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LONG TERM ANALYSIS OF NON-PHARMACEUTICAL INTERVENTIONS IN
SIR MODEL∗
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Abstract. We propose a new epidemiological model, based on the classical SIR model, taking additionally into
account a switching prevention strategy. The model has two distinct thresholds that determine the beginning and
the end of an intervention and two different transmission rates.
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1. Introduction. We study a new epidemiological model, based on the classical SIR model,
taking into account switching prevention strategies (closing schools, businesses, home quarantine),
which are implemented only when the number of infected individuals reaches a critical level and the
prevention strategy stops after the number of infected individuals drops under a different threshold.
Such a system is called a switching system. Switching systems have been used in many models
ranging from mechanics, biology or electrical engineering, [9]. Stability and bifurcation of such
piecewise smooth dynamical systems is an interesting research direction, the interaction between a
trajectory and borders for discrete events can bring many complex phenomena. The mathematical
properties of this model were analyzed in detail in [2].We proved that each solution converges either
to the endemic equilibrium or to a periodic trajectory. Here we present numerical simulations for
many possible scenarios (based on the particular combination of the parameters of the model) and
indicate some applications to the current COVID-19 epidemic.

We adopt a Susceptible-Infected-Recovered (SIR) model with demographic effects [1], where the
population is divided into three different parts: susceptible (S), who are healthy but can contract
the disease; infected (I), and recovered (R), who are immune to the disease. Dynamics of the
population can be described by the following system of nonlinear differential equations:

dS(t)

dt
= µN − βS(t)I(t)

N
− µS(t), (1.1)

dI(t)

dt
=
βS(t)I(t)

N
− γI(t)− µI(t), (1.2)

dR(t)

dt
= γI(t)− µR(t), (1.3)
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zations IČ 47813059.
† Department of Applied Mathematics and Statistics, FMFI, Comenius University, Bratislava, Slo-

vakia(chladna@fmph.uniba.sk).
‡Mathematical Institute of the Silesian University, Na Rybńıčku 1, 746 01 Opava, Czech Republic,
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where the parameter µ denotes the birth/mortality rate, β the transmission rate, γ the recovery
rate and N the population size. The equality of the birth and mortality rates ensures the population
size to be constant, i.e. S(t) + I(t) + R(t) = N for all t. This assumption allows us to reduce the
system (1.1) to the first two equations, with R(t) = N − S(t)− I(t).

Transmission rate β is one of the key model parameters. It can be expressed as the product
of the number of daily contacts which a susceptible individual has with infected individuals and
the probability of transmission during each contact. Parameter β is not directly observable. Many
models are based on the so-called mass action assumption for transmission, e.g. parameter β is
assumed to stay constant during the whole time period in question, e.g. [11]. During the last
decades various models have been proposed to make this assumption more realistic. Among them
the so-called saturation effect was proposed to be included into the model. The incidence rate,
namely the term βSI is either modeled as βSI

1+aI or βSI
1+aS , where a stands for the saturation rate.

Some authors even combine these two effects and model the incidence rate as βSI
1+aS+bI , see [5] and

[3].
Recently several studies attempting to analyze an effect of the quarantine policies were pub-

lished. In [4] the authors analyzed the effect of contact reductions using standard well mixed SEIR
model. Another implementation of quarantine policy was proposed in [12]. Here authors presented
a new extension of SIR model under the assumption that all infected individuals are isolated af-
ter the incubation period in such a way that they cannot infect other people. In [8] a stochastic
age-structured transmission model has been applied to explore a range of intervention scenarios.

The objective of the two-threshold policy suggested by our model is to navigate the system
to the endemic equilibrium and simultaneously keep the number of infected individuals in check,
not committing to continuous intervention. The policy is simple enough to make it implementable.
Under this policy, it is desirable to minimize the number of switching events that should happen
over the time interval from the epidemics outbreak until the system settles at the equilibrium. From
this perspective, a trajectory along which the intervention switches on and then off only once seems
optimal.

The paper is organized as follows. In the next section we study the equilibria of the model
with constant β and its stability. Sections 3 is devoted to a preliminary study of a simple situation
with only one switch. Section 4 introduces the model with the relay switch and in Section 5 we
present numerical simulations for different combinations of parameters. The last section presents
the numerical results adapted for the COVID-19. The numerical solutions of nonlinear differential
system were obtained with the functions from Python’s scipy.integrate package.

2. Stability analysis and equilibria. As simple calculation shows, the system (1.1) can
exhibit two different equilibria: the infection free equilibrium

I∗ = 0, S∗ = N, (2.1)

and if β > γ + µ or equivalently R0 := β
γ+µ > 1 also the endemic equilibrium

I∗∗ = µN

(
1

µ+ γ
− 1

β

)
, S∗∗ =

(γ + µ)N

β
(2.2)

exits. If β < γ + µ, only the infection free equilibrium is presented, which can be shown
to be globally asymptotically stable. If β > γ + µ, the endemic equilibrium becomes globally
asymptotically stable. For more details see e.g. [11].
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It is also possible to examine the exact type of the equilibrium points from the Jacobian matrix,
which in our case is

J(S, I) =

[
−µ− βI

N −βSN
βI
N

βS
N − (µ+ γ)

]
.

For the infection free equilibrium

I∗ = 0, S∗ = N (2.3)

we have

J(S∗, I∗) =

[
−µ −β
0 β − (µ+ γ)

]
.

The eigenvalues are −µ and β − (µ + γ) = (µ + γ)R0, so this equilibrium is a stable node (both
eigenvalues are negative) when R0 < 1 and it is a saddle when R0 > 1.

For the endemic equilibrium one can show that

J(S∗∗, I∗∗) =

[
−µR0 − β

R0

µ(R0 − 1) 0

]
.

The eigenvalues of this matrix are supposed to satisfy the equation

λ2 + µR0λ+
βµ(R0 − 1)

R0
= 0, (2.4)

they are both imaginary, so the endemic equilibrium is an attracting spiral point if the parameters
satisfy

R3
0 −

4βR0

µ
+

4β

µ
≤ 0,

or equivalently

µβ2 − 4β(µ+ γ)2 + 4(µ+ γ)
3 ≤ 0, (2.5)

otherwise it is a stable node.

3. Simple change in the transmission rate during epidemic. First we have implemented
a simple non-pharmaceutical intervention. We have studied the dynamics of a basic SIR model,
where the transmission rate β changes at time t1 to a lower value and then back at time t2 to the
same rate. This situation corresponds for example to closing schools or applied quarantine when
the number of infected people reaches a given number (time t1) and return to normal life after the
number of infected drops below a certain level (time t2). The parameters for our numerical analysis
are summarized in Table 3.1.

In the first example we propose the following setup:

β =


β1 for t = [0, t1)
β1

10 for t = [t1, t2)

β1 for t = [t2, T ]
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Time horizon T 100 days
Population size N 1000
Birth/death rate µ 0.01/year
Recovery rate γ 0.1
Transmission rate β1 0.2

Table 3.1: Model parameters: Notation and values.

The time points t1 and t2 are specified as follows:

t1 = min{t : I(t) ≥ 120}

and

t2 = min{t > t1 : I(t) ≤ 50}.
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Fig. 3.1: Early stage of epidemics with controlled (blue) and uncontrolled transmission rate (orange).

We observe that even this simple, but carefully choosen, change of the transition rate β during
one time interval leads to a significant reduction of the number of infected. One can continue this
study and pose an interesting control problem how to determine the switching thresholds so that
the number of infected is minimized, but we don’t pursue this direction here.

The idea of switching the transmission rate β in a SIR model is not completely new. It was
hypothesized that measles epidemics can be controlled more efficiently by a vaccination effort that
is pulsed in time rather than uniform and continuous. This policy is called pulse vaccination and
it was shown theoretically that if children aged one to seven years are immunized once every five
years, this may suffice for preventing the epidemics. The effect of pulse vaccination was studied by
many authors, we mention e.g. [1] and [10], where detailed comparison of models with constant
and pulse vaccination is provided.
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4. Relay type of change in the transmission rate during epidemic. A change in the
transmission rate β during an epidemic phase might change the final size of epidemic. A change
in the transmission rate might be a result of a public health institute intervention or a result of a
natural threat of catching the disease.

In our model we assume that a change in the transmission rate is driven by a time evolution of
the number of infected individuals. More precisely, we assume, that every time when the number
of infected individuals I(t) exceeds the critical level I1, the transmission parameter decreases from
its pre-epidemic value β1 to a new value β2. Once the value of I(t) declines below the value I2
the transmission rate returns back to its original value β1. The question we study here is how the
setup of the critical values I1 and I2 influences the time development of I(t) and the final size of
epidemic.

The described dependence of the parameter β on I can be mathematically expressed by the so-
called relay hysteresis operator: For the parameters I = (I1, I2) ∈ R2 with I1 > I2 and (β1, β2) ∈ R2

with β1 > β2, we introduce the relay operator β(I, η) : C0([0;T ])×{β1, β2} → BV (0;T )∪Cr0([0;T ));
where Cr0([0;T )) denotes the space of functions right-continuous on [0;T ). For any I ∈ C0([0;T ])
and any η ∈ {β1, β2}, β(I, η) is defined as follows (we write shortly β(I)):

β(I)(0) =


β1 if I(0) ≤ I1,
η if I2 < I(0) < I1,

β2 if I(0) ≥ I2,

for any t ∈ (0;T ]. Setting Xt = {τ ∈ (0, t], I(τ) = I1 or I2}

β(I)(t) =


β(0) if Xt = ∅
β2 if Xt 6= ∅ and I(maxXt) = I1

β1 if Xt 6= ∅ and I(maxXt) = I2

Then β(I) is uniquely defined in [0;T ], cf. Figure 4.1.

� -

?� -

6
β1

β2
I2 I1

Fig. 4.1: The relay hysteresis operator with thresholds I1 and I2.

The delayed relay operator is a rate independent, piecewise monotone, order preserving and
discontinuous hysteresis operator (in any sense). For more details as well as for definitions of
different kinds of hysteresis operators, see [7].
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According to the proposed type of the non-pharmaceutical intervention we consider SIR model
in the following form:

dS(t)

dt
= µN − β(I)(t)S(t)I(t)

N
− µS(t), (4.1)

dI(t)

dt
=
β(I)(t)S(t)I(t)

N
− γI(t)− µI(t). (4.2)

The global dynamics of this model was studied in [2], but only for the first possibility described
in the Numerical experiments Section. We proved that each solution converges either to the endemic
equilibrium or to the periodic trajectory. We also showed that to reach a convergence to the endemic
equilibrium the lower switching threshold should not be too low. In other words, an intervention
decreasing the transmission rate should stop while the number of infected individuals is still not too
small. Otherwise, the system can go into a cyclic behavior when the number of infected individuals
repeatedly reaches the maximal admissible value. Each time this happens, a new intervention cycle
would be initiated.

5. Numerical experiments. There are the following possibilities for β1 > β2:
1. for β1 holds R0 > 1 and Condition (2.5) is satisfied, for β2 holds R0 < 1,
2. for β1 holds R0 > 1 and Condition (2.5) is not satisfied, for β2 holds R0 < 1,
3. for β1 and β2 holds R0 > 1 and Condition (2.5) is satisfied,
4. for β1 and β2 holds R0 > 1 but Condition (2.5) is not fullfiled,
5. for β1 and β2 holds R0 > 1 but Condition (2.5) is satisfied only for β1,
6. for β1 and β2 holds R0 > 1 but Condition (2.5) is satisfied only for β2,
7. for β1 and β2 holds R0 < 1.

In each of the above cases there are further situations depending on the choices of the values
I1 and I2.

5.1. Experiment 1. First we analyze the first case described in the previous section. For the
purposes of the numerical simulation we consider the following values of the parameters: N = 1000,
µ=0.01, β1 = 0.2, β2=0.02, γ = 0.1. Further, we set the initial values to be I(0) = 1 and
S(0) = N − 1. Let us note that for β1 the endemic equilibrium (I∗ = 40.91 and S∗ = 550) exists
and is a spiral, (condition (5.3) is satisfied), for β2 only the infection free equilibrium exists.

We study the following three cases:
1. Case A: I1 > I∗ and I2 > I∗
2. Case AB: I1 > I∗ and I2 < I∗
3. Case B: I1 < I∗ and I2 < I∗

The results for all three cases are graphically depicted in Figure 3. Figure 5.2 summarizes the
corresponding phase-plane diagrams.

5.2. Experiment 2. In this numerical experiment we studied the behavior of the system (1.1)
in the case that for β1 is R0 > 1, but (2.5) is not satisfied, therefore the endemic equilibrium is a
stable node. For β2 holds R0 < 1.

Here we have proposed the following setup of the parameters: N = 1000, µ=0.01, β1 = 1,
β2=0.01, γ = 0.01, initial values are I(0) = 1, S(0) = N − 1 . For β1 the equilibrium values are
I∗∗ = 20 and S∗∗ = 490.

Resulting trajectories in the S-I plane are depicted in Figure 5.3. Orange curve corresponds to
the situation without change in the transmission rate during the whole time period in question. Blue
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(a) Case A: I1=100, I2=60.
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(b) Case AB: I1=60, I2=20.
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(c) Case B: I1=30, I2=10.

Fig. 5.1: Experiment 1: Number of infected during epidemic with controlled (blue) and uncontrolled
(orange) transmission rate
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(a) Case A: I1=100, I2=60.
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(b) Case AB: I1=60, I2=20.
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(c) Case B: I1=30, I2=10.

Fig. 5.2: Experiment 1: Phase planes with single trajectories: With (blue) and without (orange)
change in the transmission rate.

and green curves represent the situation with the change and two different initial values I(0) = 1,
R(0) = 0 (blue) and I(0) = 5, R(0) = 0 (green).

5.3. Experiment 3. In this experiment we have proposed to change the transmission rate in
such a way that the existence of the non-zero equilibrium is presented also after the change in the
transmission rate, i.e. R0 > 1 for β1 and β2. Moreover, we require that the condition (2.5) holds
for both β1 and β2. This can be achieved for instance by the following setup:

β1 = 0.2 with S∗ = 550, I∗ = 40.9 and β2 = 0.15 with S∗∗ = 733.33, I∗∗ = 24.24.

In this setup we have proposed six cases concerning boundary setup for I1 and I2 (I1 > I2):

1. Case AA: I1 > I∗ and I2 > I∗
2. Case ABet: I1 > I∗ and I∗ > I2 > I∗∗
3. Case BetBet: I∗ > I1 > I∗∗ and I∗ > I2 > I∗∗
4. Case BetB: I∗ > I1 > I∗∗ and I2 < I∗∗
5. Case AB2: I1 > I∗ and I2 < I∗∗
6. Case BB: I1 < I∗∗ and I2 < I∗∗

Our aim was to analyze the effect of the critical levels setup ( I1, resp. I2) due to the equilibria
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(a) Case A6: I1=700, I2=500.
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(b) Case AB6: I1=600, I2=300.
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(c) Case B6: I1=300, I2=100.

Fig. 5.3: Experiment 2: Phase plane: With (blue, green) and without (orange) change in the
transmission rate.

I∗ and I∗∗ and compare the behavior of the system with and without β change. Our results are
graphically depicted in Figure 5.4.
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(a) Case AA: I1=100, I2=60.
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(b) Case ABet: I1=60, I2=32.

400 500 600 700 800 900 1000
susceptible

0

20

40

60

80

100

120

140

in
fe

ct
ed

(c) Case BetBet: I1=32, I2=27.
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(d) Case BetB: I1=32, I2=15.
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(e) Case AB2: I1=60, I2=15.
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(f) Case BB: I1=15, I2=5.

Fig. 5.4: Experiment 3: Phase plane: With (blue) and without (orange) change in the transmission
rate. Green curve represents the trajectory of the system with β1.
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6. Experiment for COVID-19. Here we perform a case study motivated by the current
COVID-19 epidemiological situation in Slovakia. For our purposes we set the modeling population
size to be N = 5000, a small town.

According to [14] birth/death rate in Slovakia (µ) is approxim. 1% per year. Parameter γ is a
measure of infectiousness and thus 1/γ denotes the length of the infectious period. We assume for
COVID-19 γ to be 1/6, [8]. Parameter β is not directly observable. The reproduction number for
COVID-19 has been estimated to be within an interval (2.5,3). Subsequently, parameter β can be
estimated by the relation R0 = β

γ+µ . In our simulations we use β = 0.5.

It is important to notice here, that for the presented parameters, condition (2.5) is valid due
to the fact that parameter µ is of lower order than parameter γ (rewriting the condition (2.5) one
gets µR0 ≤ 4(R0 − 1)(γ + µ)). Moreover, since the reproduction number is greater than one, the
endemic equilibrium (S∗∗, I∗∗) = (1667, 0.55) is an attracting spiral (see Section 2).

In our numerical experiments we assume the realistic initial condition, I(0) = 1, R(0) = 0,
S(0) = 4999.

Further, we have to set up an epidemic value of the transmission rate (β2) as well as the critical
levels I1 and I2. The aim of the change in the transmission rate during the epidemic is to eliminate
the further disease spread. For the purposes of our study we set R0 = 0.9, i.e. β2 = 0.15. Let us
notice here that under the proposed setup of β2 only the disease free equilibrium exists.

Since the value of I∗∗ < 1 we have analyzed just the case when both critical levels I1 and
I2 are above the endemic equilibrium value I∗∗. In Figure 6.1 we depicted the results of the
numerical simulation for I1 = 250 and I2 = 50. As we can observe several waves of epidemics occur
(i.e. restrictions rules have to be implemented repeatedly) before the system reaches the endemic
equilibrium. Let us note here that lower the threshold value I1 the longer the time to reach the
equilibrium.

In many countries including Slovakia the actual restrictions were performed in a little bit
different way, strict quarantine was introduced when the number of infected was very low (or low)
and the restrictions were loosen some time after the peak of the epidemic. Other countries, e.g.
Sweden or UK introduced regulations later, which corresponds more to our model. However, future
policies can be based on our proposed model to keep the epidemic under control. Notice that setting
the lower threshold too low is undesirable since it is better to avoid periodic oscillations. Moreover,
in the current situation with COVID-19, many countries applied quarantine strategies at different
levels and many in 2, 3 or more stages (closing schools, closing businesses, cancelling mass events,
etc. ) Also restrictions were cancelled in usually 3 or more stages. This can be modeled by a similar
model with 3 (or more) different β parameters and this will be the subject of our future studies.

Finally, due to several special characteristic of COVID-19, for instant a longer incubation period
or a presence of a significant number of asymptomatic individuals, the basic SIR model should be
extended. Another improvement of corona virus modeling, that we did not include for simplicity
in the model, is to consider death rate connected to COVID-19 disease.
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