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DDFV SCHEMES FOR SEMICONDUCTORS ENERGY-TRANSPORT MODELS∗

GIULIA LISSONI†

Abstract. We propose a Discrete Duality Finite Volume scheme (DDFV for short) for an energy transport
model for semiconductors. As in the continuous case, thanks to a change of variables into the so-called "entropic
variables", we are able to prove a discrete entropy-dissipation estimate, which gives a priori estimates for the problem.
We perform some numerical tests for the 2D ballistic diode, by comparing the Chen model and the Lyumkis model.
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1. Introduction. In the modelling of semiconductor devices, we can distinguish between ki-
netic models and fluid dynamical models (see for instance [11]). Energy-transport models belong
to the class of fluid dynamical models; they describe the flow of electrons through a semiconductor
crystal, which is influenced by diffusive, electrical and thermal effects. They are coupled systems
of parabolic and elliptic equations, which are well suited for numerical simulations by finite volume
methods. These equations can be re-written in a drift-diffusion form, which can be interesting for
the numerical simulations; we can cite the works of [8, 6, 10] for the stationary systems, [3, 4] for
the evolutive case. However, up to our knowledge, there exists no convergence analysis of these
numerical schemes; a first work in this direction is the work of [2], in the context of finite volume
schemes with two-point flux approximations. They reproduce at the discrete level the analysis done
in [5], where the authors prove the existence of a weak solution for the energy transport model in
its original formulation; it is possible through a transformation of the problem by means of entropic
variables, which symmetrize the problem and allow to prove a priori estimates by using an entropy
function. Our goal is to extend the work done in [2] to the case of general meshes.

In order to do so, our choice is to discretize the model described in [5] with Discrete Duality
Finite Volume ("DDFV" for short) schemes; their introduction dates back to [9, 7], for the study of
the Laplace equation on a large class of 2D meshes including non-conformal and distorted meshes.
Such schemes require unknowns on both vertices and centers of primal control volumes. This leads
to reconstruct two-dimensional discrete gradient and divergence operators which are in duality in
a discrete sense. This kind of construction has two main advantages: it allows to consider general
meshes (that do not necessarily verify the classical orthogonality condition required by finite volume
meshes) and to reconstruct and mimic at the discrete level the dual properties of the continuous
differential operators.

Outline. This paper is organized as follows. In Sec. 2, we present the model. In Sec. 3, we first
recall the DDFV framework, then we introduce the DDFV schemes corresponding to the model
described in Sec. 2 and we state some properties of these schemes. Finally, in Sec. 4, we discuss
some numerical results for the 2D ballistic diode.

2. The model. The energy transport system consists in two continuity equations for the
electron density ρ1 and the internal energy density ρ2 coupled with a Poisson equation for the
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electrical potential V . Let Ω ⊂ R2 be an open bounded polygonal with ∂Ω = ΓD∪ΓN , ΓD∪ΓN = ∅
and m(ΓD) > 0 and let t∗ > 0. Let µ be the chemical potential and T the temperature of the
lattice; the unknowns of the problem are u = (u1, u2), ui(t,x) : [0, t∗] × Ω → R, i = 1, 2, defined
by: u1 = µ/T , u2 = −1/T , and the electrostatic potential V (t,x) : [0, t∗]×Ω→ R; ρ1, ρ2 are given
functions of u. The energy transport model writes:

∂tρ1(u) + div(J1(u)) = 0 in [0, t∗]× Ω,
∂tρ2(u) + div(J2(u)) = ∇V · J1(u) +W (u) in [0, t∗]× Ω,

−λ2∆V = C(x)− ρ1(u) in [0, t∗]× Ω,
(2.1)

where J1 is the current density of electrons, J2 is the current density of energy, W (u) is the energy
relaxation term, ∇V · J1 is the Joule heating term, C(x) is the initial doping profile and λ is the
rescaled Debye length. The current densities are defined by:

Ji(u) = −Li1(∇u1 + u2∇V )− Li2∇u2 ∈ R2, for i = 1, 2. (2.2)

The quantities Lij actually depend on u and may be written as coefficients of a symmetric
uniformly positive definite matrix L = (Lij).

The system is coupled with mixed Dirichlet/Neumann boundary conditions and an initial data:
u1(t,x) = g1(x), u2(t,x) = g2(x), V (t,x) = h(x) on [0, t∗]× ΓD,

J1 · ~n = J2 · ~n = ∇V · ~n = 0 on [0, t∗]× ΓN ,
u1(0,x) = u1,init(x), u2(0,x) = u2,init(x) in Ω,

(2.3)

where ΓD denotes the Ohmic contacts and ΓN the insulating segments.
Hyp 2.1 (Model assumptions.). We suppose that:
1. The function ρ = (ρ1, ρ2) is strongly monotone in the sense that there exists a constant C0

such that
(ρ(u)− ρ(v)) · (u− v) ≥ C0|u− v|2, u,v ∈ R2.

We assume that ρ derives from a potential, that is ∃χ ∈ C1 strictly convex such that ρ = ∇χ.
2. The matrix L is symmetric, uniformly positive definite.
3. The Dirichlet boundary conditions g1, g2, h do not depend on time and are traces of some

functions defined on the whole domain Ω, still denoted by g1, g2, h. Moreover, we assume
that g2 < 0 is constant on ΓD.

4. The energy relaxation term W is such that for all u ∈ R2 and g2 < 0: W (u)(u2 − g2) ≤ 0.
Under the assumptions of Hyp. 2.1, in [5], existence of solutions of the stationary and transient

model (2.1)-(2.3) is proved thanks to a reformulation of the system in terms of dual entropic
variables, which symmetrizes the equations and allows to derive an entropy-dissipation estimate.
Our goal is to adopt this framework and to reproduce it at a discrete level. In the following section,
we introduce the system reformulated in terms of entropic variables and the entropy structure.

2.1. The system in entropic variables. The key point of the analysis of the primal model
(2.1)-(2.3) is to use another set of variables which symmetrizes the problem, see [5]. We define the
so-called entropic variables (or electrochemical potentials) w = (w1, w2):{

w1 = u1 + u2V,

w2 = u2.
(2.4)
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Then (2.1)-(2.3) is equivalent to:
∂tb1(w, V ) + div(I1(w, V )) = 0 in [0, t∗]× Ω,
∂tb2(w, V ) + div(I2(w, V )) = −∂tV b1(w, V ) + W̄ (w, V ) in [0, t∗]× Ω,

−λ2∆V = C(x)− b1(w, V ) in [0, t∗]× Ω,
(2.5)

coupled with
w1(t,x) = ḡ1(x), w2(t,x) = ḡ2(x), V (t,x) = ḡ(x) on [0, t∗]× ΓD,

I1 · ~n = I2 · ~n = ∇V · ~n = 0 on [0, t∗]× ΓN ,
w1(0,x) = w1,init(x), w2(0,x) = w2,init(x) in Ω,

(2.6)

where {
b1(w, V ) = ρ1(u),
b2(w, V ) = ρ2(u)− V ρ1(u),

and
Ii(u) = −Di1∇w1 −Di2∇w2 ∈ R2, for i = 1, 2.

The diffusion coefficients form the symmetric matrix D = (Dij), defined by:

D =t PLP with P =
(

1 −V
0 1

)
, (2.7)

so the new diffusion matrix D is also symmetric and positive definite.

2.2. Entropy structure. In [5], existence results for the model (2.1)-(2.3) are based on en-
tropy estimates, which are obtained thanks to the reformulation in entropic variables. The entropy
function is defined by:

S(t) =
∫

Ω
[ρ(u) · (u− g)− (χ(u)− χ(g))]dx− λ2

2 g2

∫
Ω
|∇(V − h)|2dx, (2.8)

where g = (g1, g2) and h are the Dirichlet data. Since, by Hyp. 2.1, g2 < 0, and χ is a convex
function such that ρ = ∇χ, S(t) is nonnegative for all t ≥ 0.

Proposition 2.2. Assuming that Hyp. 2.1 is verified and that the Dirichlet boundary condi-
tions are in thermal equilibrium, i.e. ∇ḡ1 = ∇ḡ2 = 0, the entropy function satisfies:

d

dt
S(t) = −

∫
Ω

t∇wD∇w +
∫

Ω
W (u2 − g2) ≤ 0.

3. DDFV discretization.

3.1. DDFV framework. Here and below, we adopt the definitions and notations introduced
in [1, 13]; for more details, see the references.

Meshes. DDFV method requires unknowns on vertices, centers and edges of control volumes;
for this reason, it works on (three) staggered meshes. From an initial mesh, called the "primal
mesh" (denoted with M ∪ ∂M), we construct the "dual mesh" (denoted with M∗ ∪ ∂M∗), that is
centered on the vertices of the primal mesh, and the "diamond mesh" (denoted with D) , which is
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Fig. 3.1: DDFV meshes on a non conformal mesh: primal meshM∪∂M (blue), dual meshM∗∪∂M∗
(red) and diamond mesh D (green).

centered on the edges of the primal mesh; see Fig. 3.1 for an illustration. The union of primal and
dual meshes will be denoted by T.

We consider a primal mesh M consisting of open disjoints polygons K called primal cells, such
that

⋃
K∈M K̄ = Ω̄. We denote ∂M the set of edges of the primal mesh included in ∂Ω, that

are considered as degenerated primal cells. We associate to each K a point xK, called center, and
we denote by mK its measure. For the volumes of the boundary, the point xK is situated at the
mid point of the edge. When K and L are neighboring volumes, we suppose that ∂K ∩ ∂L is a
segment denoted by σ = K|L, edge of the primal mesh M. Let E be the set of all edges and Eint =
E \ {σ ∈ E such that σ ⊂ ∂Ω}. The DDFV framework is free of further "admissibility constraint",
in particular we do not need to assume the orthogonality of the segment xK, xL with σ = K|L.

From this primal mesh, we build the associated dual mesh. A dual cell K∗ is associated to a
vertex xK∗ of the primal mesh. The dual cells are obtained by joining the centers of the primal
control volumes that have xK∗ as vertex. Then, the point xK∗ is called center of K∗ and we denote
by mK∗ its measure. We will distinguish interior dual mesh, for which xK∗ does not belong to ∂Ω,
denoted by M∗ and the boundary dual mesh, for which xK∗ belongs to ∂Ω, denoted by ∂M∗. We
denote with σ∗ = K∗|L∗ the edges of the dual mesh M∗ ∪ ∂M∗ and E∗ the set of these edges.

The diamond mesh is made of quadrilaterals with disjoint interiors, such that their principal
diagonals are a primal edge σ = K|L = [xK∗ , xL∗ ] and the dual edge σ∗ = [xK, xL]. These quadrilaterals
are called diamonds and they are denoted with D or Dσ,σ∗ . Thus a diamond is a quadrilateral with
vertices xK, xL, xK∗ and xL∗ . The set of all diamonds is denoted with D and we have Ω =

⋃
D∈D D. We

distinguish the diamonds of the boundary and on the interior: Dext = {Dσ,σ∗ ∈ D, such that σ ⊂
∂Ω} and Dint = D\Dext. For a diamond cell D we note by mD its measure, mσ the length of the
primal edge σ, mσ∗ the length of the dual edge σ∗, ~nσK the unit vector normal to σ oriented from
xK to xL, ~nσ∗K∗ the unit vector normal to σ∗ oriented from xK∗ to xL∗ (see Fig. 3.2).

Unknowns. We associate to each primal volume K ∈M∪ ∂M unknowns uK ∈ R2,VK ∈ R, and
to every dual volume K∗ ∈M∗ ∪ ∂M∗ unknowns uK∗ ∈ R2,VK∗ ∈ R. These unknowns are collected
in the families:

uT =
(
(uK)K∈(M∪∂M), (uK∗)K∗∈(M∗∪∂M∗)

)
∈ (R2)T,

VT =
(
(VK)K∈(M∪∂M), (VK∗)K∗∈(M∗∪∂M∗)

)
∈ RT.

Since we are considering mixed boundary conditions, we have to define two subspaces of the bound-
ary meshes:

∂MD = {K ∈ ∂M : xK ∈ ΓD}; ∂MN = {K ∈ ∂M : xK ∈ ΓN};
∂M∗D = {K∗ ∈ ∂M∗ : xK∗ ∈ ΓD}; ∂M∗N = {K∗ ∈ ∂M∗ : xK∗ ∈ ΓN\ΓD};
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Fig. 3.2: A diamond D = Dσ,σ∗ , on the interior (left) and on the boundary (right).

and the subspace of (Rd)T, d = 1, 2, useful to take into account Dirichlet boundary conditions:

EΓD
m,g = {ΦT ∈ (Rd)T, s. t. ∀K ∈ ∂MD, ΦK = (PT

mg)K and ∀K∗ ∈ ∂M∗D, ΦK∗ = (PT
mg)K∗},

where PT
m is a discrete average projection on the mesh.

Discrete operators. We define a piecewise constant approximation of the gradient operator
of a vector of RT as the operator ∇D : uT ∈ RT 7→ (∇DuT)D∈D ∈ (R2)D, such that for D ∈ D :

∇DuT = 1
sin(αD)

[
uL − uK

mσ∗
~nσK + uL∗ − uK∗

mσ

~nσ∗K∗

]
.

Its discrete dual operator is the approximation of the divergence operator of a vector of (R2)D
denoted by divT : ξD ∈ (R2)D 7→ divTξD ∈ RT, such that:

divKξD = 1
mK

∑
Dσ,σ∗∈DK

mσξD · ~nσK, ∀K ∈M

divK∗
ξD = 1

mK∗

∑
Dσ,σ∗∈DK∗

mσ∗ξD · ~nσ∗K∗ , ∀K∗ ∈M∗

divK∗
ξD = 1

mK∗

( ∑
Dσ,σ∗∈DK∗

mσ∗ξD · ~nσ∗K∗ +
∑

Dσ,σ∗∈DK∗∩Dext

mσ

2 ξD · ~nσK

)
∀K∗ ∈ ∂M∗N .

The discrete gradient and the discrete divergence are in duality (which gives the name to the
method), meaning that they are linked by a discrete Green’s formula; see [1, 7, 13] for details.

Scalar products and norms. We define the scalar products on the approximation spaces,
for d = 1, 2, as:

[[vT,uT]]T = 1
2

(∑
K∈M

mK uK · vK +
∑

K∗∈M∗∪∂M∗

mK∗ uK∗ · vK∗

)
∀uT,vT ∈ (Rd)T,

(ΦD,v∂M)∂Ω =
∑

Dσ,σ∗∈Dext

mσΦD · vσ ∀ΦD ∈ (Rd)Dext ,v∂M ∈ (Rd)∂M,

(ξD,ΦD)D =
∑

Dσ,σ∗∈D

mDξD · ΦD ∀ξD,ΦD ∈ (Rd)D,
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to which we can associate norms, e.g. ‖uT‖2 = [[uT,uT]]
1
2
T, ‖pD‖2 = (pD,pD)

1
2
D.

We also need to define a "reconstruction" operator γD : ΦT ∈ RT 7→ γD(ΦT) = (γD(ΦT))D∈D
∈ RD , in order to pass from T to D.

γD(ΦT) = mD∩KΦK +mD∩LΦL +mD∩K∗ΦK∗ +mD∩L∗ΦL∗

2mD

∀D ∈ D \Dext,

γD(ΦT) = mD∩KΦK +mD∩K∗ΦK∗ +mD∩L∗ΦL∗

2mD

∀D ∈ Dext.

(3.1)

3.2. DDFV scheme for the energy-transport model.. To obtain our scheme for (2.1)-
(2.3), we integrate the equations over all M ∪M∗ ∪ ∂M∗N . We impose strong Dirichlet boundary
conditions on ∂MD ∪ ∂M∗D and Neumann boundary conditions on ∂MN . To discretize the Joule
heating term, as in [2], we rewrite it as:

∇V · J1(u) = div(V J1(u))− V div(J1(u)).

Let N ∈ N∗. We note δt = t∗/N and tn = nδt for n ∈ {0, . . . N}. We choose to use an implicit
Euler time discretization to avoid a constraining parabolic stability condition.
We look for u[0,t∗]

T = (un)n∈{0,...N} ∈
(
EΓD

g
)N+1 and V[0,t∗]

T = (Vn)n∈{0,...N} ∈
(
EΓD
h

)N+1
, that we

initialize with:
u0 = PT

c uinit ∈ EΓD
g , V0 = PT

c Vinit ∈ EΓD
h ,

where PT
c is a centered projection on the mesh T.

Remark 3.1. The unknowns (uT,VT) are associated to the mesh T; in order to discretize our
system, it is sometimes necessary to reconstruct their values on the diamond mesh D. This is done
by the operator (3.1); to simplify the notations, we will denote by (uD,VD) the reconstructions(
γD(uT), γD(VT)

)
.

Thus, problem (2.1)-(2.3) is discretized as:

ρn+1
1,K − ρn1,K

δt
+ divK(Jn+1

1,D ) = 0 ∀K ∈M

ρn+1
1,K∗ − ρn1,K∗

δt
+ divK∗(Jn+1

1,D ) = 0 ∀K∗ ∈M∗ ∪ ∂M∗N

ρn+1
2,K − ρn2,K

δt
+ divK(Jn+1

2,D ) = divK(Vn+1
D Jn+1

1,D )−Vn+1
K divK(Jn+1

1,D ) + Wn+1
K ∀K ∈M

ρn+1
2,K∗ − ρn2,K∗

δt
+ divK∗(Jn+1

2,D ) = divK∗(Vn+1
D Jn+1

1,D )−Vn+1
K∗ divK∗(Jn+1

1,D ) + Wn+1
K∗ ∀K∗ ∈M∗ ∪ ∂M∗N

−λ2divK(∇DVn+1
T ) = CT − ρn+1

1,K ∀K ∈M

−λ2divK∗(∇DVn+1
T ) = CT − ρn+1

1,K∗ ∀K∗ ∈M∗ ∪ ∂M∗N
(3.2)

coupled with Neumann boundary conditions:

Jn+1
1,D · ~nσK = Jn+1

2,D · ~nσK = (∇DVn+1
K ) · ~nσK = 0 ∀σ ∈ ∂MN (3.3)

where ρn+1
i,T = ρi(un+1

T ), i = 1, 2, and where the current densities (2.2) are discretized by rewriting
u2∇V = ∇(u2V )− V∇u2, so we have:

Jn+1
i,D = −LD,n

i1
(
∇Dun+1

1,T +∇D(un+1
2,T Vn+1

T )−Vn+1
D ∇Dun+1

2,T
)
− LD,n

i2 ∇
Dun+1

2,T , for i = 1, 2. (3.4)
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3.3. DDFV scheme in entropic variables. As in the continuous setting, see Sec. 2.1,
the key point of the analysis of the scheme (3.2)-(3.3) is to use another set of variables which
allows to symmetrize the problem. Then, problem (3.2)-(3.3) is formally equivalent to looking for
w[0,t∗]

T = (wn)n∈{0,...N} ∈
(
EΓD

ḡ
)N+1 and V[0,t∗]

T = (Vn)n∈{0,...N} ∈
(
EΓD
h̄

)N+1
, such that:

bn+1
1,K − bn1,K

δt
+ divK(In+1

1,D ) = 0 ∀K ∈M

bn+1
1,K∗ − bn1,K∗

δt
+ divK∗(In+1

1,D ) = 0 ∀K∗ ∈M∗ ∪ ∂M∗N

bn+1
2,K − bn2,K

δt
+ divK(In+1

2,D ) = −bn1,K
Vn+1

K −Vn
K

δt
+ W̄n+1

K ∀K ∈M

bn+1
2,K∗ − bn2,K∗

δt
+ divK∗(In+1

2,D ) = −bn1,K∗
Vn+1

K∗ −Vn
K∗

δt
+ W̄n+1

K∗ ∀K∗ ∈M∗ ∪ ∂M∗N

−λ2divK(∇DVn+1
T ) = CT − bn+1

1,K ∀K ∈M

−λ2divK∗(∇DVn+1
T ) = CT − bn+1

1,K∗ ∀K∗ ∈M∗ ∪ ∂M∗N

(3.5)

and:

In+1
1,D · ~nσK = In+1

2,D · ~nσK = (∇DVn+1
K ) · ~nσK = 0 ∀σ ∈ ∂MN (3.6)

where bn+1
i,T = bi(wn+1

T ,Vn+1
T ), i = 1, 2 and:

In+1
i,D = −DD,∗

i1 ∇
Dwn+1

1,T −D
D,∗
i2 ∇

Dwn+1
2,T , for i = 1, 2.

The coefficients of the matrix D∗D = (DD,∗
ij ) for i, j = 1, 2 are defined in an explicit-implicit way as

the coefficients of the matrix D∗D =t Pn+1
D LnDP

n+1
D , where Pn+1

D is an approximation of the matrix
P given by (2.7).

Proposition 3.2. We assume that D∗D =t Pn+1
D LnDP

n+1
D holds and that wT,[0,t∗] and uT,[0,t∗]

satisfy the following discrete counterpart of (2.4), i.e. for n ∈ {0, . . . N}:

wn1,T := un1,T + un2,TVn
T, wn2,T := un2,T. (3.7)

Then, schemes (3.2)-(3.3) and (3.5)-(3.6) are equivalent.
Proof (sketch). We consider the first equation of (3.2). By definition, bi(wn

T,Vn
T) = ρi(unT) ∀n,

so that ρn+1
1,K − ρn1,K = bn+1

1,K − bn1,K.
Then, if we apply the change of variables (3.7) in (3.4), we get:

Jn+1
1,D = −LD,n

11 ∇Dwn+1
1,T − (LD,n

12 − L
D,n
11 Vn+1

D )∇Dwn+1
2,T .

Since the definition of D∗D gives DD,∗
11 = LD,n

11 and DD,∗
12 = LD,n

12 − LD,n
11 Vn+1

D , we deduce that
divK(Jn+1

1,D ) = divK(In+1
1,D ). To prove the equivalence of the other equations, we proceed similarly.

3.4. Discrete entropy dissipation. In this section, we state the discrete counterpart of the
entropy inequality of Prop. 2.2. Let g = (g1, g2); by Hyp. 2.1, (g1, g2) are defined on all the domain
Ω, with g2 < 0 constant; let gT = ((gK)K∈M, (gK∗)K∗∈M∗∪∂M∗), hT = ((hK)K∈M, (hK∗)K∗∈M∗∪∂M∗)
with gK, hK the mean-value of the datas g, h on K ∈M (resp. on K∗ ∈M∗ ∪ ∂M∗Γ).
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For all n ∈ {0, . . . N}, the discrete DDFV entropy functional is defined as:

Sn = 1
2
∑
K∈M

mK

(
ρnK · (unK − gK)− (χ(unK )− χ(gK))

)
+ 1

2
∑

K∗∈M∗∪∂M∗

mK∗

(
ρnK∗ · (unK∗ − gK∗)− (χ(unK∗)− χ(gK∗))

)
− 1

2g2||∇D(Vn+1
T − hT)||22,D.

Proposition 3.3 (Discrete entropy dissipation). Assuming Hyp. 2.1 and thermal equilibrium
for the Dirichlet boundary conditions, i.e. ∇DḡT1 = ∇DḡT2 = 0, the discrete entropy satisfies ∀n ≥ 0:

Sn+1 − Sn

δt
= −δt

∑
D∈D

(
DD,n

11 |∇Dwn+1
1,T |2 +DD,∗

22 |∇Dwn+1
2,T |2

)
+ δt

[[
Wn+1

T , (un+1
2,T − g2,T)

]]
T
≤ 0.

This proposition is crucial since it gives a discrete L2(0, t∗, H1) estimate on w1 and w2. Following
[5, 11], this is a first step in order to obtain other a priori estimates on the solution, who would lead
to prove existence results for the scheme and then, by showing the compactness of the sequence of
approximate solutions, to the convergence study of the scheme.

4. Numerical simulations. For the numerical simulations, we consider the energy-transport
model under parabolic band approximation and Maxwell-Boltzmann statistics (see [12, 5, 11]). The
densities ρ1 and ρ2 depend non-linearly on u:

ρ1(u) =
(
− 1
u2

) 3
2

exp(u1), ρ2(u) = 3
2

(
− 1
u2

) 5
2

exp(u1).

The matrix L also depends on u (we recall T = −1/u2) and it can be written as :

L = c0ρ1T
1/2−β

(
1 (2− β)T

(2− β)T (3− β)(2− β)T 2

)
, (4.1)

where c0 and β are constants. The usual values are c0 = 1, β = 1/2, for the Chen model, and
c0 = 2/

√
π, β = 0 for the Lyumkis model. The energy relaxation term W is:

W = c1ρ1
L2

τ0µ0UT
T β−1/2(1− T ) (4.2)

where c1 = 3/2 for the Chen model, c1 = 2/
√
π for the Lyumkis model.

It is an ongoing work: we present here the first simulations obtained by expliciting in time the
schemes (3.2)-(3.3) and (3.5)-(3.6). Section 4 is devoted to the simulation of a 2D-ballistic silicon
diode, where we compare the results obtained by Chen and Lyumkis models.
For all numerical simulations that we present, we tested both (3.2)-(3.3) and (3.5)-(3.6), on a large
class of general meshes. All the simulations gave equivalent results; we present here the results on
a refinement (with 2560 cells) of the non-conformal locally refined mesh of Fig. 4.1, obtained with
the first scheme (3.2)-(3.3). The physical data are taken from [10].

2D ballistic diode. We present the results for a 2-dimensional ballistic n+mn+ silicon diode,
which is uniform in one space dimension; we resume the parameters for silicon in Tab. 4.1. We will
compare the shape and the maximum values of our numerical results to the ones in [6, 10, 4].
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n+ n+n ΓD
ΓN

x (in µm)

y (in µm)

0 0.1 0.5 0.6

0.2

Fig. 4.1: Left: non conformal square mesh. Right: physical geometry of the n+nn+ diode.
Parameter Value
q (elementary charge) 1.6d-19 As
εs (permittivity constant) 1.d-12 As V−1s−1

µ0 (low field mobility) 1.5d3 cm2V−1s−1

Parameter Value
T0 (ambient temperature) 300 K
UT (thermal voltage at T0) 0.0259 V
τ0 (energy relaxation time) 0.4d-12 s

Table 4.1: : Physical parameters for silicon.

The semiconductor domain, before scaling (see [10] for details), is Ω = (0, lx) × (0, ly), where
lx = 0.6µm and ly = 0.2µm and the length of the channel equals 0.4µm. It is presented in Fig. 4.1.

For this test case, we set Cm = 5.d17 cm−3, Cn = 2.d15 cm−3, and the applied voltage
Vapp = 1.5V. The rescaled doping is defined as C(x, y) = Cn/Cm in the n region, C(x, y) = 1 in the
n+ region, where the n region is

[
`0
`x
, 1− `0

`x

]
× [0, 1], with `0 = 1d-4m. We initialize u = (u1, u2)

and V with u0(x, y) = (0, 1) and V0(x, y) = Vapp/UT if x = 0, V0(x, y) = 0 otherwise.
Fig. 4.2-4.3 show the solution of the unstationary system at a fixed time step, i.e. the equilib-

rium, which is attained at different instants (according to the chosen mesh and model); in all cases,
the equilibrium instant t∗eq ∈ [0.1, 0.5]. The time step chosen for the explicit scheme is δt = 0.5d−7.

We present in Fig. 4.2 the variations of the temperature in the diode, and in Fig. 4.3 the electron
mean velocity, defined as vel = ‖J1‖1/(qρ1); in both cases, we compare the solution computed with
the Chen and Lyumkis model, for which we have references in [6, 10, 4]. As expected, the computed
quantities are uniform in one space direction and we can see the hot electron effect in the channel.

In Fig. 4.2, remark that the temperature is high in the n-channel and that its shape and its
maximum depend on the model. For the Chen model, the maximum is attained at T = 7.86K,
which corresponds (before scaling) to T = 2358K: the reference is Tref = 2330K. For the Lyumkis
model, the maximum is at T = 12.9K, which corresponds (before scaling) to T = 3871K: the
reference is Tref = 3970K.

In Fig. 4.3, we compare the values of the electron mean velocity. For the Chen model, the
maximum is attained at vel = 23.2 cm/s, which corresponds (before scaling) to vel = 1.49 · 107

cm/s: the reference is vel = 1.44 ·107 cm/s. For the Lyumkis model, the maximum is at vel = 42.48
cm/s, which corresponds (before scaling) to vel = 2.75 · 107 cm/s: the reference is vel = 2.92 · 107

cm/s.
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