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TRAFFIC FLOW MODEL ON NETWORKS USING NUMERICAL
FLUXES AT THE JUNCTIONS*

LUKAS VACEK' AND VACLAV KUCERA#

Abstract. We describe the simulation of traffic flows on networks. On individual roads we use
standard macroscopic traffic models. The discontinuous Galerkin method in space and the explicit
Euler method in time is used for the numerical solution. We introduce limiters to keep the density in
an admissible interval as well as prevent spurious oscillations in the numerical solution. To simulate
traffic flow on networks, we construct suitable numerical fluxes at junctions.
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1. Introduction. Let us have a road and an arbitrary number of cars. We
would like to model the movement of cars on our road. We call this model a traffic
flow model. There are two main ways how to describe traffic flow. The first way
is the microscopic model. Microscopic models describe every car and we can specify
the behaviour of every driver and type of car. The basic microscopic models are
described by ordinary differential equations (ODEs). The second approach is the
macroscopic model. In that case, we view our traffic situation as a continuum and
study the density of cars in every point of the road. This model is described by partial
differential equations (PDEs).

Our aim is to numerically solve macroscopic models of traffic flow. Our unknown
is density at point x and at time t. As we shall see later, the solution can be dis-
continuous. Due to the need for discontinuous approximation of density, we use the
discontinuous Galerkin method. The aim of modelling is understanding traffic dy-
namics and deriving possible control mechanisms for traffic.

2. Macroscopic traffic low models. We consider traffic flow on networks,
described by macroscopic models, cf. [T, [2]. Here the traffic flow is described by three
fundamental quantities — traffic flow Q(x,t) which determines the number of cars per
second at the position x at time ¢; traffic density p(x,t) determines the number of
cars per meter at  and ¢; and the mean traffic flow velocity V(z,t) = Q(x,t)/p(x,t).

Greenshields described a relation between traffic density and traffic flow in [3]. He
realised that traffic flow is a function depending only on traffic density in homogeneous
traffic (traffic with no changes in time and space). This implies that even the mean
traffic flow velocity depends only on traffic density. The relationship between the
traffic density and the mean traffic flow velocity or traffic flow is described by the
fundamental diagram, cf. [3].

Since the number of cars is conserved, the basic governing equation is a first order
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hyperbolic partial differential equation, cf. [2]:
0
ap(x,t) + 9 (p(z,t)V(z,t)) = 0. (2.1)
Equation must be supplemented by the initial condition
p(x,0) = po(x) and V(z,0) = Vy(x), z €R.

and the inflow boundary condition. We have only one equation for two unknowns.
Thus, we need an equation for V(x,t). One possibility is the Lighthill-Whitham—
Richards model (abbreviated LWR) where we use the equilibrium velocity Ve (p). There
are many different proposals for the equilibrium velocity derived from the real traffic

Pmax

data, e.g. Greenshields model takes V. (p) = vmax (1 — £ ), where vy .y is the max-

imal velocity and ppax is the maximal density. The corresponding equilibrium traffic
flow is Qc(p) = pVe(p). Thus we get the following nonlinear first order hyperbolic
equations equation for p:

pt + (pVe(p)), =0, r€R, t>0. (2.2)

2.1. Junctions. Following [4], we study a complex network represented by a
directed graph. The graph is a finite collection of directed edges, connected together
at vertices. Each vertex has a finite set of incoming and outgoing edges. It is sufficient
to study our problem only at one vertex and on its adjacent edges.

On each road (edge) we consider the LWR model, while at junctions (vertices)
we consider a Riemann solver. At each vertex J, there is a traffic—distribution matrixz
A describing the distribution of traffic among outgoing roads. Let J be a fixed vertex
with n incoming and m outgoing edges. Then

Qni11 "0 Ongln
A= : : ; , (2.3)
An4tm,1 *°° OQnimn

where for all i € {1,...,n},7 € {n+1,....,n+m}: a;; € [0,1] and for all i €
{1,...,n}: Z?LTH ;i = 1. The " column of A describes how traffic from an
incoming road I; distributes to outgoing roads at the junction J. We denote the
endpoints of road I; as a;, b;, one of which coincides with J.

Let p = (p1,..., pnim)T be a weak solution at the junction J, see [, Definition
5.1.8, page 98], such that each © — p;(x,t) has bounded variation. Then p satisfies
the Rankine—Hugoniot condition, which represents the conservation of cars at the
junction:

n n+m
D Qelpilbist) = > Qelpslazy,1)) (2.4)
i=1 j=n+1

for almost every ¢ > 0 at the junction J, where pj(a;,t) := lim_q,4) p;(z,t) and
pi(bi—,t) == lim 4,y pi(x, 1), cf. [4 Lemma 5.1.9, page 98].
Finally, p = (p1,.. ., pnim)’ is called an admissible weak solution of related
to the matrix A at the junction J if the following properties hold:
1) pis a weak solution at the junction J such that p;(-,¢) is of bounded variation
for every t > 0, i.e. the Rankine—Hugoniot condition holds.
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2) Qe(pjlajs,-)) = 3y @,iQelpi(bimy ), Vi=n+1,...,n+m.

3) >, Qel(pi(bi—,-)) is a maximum subject to 1) and 2).
Assumption 1) is the conservation of cars at the junction. Assumption 2) takes into
account the prescribed preferences of drivers how the traffic from incoming roads is
distributed to outgoing roads according to fixed coefficients. Assumption 3) describes
the behaviour that drivers choose so as to maximize the total flux through the junction.

3. Discontinuous Galerkin method. As an appropriate method for the nu-
merical solution of (2.2), we choose the discontinuous Galerkin (DG) method, which
is essentially a combination of finite volume and finite element techniques, cf. [5]. We
consider a 1D domain Q = (a,b). Let T;, be a partition of Q into a finite number of
closed intervals (elements) [ax, bx]. We denote the set of all boundary points of all
elements by Fp. Let p > 0 be an integer. We seek the numerical solution in the space
of discontinuous piecewise polynomial functions

Sy = {v; v|x € PP(K), VK € T},

where PP(K) denotes the space of all polynomials on K of degree at most p. For a
function v € S, we use the notation: v*)(z) = lim,_,,_ v(y), v® (z) = lim,_,,+ v(y)
and [v], = v (z) — o) (2).

We formulate the DG method for the general first order hyperbolic problem

ug + f(u), =g, zeQ, te(0,T),
u=up, x e FP, te(0,T),
u(:c,O) = UO(x)a z €,

where g, up and ug are given functions and v is our unknown. The Dirichlet boundary
condition is prescribed only on the inlet FP C {a,b}, respecting the direction of
information propagation (characteristics).

The DG formulation then reads, cf. [B]: Find up, : [0,T] — S}, such that

[nnedr= 3 [ rw)eae+ ¥ oGP 00 el = [ g,

KeTn z€Fn

for all ¢ € S,. In the boundary terms on F; we use the approximation f(up) =

H(uéL),uéR)), where H is a numerical flur. We use the Laxz—Friedrichs fluz, cf. [5]:
We define o = max, ) (), |f/(u)]. Then we calculate the numerical flux as
h *7h

H () uf®) = 3 (7082 + Fu®) — a(uf® — i) (3.1)

In practice, we approximate « by calculating |f’(u)| at the points uéL), uELR ) and

L (uy, (L) 4 u(R)) and we take the maximal value.

4. Implementation. For time discretization of the DG method we use explicit
Euler method. As a basis for Sy, we use Legendre polynomials and we use Gauss—
Legendre quadrature to evaluate integrals over elements. The implementation is in
the C++ language.

Because we calculate physical quantities (density and velocity), we know that the
result must be in some interval, e.g. [0, pmax|. Thus, we use limiters in each time step
to obtain the solution in the admissible interval. Here it is important not to change
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the total number of cars. For a piecewise linear approximation of p in LWR models, we
find each element K for which there exists « € [ak, bx] such that p(z) & [pPmin, Pmax]-
If the average density on element K is in the admissible interval, we decrease the slope
of our solution so that the modified density lies in [pmin, Pmax|. If the average density
on element K is not in the admissible interval [pmin, Pmax] We decrease the time step.
Following [6], we also apply limiting to treat spurious oscillations near discontinuities
and sharp gradients in the numerical solution.

4.1. Numerical fluxes at junctions. Since we wish to model traffic on net-
works, the numerical fluxes at junctions must be specified. The basic requirement
is that the number of cars at the junctions must be conserved. Moreover, we wish
to prescribe the traffic distribution according to the traffic—distribution matrix .
The number of cars which inflow or outflow through the junction is given by the traf-
fic flow Q.. More precisely, the traffic flow from incoming road I;, i = 1,...,n, at
time ¢ is given by Q. (p;(b;—,t)). Due to the traffic-distribution matrix, we know
the ratio of the traffic flow distribution between the outgoing roads. Thus, the
traffic flow to the outgoing road I;, j = n+1,...,n + m, at time ¢ is given by
Qe (pj(ajs,t)) = > i @;iQc (pi(bi—,t)). Since the traffic flow at the boundary of an
element is represented by the numerical flux, we take the numerical flux H;(t) at the
left point of the outgoing road I;, i.e. the point at the junction, at time ¢ as

H(t) =Y o iH(ppi(bi— . t), pnj(ajs.t)),
i=1

for j =n+1,...,n+m, where pp; is the DG solution on the i*" road. The numerical
flux H;(t) approximates the traffic flow Q. (p;(a;4,t)). Similarly, we take the numer-
ical flux H;(t) at time t at the right point of the incoming road I;, i.e. at the junction
point, as

n+m

Hi(t):= > ajiH (pni(bi—,t), prj(ajs, 1)),
Jj=n-+1

where i = 1,...,n. Then H,;(t) approximates the traffic flow Q. (p;(b;—,1)).

It can be shown, that our choice of numerical fluxes conserves the number of cars
at junctions. However, this choice does not distribute the traffic according to the
traffic-distribution matrix ([2.3)) exactly, only approximately.

THEOREM 4.1 (Properties of the solution). Let us use the method described above.

a) Our solution pp;, i = 1,...,n+ m satisfies the Rankine-Hugoniot condition
.
b) There exists an example such that our solution pp;, i = 1,...,n + m, does

not satisfy the property 2) in Section .

Proof. a) In our case, we want to show
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From the definition of H; and Hj, we immediately obtain

n n n+m
SHt) =" > ajiH(pni(bi,t), prj(ajs.t))
i=1 i=1 j=n+1
n+m n n+m
= > > i H(pni(bio, 1), prjlag,t) = > H(b).
j=nt1i=1 j=nt1

b) Let us take the situation with one incoming and two outgoing roads. We want
to show that Ha(-) # ae1H1() or Hs(-) # as1Hi(-). Assume that pp1(b1—,0) =
0.5, ppa(azy,t) = 0.2, pps(ass,t) = 0, g1 = 0.75 and as; = 0.25. We use the
Greenshields model (with vmax = pmax = 1) and the Lax-Friedrichs flux (3.1). Then

HQ(O) = Oég}lH(phl(blf, O), phg(a2+, 0)) = 0.22125
and

H1(0) = a1 H(pn1(b1-,0), pra(az,0)) + az 1 H(pr1(bi—,0), pr3(asy,0)) = 0.315.

Since H2(0) = 0.2212 # 0.23625 = a1 H1(0), we find an example, where the property
2) in Section [2.1]in not satisfied. O

A method how to obtain an admissible solution satisfying properties 1)-3) in
Section is described in [4] or [7]. As an example, we take a junction with one
incoming and two outgoing roads. In [4 [7], maximum possible fluxes are used. If
there is a traffic jam in one of the outgoing roads, the maximum possible flow through
the junction is 0. On the other hand, the cars in our approach can still go into the
second outgoing road according to the traffic—distribution coefficients. So our choice
of numerical fluxes corresponds to modelling turning lanes, which allow the cars to
separate before the junction according to their preferred turning direction. In our case
the junction is not blocked due to a traffic jam on one of the outgoing roads. Since
the macroscopic models are aimed for long (multi-lane) roads with huge number of
cars, our model makes sense in this situation. The original approach from [4 [7] is
aimed for one—lane roads, where splitting of the traffic according to preference is not
possible.

Another difference is that we can use all varieties of traffic lights. The model of
[4, [7] can use only the full green lights. Our approach gives us an opportunity to
change the lights for each direction separately.

An artefact of our model is that we do not satisfy the traffic-distribution coeffi-
cients exactly. This corresponds to the real situation where some cars decide to use
another road instead of staying in the traffic jam. The problem is when there is no
traffic jam. Since we do not control the traffic-distribution exactly, we do not satisfy
it exactly. For this reason we interpret the matrix A as a traffic-preference matrix.
Now the element «;; is the preference that the cars want to go from the incoming
road I; to outgoing road I;.

5. Numerical results. In this section we present our program and numerical
results. As we mention above, we use the combination of the explicit Euler and DG
methods. We show the result of calculation on a bottleneck and on networks.

5.1. Bottleneck. First we demonstrate results for a single road with a bottle-
neck, cf. Fig. In the sector 1 and 4 we have maximal velocity vmax,1 = 1.3
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Fig. 5.1: Test road with a bottleneck in Sector 3.

and maximal density pmax,1 = 2, which corresponds to two lanes and a 130 km/h
speed limit. The length of the first sector is Ly = 2 (kilometres) and the length of
the fourth sector is Ly = 1. Sector 2 is a short sector with length Lo = 0.5 and with
decreased maximal velocity Umax,2 = 1 and maximal density pmax2 = 2. Sector 3 is
the bottleneck, where the maximal density is pmax,3 = 1, which corresponds to one
line. The maximal velocity is vmax,3 = 0.8 and the length of this sector is Ls = 2.

The cars go from left to right. The boundary condition on the left is p (0,¢) =

27t

% sin (T — g) + 0.18 to simulate time—varying traffic. The initial condition is an

empty road. We use the Greenshields model. The time-step size is 7 = 10~* and the
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Fig. 5.2: Bottleneck — density on Sector 1, Sector 2, Sector 3 and Sector 4.
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length of each element is h = 1.

In Fig. [5.2] we can observe the emergence of a traffic congestion between Sector
2 and Sector 3. The traffic congestion spreads backwards to Sector 1 and becomes
longer or shorter depending on the boundary influx. Because p(x,t) < pmax,i for all
x, t and all sectors, the cars in the traffic congestion are still moving.

We can observe the relationship between maximal velocity and traffic density
depending on the presence of traffic congestion in Sector 1 and Sector 2. Without
traffic congestion, the density in Sector 1 (with higher maximal velocity) is lower than
the density in Sector 2, cf. Fig. [5.2a] Conversely, with traffic congestion, the density
in Sector 1 is higher than density in Sector 2, cf. Fig. [5.2il This behaviour is due to

the same traffic flow in both sectors.

5.2. Simple network. Now we demonstrate how our program computes traffic
on networks. Thus, we define the simple network from Fig. [5.3] This network is
closed, so we can show the conservation of the total number of cars. We have three
roads and two junctions. The length of all roads is 1. At the first junction we have one
incoming road and two outgoing roads. At the second junction we have the opposite
situation. We use a different distribution of cars at the first junction: % go from the
first road to the second and i from the first road to the third. This corresponds to
the traffic-preference matrices A; = [0.75,0.25]7 and Ay = [1,1].

We define different initial conditions for each road. The initial condition for the
first road as a piecewise linear “hump” which is defined by

5z — 1.5, x € [0.3,0.5],
po(x) =< —5x + 3.5, x € [0.5,0.7],
0, otherwise,

while the second and third road has a constant density of 0.4, cf. Fig. [5.4a] The
total number of cars in the whole network is 1. We use the Greenshields model on
all roads. We use the Euler method with the step size 7 = 10~* and the number of
elements is N = 100 on each road.

We can see the results in Fig. Road 1 distributes the traffic density between
the other roads. We have too many cars at the second junction, where we have two
incoming roads. Thus, we create a traffic congestion on Road 2 and Road 3. We can
observe the transporting and the distribution of the jump from the first road through
the junction in Fig. and Fig. [5.4h] The result converges to a stationary solution.
The traffic density in Fig. is close to the stationary solution. The amount of cars
is conserved.

14

Road 3, Road 1

{o.25

Fig. 5.3: Test network with Road 1, and Road 3.
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Fig. 5.4: Traffic density on network from Fig. [5.3|— Road 1, Road 2 and Road 3.

We note that our program can compute traffic on bigger networks and we are not
limited by the number of incoming or outgoing roads at junctions.

5.3. Traffic lights. Finally, we demonstrate how our program computes traffic
on junctions with traffic lights. We are not strictly forced to use only full green. Our
traffic flow at the junction allows us to choose from a large variety of traffic lights.

/ \
? ------- I _______ ~
2 ——— ——— ?g
= | e 2
N\, d

Fig. 5.5: Test network with traffic lights at junction.
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Fig. 5.6: Junction with Road 1, Road 2, Road 3 and
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We define the junction with 4 incoming and 4 outgoing roads, see Fig. [5.5] The
outgoing roads turn back and go again to the same junction as the incoming roads.
Roads 1 and 2 are the main roads. The maximal density is pmax,m = 2 and the length
is L, = 0.5. The initial condition for the main roads is defined by pg ., (z) = 1.3.
Roads 3 and 4 are the side roads. The maximal density is pmax,s = 1 and the length
is Ly = 0.4. The initial condition for the side roads is defined by pg s(x) = 0.2.

At the junction we use the traffic-preference matrix

0 075 04 045
A_ |08 0 05 04
“lo1 015 0 015

01 01 01 O

We define three phases for traffic lights. In the first phase, traffic lights allow vehicles
from Road 1 to drive to Road 2 or Road 3 and vehicles from Road 2 to drive to Road
1 or Road 4. The first phase lasts ¢t; = 1. In the second phase, traffic lights allow
vehicles from Road 1 to drive to Road 4, vehicles from Road 2 to drive to Road 3,
vehicles from Road 3 to drive to Road 2 and vehicles from Road 4 to drive to Road
1. In the third phase, the traffic lights on Road 3 and Road 4 have full green signal.
The second and third phase lasts to = 0.5. After each phase there are all lights red
and this situation lasts t, = 0.05. All three phases are constantly alternating.

The maximal velocity on each roads is vpmax = 0.5. The maximal density at the
junction is pmax,; = 2. Hence, the maximal density in the first and last elements of
both side roads is linearly decreasing and increasing, respectively. We use Greenshields
model. The time-step size is 7 = 10~* and the length of each element is h = ﬁ.

We can see the results in Fig. We can observe each phase. The first phase
is in Fig. [5.6D] and Fig. The second phase is in Fig. [5.6d] The third phase is in
Fig. [5.61] There are red lights on each road in Fig. |5.6e

6. Conclusion. We have demonstrated the numerical solution of macroscopic
traffic flow models using the discontinuous Galerkin method. For the approximation
in time we choose explicit Euler methods. For traffic networks, we construct special
numerical fluxes at the junctions. The use of DG methods on networks is not standard.
We have described the differences between our approach and the paper [7] by Canié,
Piccoli, Qiu and Ren, where the maximum possible flow at the junction is used.
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