
Proceedings of ALGORITMY 2020
pp. 21–30

SOLVING ORDINARY DIFFERENTIAL EQUATIONS USING
ARTIFICIAL NEURAL NETWORKS - A STUDY ON THE

SOLUTION VARIANCE

TONI SCHNEIDEREIT∗ AND MICHAEL BREUß

Abstract. Solving differential equations can be realised with simple artificial neural network
architectures. Several methods make use of trial solutions with different construction approaches and
can provide reliable results. However, many parameters, different optimisation methods and random
weight initialisation result in a non constant variance to the exact solution. To our knowledge,
this variance has not been studied yet. We investigate several parameters and constant versus
random weight initialisation for two solution methods to determine their reliability with the use of
backpropagation and ADAM optimisation.

Key words. ordinary differential equations, artificial neural networks, trial solution, backprop-
agation, ADAM optimisation

AMS subject classifications. 62M45, 65L05, 90C90

1. Introduction. The link between mathematics and physical phenomena is
often formulated by differential equations (DEs), which combine functions and their
derivatives to produce a mathematical model of real world behaviour. They often do
not have an analytical solution, but can be approximated by numerical methods [1]
like finite differences, finite elements or Runge-Kutta methods, and also with artificial
neural networks (ANNs) [2]. Focusing on ANNs, their structure is based on models
of biological neural networks with different layers containing neurons as processing
units and connecting weights inbetween, representing synapses.

In order to solve ODEs with ANNs, several methods make use of a trial solution
(TS) for optimisation. The TS structure itself varies depending on the model. An
approach we simply call trial solution method (TSM) [4], introduced a TS as a sum
of two parts, which satisfies initial/boundary conditions (ICs/BCs) by construction.
Furthermore, it contains the ANN output and is an essential part of the cost funtion.
Same TS structure is used for example in the Legendre neural network [3], which
features an expansion to Legendre polynomials. A different TS, proposed in [5], we
call modified trial solution method (mTSM). This approach declares the TS to be the
ANN output and ICs/BCs appear as additional terms in the cost function.

Our goal is to perform fundamental research on solving ODEs using ANNs in
order to obtain further knowledge about this topic and to perhaps improve the com-
petitiveness. Released in 2019, we want to find out, if [5] can provide new impact on
this topic.

Optimisation methods we use in this paper are backpropagation (BP) [7] and
ADAM [9]. Both make use of the (negative) cost function gradient, which provides
information about the direction of steepest descent. While BP can have a constant or
adaptive learning rate, ADAM was developed to be an adaptive optimisation method.
The learning rate in general is a scaling factor for the gradient. An advantage of
ADAM is the potential of rapid training speed, but perhaps it gets outperformed by

∗Applied Mathematics Group, BTU Cottbus-Senftenberg, Platz der Deutschen Einheit 1, 03046
Cottbus, Germany, {Toni.Schneidereit,breuss}@b-tu.de

21



22 T. SCHNEIDEREIT AND M. BREUß

non adaptive methods due to their out-of-sample behaviour and sometimes it may
even fail to converge [10]. On the other hand, a disadvantage of BP is the uniform
scaling of the gradient in all directions.

The amount of parameters for ODE, ANN and optimisation is numerous. Our
contribution in the main part of this paper is a study of differences in weight initial-
isation with zeros and small random values, as well as number of the ANN training
cycles, number of training data, the domain size for ODE solution, an ODE parameter
variation and finally a direct comparison between the optimisation methods. Prior to
this we point out the ANN architecture, solution approaches and how the optimisation
works. We finish the paper with a conclusion and remarks on future work.

2. ANN architecture and optimisation. Our ANN features three layers, one
input layer (IL) to provide data into the ANN, one hidden layer (HL) for processing
and one output layer (OL) to generate an output of the processed data. While IL and
OL usually consist of linear processing units, the HL has nonlinear units. These units
are called neurons. Fig. 2.1 displays the architecture of this ANN with one IL bias
neuron, which can be considered as an offset, and H as the number of HL neurons.

Fig. 2.1: ANN architecture featuring one
input layer, one hidden layer with sigmoid
activation functions and one output layer

Each neuron is connected through
weights to every single neuron in the
next layer. That is, wj from IL to
HL, uj from IL bias to HL and vj
from HL to OL with j=1, . . . ,H. All
weights are stored in the vector ~p. The
ANN is fed by input data x∈D=[a, b]⊂R,
which is passed to the HL by neu-
ron σ11. Every hidden layer neu-
ron σj2, j=1, . . . ,H receives a weighted
sum as input zj=wjσ11+uj , j=1, . . . ,H
which is then processed by an activation
function.

There are different activiation func-
tions in the field of ANNs, like the sigmoid function σ(x)=1/(1 + e−x), a continous
and arbitrarily often differentiable function with values between 0 and 1. The univer-
sal approximation theorem [11] states, that one HL with a finite number of sigmoidal
activation functions is able to approximate every continous function on a subset of R.
Other useful activation functions are e.g. rectified linear unit (ReLU) or hyperbolic
tangent (tanH). The ANN output is then generated by a linear activation function
and the weighted sum from the HL

N(x, ~p) =

H∑
j=1

vjσ(zj).

In general, it is common to initialise the weights as small random values [6], therefore
the first computation of N(x, ~p) returns an arbitrary value. This value is used to
compute the cost or loss function E[~p]. For supervised learning, where both input data
xi, i=1, . . . , n and correct output data di, i=1, . . . , n are known, the cost function
may be chosen as the squared l2-Norm

E[~p] =
1

2n

n∑
i=1

∥∥∥di −N(x, ~p)
∣∣
x=xi

∥∥∥2

2
,



SOLVING ODEs USING ARTIFICIAL NEURAL NETWORKS 23

while in case of unsupervised learning, where no correct output data is known, the
cost function is part of the modeling process.

For cost function minimisation, the adjustable weights are subject to optimisation.
A commonly used optimisation technique, based on gradient descent, is backpropaga-
tion, which uses the cost function gradient with respect to ANN weights to determine
their influence on N(x, ~p) and to update them. The updating process is also called
training and is usually done several times with all input data. After one complete
iteration through all input data, one epoch of training is done and for efficient training
(finding a minimum in the weight space), several epochs of training are required. For
k -th epoch, backpropagation with momentum update rule [8] reads

~p(k + 1) = ~p(k)−α∂E[~p(k)]

∂~p(k)
+ β∆~p(k − 1)︸ ︷︷ ︸

∆~p(k)

.

Learning rate α can be constant (cBP) or variable (vBP), which may prevent the
optimiser from oscillating around a minimum. The momentum term, with momentum
parameter β, uses impact from last epoch to not get stuck in a local minimum or saddle
point. Different approaches for learning rate control exist [12], we employ the linear
decreasing model

α(k) =

{
α0 − α0−αe

kc
k, k ≤ kc

αe, k > kc
(2.1)

with an initial learning rate α0, a final learning rate αe and an epoch cap kc.
ADAM (adaptive moment estimation) is an adaptive optimisation method for

ANNs based on cost function gradient as well. In order to compute learning rates
for each weight, it uses estimations of first (mean) and second (uncentered variance)
moments of the gradient, see [9] for details.

3. Solutions Methods. In this section, we will describe the trial solution con-
struction for the already mentioned methods more in detail, as well as the approaches
on how to make use of ANNs in order to solve ODEs.

3.1. Trial Solution Method. TSM is suitable to solve both ODEs and PDEs
as well as systems of ODEs and PDEs. In order to satisfy ICs/BCs, TS is constructed
to satisfy these conditions. Since we will only take a first order ODE into account,
following [4], suppose

G

(
x, u(x),

d

dx
u(x)

)
= 0, x ∈ D ⊂ R, (3.1)

with given ICs/BCs. In Eq. (3.1), u(x) denotes the exact solution function with x
as independent variable. As previous mentioned, TS ut(x, ~p) is constructed to satisfy
ICs/BCs, so it can be written as a sum of two parts

ut(x, ~p) = A(x) +B(x)N(x, ~p). (3.2)

In Eq. (3.2), A(x) is supposed to satisfy ICs/BCs, while B(x) is constructed to become
zero at these points to eliminate the impact of N(x, ~p). Now, TS transforms Eq. (3.1)
into

G

(
x, ut(x, ~p),

∂

∂x
ut(x, ~p)

)
= 0, (3.3)

which requires the partial derivative of TS with respect to input x.



24 T. SCHNEIDEREIT AND M. BREUß

In order to generate training data for the ANN, the collocation method is used
to discretize the domain D into an uniform grid with n gridpoints. Eq. (3.3) with the
discrete domain is now subject to unconstraint optimisation problem min~p G, which
results in the cost function

E[~p] =
1

2n

n∑
i=1

∥∥∥∥G(xi, ut(x, ~p)∣∣x=xi
,
∂

∂x
ut(x, ~p)

∣∣
x=xi

)∥∥∥∥2

2

.

3.2. Modified Trial Solution Method. A variation of TSM, proposed in [5],
introduces

ut(x, ~p) = N(x, ~p), (3.4)

an uniform TS for all DEs. Therefore it does not satisfy ICs/BCs by construction,
they rather appear in the cost function

E[~p] =
1

2n

n∑
i=1

∥∥∥∥G(xi, ut(x, ~p)∣∣x=xi
,
∂

∂x
ut(x, ~p)

∣∣
x=xi

)∥∥∥∥2

2

+
1

2m

m∑
l=1

∥∥∥(ut(x, ~p)∣∣x=xl
−K(x)

∣∣
x=xl

)∥∥∥2

2
,

as additional terms with K(xl), l=1, . . . ,m as ICs/BCs.

4. Experiments and Results. Experiments on ANN solution with TSM and
mTSM are based on the difference to the exact solution uexact(x) = eλx of

d

dx
u(x) = λu(x), u(0) = 1, (4.1)

a homogenous first order ODE with λ∈R−, which is well studied for stability [13].
The numeric error shown in subsequent diagrams is defined as

∆u =
1

n

n∑
i=1

∣∣∣uexact(x)
∣∣
x=xi

− ut(x, ~p)
∣∣
x=xi

∣∣∣ .
For TSM the TS reads ut(x, ~p) = 1 + xN(x, ~p) and the related cost function

E[~p] =
1

2n

n∑
i=1

∥∥∥∥N(x, ~p)
∣∣
x=xi

+ xi
∂

∂x
N(x, ~p)

∣∣
x=xi

− λ
(

1 + xiN(x, ~p)
∣∣
x=xi

)∥∥∥∥2

2

.

For mTSM the TS ut(x, ~p) = N(x, ~p) results in the cost function

E[~p] =
1

2n

n∑
i=1

∥∥∥∥ ∂∂xN(x, ~p)
∣∣
x=xi

− λN(x, ~p)
∣∣
x=xi

∥∥∥∥2

2

+
1

2

∥∥∥N(x, ~p)
∣∣
x=x1

− 1
∥∥∥2

2
.

In subsequent experiments we study ∆u with respect to domain size, kmax, ntD,
different λ and optimisation methods.

Weights initialised to ~p init
rnd

small random values
Weights initialised to zero ~p init

zero

Number of maximal epochs kmax
Number of training data ntD

Mean value of numeric ∆u
error for ~p init

rnd

Table 4.1: Important abbreviations used in
the experiment section

In some diagrams we show the con-
trast between computations with ~p init

rnd

(in range of 0 to 1e-2) and ~p init
zero , which

returns constant results, while ~p init
rnd

causes fluctuations and variations in ev-
ery computation.

Previous experiments, not docu-
mented here, pointed out that one HL,
with one IL bias neuron and five HL neu-
rons, returns sufficient results for ~p init

rnd



SOLVING ODEs USING ARTIFICIAL NEURAL NETWORKS 25

(a) TSM with cBP optimiser, x∈[0,2] (b) TSM with cBP optimiser, x∈[0,4]

(c) TSM with cBP optimiser, x∈[0,8] (d) mTSM with cBP optimiser, x∈[0,8]

Fig. 4.1: Experiment 4.1. Domain variation with kmax=1e5, ntD=10 and λ=-5,
(orange/solid) ~p init

zero , (blue/dotted) ~p init
rnd

versus the computational effort. In addition, the universal approximation theorem
justifies the use of one HL with sigmoid activation function σ(x)=1/(1 + e−x), too.

The ANN, the solution methods and the optimiser were implemented in Fortran
03/08, by following the proposed methods in the corresponding papers, without the
use of deep learning libraries. Therefore we are able to perform investigations related
to every aspect of the methods and the code.

In most current experiments we used cBP instead of vBP, to reduce the amount of
parameters. The learning rate for cBP is α=1e-3 with β=9e-1. Only in optimisation
comparison, vBP appears with α0=1e-2, αe=1e-3, kc=1e4 and β=9e-1 as well. ADAM
parameters are, as employed in [9], α=1e-3, β1=9e-1, β2=9.99e-1 and ε=1e-8. In
addition, some experiments show averaged graphs to see the general trend with a
reduced influence of fluctuations.

4.1. Experiment 1: Domain variation. In Fig. 4.1a with x∈[0,2] we find
a mean value of ∆u=8.8e-4 and for a doubled domain size of x∈[0,4] in Fig. 4.1b,
∆u=2.3e-3. Another increase to twice the domain size x∈[0,8] in Fig. 4.1c reveals
more minima far from the first, one batch with ∆u=1.1e-2 and another one around
∆u=7.9e-1.

In comparison, mTSM in Fig. 4.1d with the same domain size shows a mean value
of ∆u=7.9e-4, which is the lowest of them all. But initialisation with ~p init

zero does not
provide good approximations. ADAM provides better results with less variation and
lower ∆u for all four settings, but is not documented here.

Concluding, we choose x∈[0,2] in further experiments since for TSM and mTSM,
with both ADAM and cBP, it is a reliable choice for fixing this parameter to eliminate
domain variation influence. Furthermore, an increase of the domain size, where the
exact solution can get closer to zero, with TSM and cBP makes the approximation
less accurate. However, increasing ntD may provide even better results, especially for
Fig. 4.1c.



26 T. SCHNEIDEREIT AND M. BREUß

(a) TSM with ADAM optimiser (b) mTSM with ADAM optimiser

(c) TSM with cBP optimiser (d) mTSM with cBP optimiser

Fig. 4.2: Experiment 4.2. Number of maximal epochs variation with kmax=1...1e5
with x∈[0,2], ntD=10 and λ=-5, (orange/solid) ~p init

zero , (blue/dotted) ~p init
rnd

4.2. Experiment 2: Number of epochs per computation. In order to
reduce the computational effort, we increased kmax by 500 in every iteration and
averaged additional 1e2 iterations for the same kmax. An obvious difference between
TSM and mTSM is the behaviour after setting ~p init

zero . With nearly the same ∆u
for kmax=1e5 in Fig. 4.2a and Fig. 4.2c, the difference to Fig. 4.2b and Fig. 4.2d is
significant. While ~p init

zero in Fig. 4.2b shows an even better result for kmax=1e5 than
~p init
rnd for cBP in Fig. 4.2c and Fig. 4.2d, the accuracy for ~p init

rnd is still better. The
local mimimum at kmax=7500 in Fig. 4.2d for ~p init

zero performs better than ~p init
rnd in this

kmax range. In all diagrams, ~p init
rnd provides better results for higher kmax than ~p init

zero .
Although ADAM shows a better approximation in the end over cBP, we expected a
faster decrease of ∆u for smaller numbers of kmax.

Therefore, the solid line behaviour justifies the use of ~p init
rnd and kmax=1e5 in

other experiments.

4.3. Experiment 3: Number of training data variation. We averaged 1e2
iterations for the same ntD. The use of ~p init

zero in this experiment does not provide good
approximations for TSM with both ADAM (Fig. 4.3a) and cBP (Fig. 4.3c).

For mTSM and ~p init
zero there is a major decreasing at ntD=7 with ADAM in Fig.

4.3b and a decreasing shape afterwards, as well as for cBP in Fig. 4.3d at ntD=6 with
the decrease to continue for further ntD. However, most reliable results provide ~p init

rnd

in the studied ntD range for all methods, but again with significant differences. While
TSM and mTSM with cBP show an overall decreasing behaviour, ADAM seems to
have a global minimum at ntD=11 for TSM in Fig. 4.3a. For mTSM and ADAM in
Fig. 4.3b, ~p init

rnd shows a local minimum at ntD=19.
Since these results only show averaged values within a certain ntD range, addi-

tional computations with the same parameter settings can provide local differences
as well as different behaviours for further ntD. Fig. 4.4 shows a non averaged version
of Fig. 4.3b, with a larger ntD range. Both ~p init

rnd and ~p init
zero provide better accuracy



SOLVING ODEs USING ARTIFICIAL NEURAL NETWORKS 27

(a) TSM with ADAM optimiser (b) mTSM with ADAM optimiser

(c) TSM with cBP optimiser (d) mTSM with cBP optimiser

Fig. 4.3: Experiment 4.3. Number of training data variation with ntD=2...50 with
kmax=1e5, x∈[0,2] and λ=-5, (orange/solid) ~p init

zero , (blue/dotted) ~p init
rnd

with more ntD.

Fig. 4.4: mTSM with ADAM optimiser,
ntD=2...200, kmax=1e5, x∈[0,2] and λ=-5,
(orange/solid) ~p init

zero , (blue/dotted) ~p init
rnd

The decreasing behaviour for small
ntD in Fig. 4.4 as well as in Fig. 4.3a to
Fig. 4.3d justifies the use of ntD=10 for
the other experiments, compared to the
computational effort.

4.4. Experiment 4: λ variation.
For experiments on λ variation we use
ADAM and TSM. Fig. 4.5a shows av-
eraged ∆u with 1e2 iterations for each
λ and compares ~p init

rnd (blue/solid) with
~p init
zero (orange/dashed). We find a local

minimum around λ≈-1.6 for ~p init
rnd . The

curve seems to converge for both weight
initialisations, the smaller λ gets, while λ=-5, used in other experiments, lays be-
tween the most and the less reliable results for our parameter setting. However, Fig.
4.5b displays the solution variance with a ∆u=2.7e-4 and values in range of 2.1e-
5≤∆u≤2.4e-3. For even smaller negative λ in Fig. 4.5c and Fig. 4.5d, the solution
variance seems to decrease but the approximation becomes less accurate.

To mention the experiments on the other methods, results show different be-
haviour regarding the solution method. Within, the ~p init

zero initialisation provide similar
results for both cBP and ADAM. But for ~p init

rnd there are significant differences.

In conclusion, as λ influences the descend of the exponential exact solution, the
faster it turns close to zero in the current domain, the less accurate the approximation
becomes.



28 T. SCHNEIDEREIT AND M. BREUß

(a) TSM with ADAM optimiser, λ ∈[-
20,0]

(b) TSM with ADAM optimiser, λ=-5

(c) TSM with ADAM optimiser, λ=-10 (d) TSM with ADAM optimiser, λ=-20

Fig. 4.5: Experiment 4.4. ODE parameter (λ) variation with kmax=1e5, x∈[0,2]
and ntD=10, (orange/solid) ~p init

zero , (blue/dotted) ~p init
rnd

4.5. Experiment 5: optimisation method. We find for TSM with ADAM
in Fig. 4.6a, results fluctuating around ∆u=2.7e-4 with values in range of 2.0e-
5≤∆u≤2.3e-3. In comparison, for mTSM with ADAM in Fig. 4.6b we have an average
result of ∆u=8.2e-5 with 1.6e-6≤∆u≤8.8e-4. A different behaviour in accuracy shows
TSM with cBP, where the fluctuations in Fig. 4.6c are between 6.7e-4≤∆u≤1.3e-3 with
∆u=8.8e-4, and in Fig. 4.6d for mTSM with cBP, 5.5e-4≤∆u≤2.4e-3 with ∆u=1.6e-3.
Fig. 4.6e reveals several minima far from reliable approximations for TSM with vBP,
while mTSM with vBP in Fig. 4.6f provides 4.7e-4≤∆u≤2.1e-3 with ∆u=1.3e-3.

Best approximations provide ADAM with mTSM (Fig. 4.6b) for both ~p init
zero and

~p init
rnd , but the difference between best and worst ∆u is almost 5e2. The least variance,

but also less good approximations, returns TSM with cBP in Fig. 4.6c.

5. Conclusion and future work. Weight initialisation with zeros provides
constant results and works well for mTSM, especially with ADAM. Whereas small
random values for initial weights provide reliable results in current experiments, except
for TSM and vBP, which depends on adaptive stepsize parameters, which have not
been studied yet. However, the adaptive learning rate for vBP seems to work for
mTSM. The experiments show a significant influence on stability and reliability when
changing parameters.

However, we found out, that an increase of the ODE parameter makes the ap-
proximation become less accurate with TSM and ADAM. Same holds for an increase
of the domain size with TSM and cBP. That is, the closer the exact solution comes
to zero, the less accurate TSM seems to be.

Furthermore, it is not entirely clear yet, whether to favour one method and optimi-
sation combination or not. We see evidence for mTSM to be more reliable in general,
especially with zero initialised weights and the ADAM optimiser. On the other hand,
mTSM with ADAM seems to struggle using an arbitrary amount of training data



SOLVING ODEs USING ARTIFICIAL NEURAL NETWORKS 29

(a) TSM with ADAM optimiser (b) mTSM with ADAM optimiser

(c) TSM with cBP optimiser (d) mTSM with cBP optimiser

(e) TSM with vBP optimiser (f) mTSM with vBP optimiser

Fig. 4.6: Experiment 4.5. Optimiser comparison with kmax=1e5, x∈[0,2], ntD=10
and λ=-5, (orange/solid) ~p init

zero , (blue/dotted) ~p init
rnd

although the general accuracy trend gets better, while mTSM with cBP seems to
require more training data in order to provide equal results.

Future research will include more experiments with studies on ANN weight ini-
tialisation and in addition we will take non-dimensional DEs into account. Our main
goal is to increase the solution accuracy for constant initialised weights as well as to
find a reliable predicition for the initialisation. Studies will continue on more complex
equations, like Bernoulli equation and Riccati equation.

Acknowledgments. This publication was funded by the Graduate Research
School (GRS) of the Brandenburg University of Technology Cottbus-Senftenberg.
This work is part of the Research Cluster Cognitive Dependable Cyber Physical Sys-
tems.

REFERENCES

[1] M. Hanke-Bourgeois, Grundlagen der Numerischen Mathematik und des Wissenschaftlichen
Rechnens, B.G. Teubner Verlag / GWV Fachverlage GmbH, (2006).



30 T. SCHNEIDEREIT AND M. BREUß

[2] K. Kumar, and G.S.M. Thakur, Advanced Applications of Neural Networks and Artifical In-
telligence: A Review, I.J Information Technology and Computer Science, 6 (2012), pp. 57–
68.

[3] S. Mall, and S. Chakraverty, Application of Legendre Neural Network for solving ordinary
differential equations, Applied Soft Computing, 43 (2016), pp. 347–356.

[4] I.E. Lagaris, A. Likas, and D.I. Fotiadis, Artificial neural networks for solving ordinary and
partial differential equations, IEEE Transactions on Neural Networks, 9.5 (1998), pp. 987–
1000.

[5] M.L. Piscopo, M. Spannowsky, and P. Waite, Solving differential equations with neural net-
works: Applications to the calculation of cosmological phase transitions, Physical Review
D, 100.1 (2019), pp. 016002-1–016002-12.

[6] D. Nguyen, and B. Widrow, Improving the learning speed of 2-layer neural networks by
choosing initial values of the adaptive weights, 1990 IJCNN International Joint Conference
on Neural Networks, 3 (1990), pp. 21–26.

[7] R. Hecht-Nielsen, Theory of the Backpropagation Neural Network, Academic Press, 1992,
pp. 65–93.

[8] V.V. Phansalkar, and P.S. Sastry, Analysis of the Back-Propagation Algorithm with Mo-
mentum, IEEE Transactions on Neural Networks, 5.3 (1994), pp. 505–506.

[9] D.P. Kingma, and J. Ba, ADAM: A Method for Stochastic Optimization, arXiv
preprint:1412.6980v9, (2014).

[10] L. Luo, Y. Xiong, Y. Liu, and X. Sun, Adaptive Gradient Methods with Dynamic Bound of
Learning Rate, arXiv preprint:1902.09843v1, (2019).

[11] G. Cybenko, Approximation by Superpositions of a Sigmoidal Function, Mathematics of Con-
trol, Signals, and Systems, 2.4 (1989), pp. 303–314.

[12] Y. Kaneda, Q. Zhao, Y. Liu, and Y. Pei, Strategies for determining effective step size of
the backpropagation algorithm for on-line learning, 7th International Conference of Soft
Computing and Pattern Recognition (SoCPaR), (2015), pp. 155–160.

[13] G.G. Dahlquist, G-stability is equivalent to A-stability, BIT Numerical Mathematics, 18.4
(1978), pp. 384–401.


