okša, M. Bečka, and M. Vajteršic, Nonnegative Matrix Factorization: Algorithms and
Parallelization, Tech. Report 2010-05, University of Salzburg, Department of Computer
Sciences, 2010.

[7] P. Paatero and U. Tapper, Positive matrix factorization: A non-negative factor model with
optimal utilization of error estimates of data values, Environmetrics, 5 (1994), pp. 111–126.

