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APPLICATION OF MODIFIED SUBJECTIVE SURFACE METHOD
TO 3D CELL MEMBRANE IMAGE SEGMENTATION

MARKJOE OLUNNA UBA∗ † , KAROL MIKULA∗ , ZUZANA KRIVÁ∗ , HANH

NGUYEN‡ , THIERRY SAVY‡ , ELÉNA KARDASH‡ AND NADINE PEYRIÉRAS‡

Abstract. In this paper, we study 3D cell membrane image segmentation where the segmented
surface is reconstructed by the use of 3D digital cell membrane image information and information
that is obtained from thresholded 3D image in a local domain. The segmentation method is based on
evolution of surface that is governed by a nonlinear PDE, the modified subjective surface equation. A
semi-implicit finite volume scheme was used for the numerical discretization of the proposed model.
The method was applied to real data representing 3D microscopy images of cell membrane within
the zebrafish pectoral fin.
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1. Introduction. Image segmentation is the process of subdividing the image
domain into constituent parts. It is known to be one of the fundamental, difficult
and most studied problems in image processing. There are many approaches to image
segmentation (see e.g., [13, 6, 4, 2]) but in this paper, we focused on the subjective
surface segmentation method. In image processing, this segmentation approach was
introduced in [10, 11], studied and applied in [10, 11, 1, 8, 12, 14, 7]. Subjective
surface segmentation method is based on the idea of segmentation function evolution
that is governed by a geometrical diffusion model (see e.g., [12] and references con-
tained therein for more details).

In applications, it is usually not easy to obtain optimal result using the subjective
surface segmentation approach if the object that is intended to be segmented has
internal structures or edges. The reason, may be attributed to the fact that this ap-
proach works with edge information throughout the process of segmentation. Hence,
spurious edges or edges within the internal structures in an object of interest are also
not disrespected during segmentation. For segmentation of membrane images which is
the focus of this paper, the classical subjective surface segmentation approach seems
not to give optimal result. This is, probably, as a result of the nature of membrane
images. To improve the quality of the final segmentation result, we use the idea of
local thresholding of image intensity values within a ball of appropriate radius around
the approximate center of a membrane image. So, the idea is to presmooth the
membrane image (to be segmented); apply the local thresholding to the presmoothed
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image; combine the information obtained from the thresholding with the information
from the original membrane image intensities to get a segmentation result.

2. Main results.

2.1. Mathematical model. Let I0 : Ω −→ R, Ω ⊂ R3 be the intensity function
of a 3D membrane image. Let α = min

x ∈ B(c,r)
Gσ ∗ I0(x), β = max

x ∈ B(c,r)
Gσ ∗ I0(x),

where Gσ is a smoothing kernel, B(c, r) is a ball with radius r centered at c, a given
approximate central point inside the membrane image to be segmented. Then the
threshold value which is used during the process of local thresholding may be chosen
as tr = η α+ (1− η) β, with η ∈ [0, 1] and the ball radius may be chosen with respect
to the approximate size of the membrane image to be segmented. So, the concept of
local thresholding is to set all intensity values in the local neighborhood of center c
to β if they are above tr and α otherwise.

Our method is based on solution of the following modification of subjective surface
equation (see also [12])

ut = |∇u|∇ ·
(
G0 ∇u
|∇u|

)
(2.1)

where G0 = g(δ|∇Gσ1
∗I0|+θ|∇Gσ2

∗Itr |); u is the unknown segmentation function; g
is the Perona-Malik function typically defined as g(s) = 1

1+Ks2 ; K > 0 is a parameter

chosen empirically [9]; Itr is 3D image intensity of thresholded image within a ball
of radius r > 0; δ, θ ∈ [0, 1] determine the influence of information obtained from
thresholding and membrane image intensities in the segmentation process; Gσ1 and
Gσ2

are the smoothing kernels. Equation (2.1) go along with the following Dirichlet
boundary conditions

u(t, x) = uD ∈ [0, T ]× ∂Ω,(2.2)

and the initial condition

u(0, x) = u0(x) ∈ Ω.(2.3)

uD is assumed without loss of generality to be 0. We note here that, if δ = 1 and
θ = 0 then (2.1) reduces to the subjective surface segmentation model [10].

2.2. Numerical discretization.

2.2.1. Time discretization. Semi-implicit approach which is known to guar-
antee unconditional stability is used for time discretization of (2.1). Assume that
equation (2.1) is solved in time interval I = [0, T ] and N equal number of time steps.
If the time step is denoted τ = T

N , then the time discretization of (2.1) is given by

1√
ε2 + |∇un−1|2

un − un−1

τ
= ∇ ·

(
G0 ∇un√

ε2 + |∇un−1|2

)
,(2.4)

where ε is a regularization parameter (Evans - Spruck [3]), u0 is given initial seg-
mentation function, and un, n = 1, · · · , N is the solution of the model in time step
n.
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2.2.2. Space discretization. For space discretization (see also, [12]), we used
similar notations as those used in [8]. Although the step by step details of the dis-
cretization process is given in [12], for purpose of completeness we include these steps
here also.

Let the finite volume mesh containing the voxels of 3D image be denoted Th, while
Vijk, i = 1, · · · , N1, j = 1, · · · , N2, k = 1, · · · , N3 denote each finite volume. For each
Vijk ∈ Th, let h1, h2, h3 be the size of the volumes in x1, x2, x3 direction. Let the
volume of Vijk and its barycenter be denoted by m(Vijk) and cijk respectively. Let
the approximate value of un in cijk be denoted by unijk. For every Vijk ∈ Th, we
denote the set of all (p, q, r) such that p, q, r ∈ {−1, 0, 1}, |p| + |q| + |r| = 1 by Nijk,
the set of all (p, q, r), p, q, r ∈ {−1, 1} by Mijk, and the set of all (p, q, r) such that
p, q, r ∈ {−1, 0, 1}, |p|+ |q|+ |r| = 2 by Pijk. For each (p, q, r) ∈ Nijk, denote the line
connecting the center of Vijk and the center of its neighbor Vi+p,j+q,k+r by σpqrijk and

its length m(σpqrijk ). We denote the planar sides, area and normal of finite volume Vijk
by epqrijk , m(epqrijk ) and νpqrijk respectively. Let xpqrijk be the point of intersection of the

line σpqrijk and planar side epqrijk . Furthermore, for each (p, q, r) ∈Mijk , let spqrijk denote
the vertices of the finite volume Vijk, and for each (p, q, r) ∈ Pijk, let the midpoints
of the voxel edges be denoted ypqrijk . The approximate value of un−1 in xpqrijk , ypqrijk and

spqrijk , with (p, q, r) belonging to the appropriate index set, is denoted by upqrijk ; the time
index is omitted, as only the values from the time level n− 1 will be needed at these
points.

With these given notations, if we integrate (2.4) over finite volume Vijk, we have
that ∫

Vijk

1√
ε2 + |∇un−1|2

un − un−1

τ
dx =

∫
Vijk

∇ ·
(
G0 ∇un√

ε2 + |∇un−1|2

)
dx.(2.5)

Let the average value of Aε =
√
ε2 + |∇un−1|2 in finite volume Vijk be denoted by

Ān−1
ε,ijk. Considering the fact that un and un−1 are assumed to be piecewise constant

over a finite volume mesh and using the divergence theorem we obtain that

m(Vijk)
unijk − u

n−1
ijk

τ
= Ān−1

ε,ijk

∑
Nijk

∫
epqrijk

G0 ∇un√
ε2 + |∇un−1|2

· νpqrijk dS.(2.6)

If the normal derivative ∇un · νpqrijk is approximated by (uni+p,j+q,k+r − unijk)/m(σpqrijk )

and Apqr;n−1
ε,ijk and Gpqrijk are defined to be the averages of Aε and G0 respectively on

epqrijk then (2.6) reduces to

m(Vijk)
unijk − u

n−1
ijk

τ
= Ān−1

ε,ijk

∑
Nijk

m(epqrijk )Gpqrijk

uni+p,j+q,k+r − unijk
Apqr;n−1
ε,ijk m(σpqrijk )

.(2.7)

Equation (2.7) simplifies to

unijk = un−1
ijk +

τ

m(Vijk)
Ān−1
ε,ijk

∑
Nijk

m(epqrijk )Gpqrijk

uni+p,j+q,k+r − unijk
Apqr;n−1
ε,ijk m(σpqrijk )

;(2.8)
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which further simplifies to(
1 +

τ

m(Vijk)
Ān−1
ε,ijk

∑
Nijk

Gpqrijk

m(epqrijk )

Apqr;n−1
ε,ijk m(σpqrijk )

)
unijk −(2.9)

τ

m(Vijk)
Ān−1
ε,ijk

∑
Nijk

Gpqrijk

m(epqrijk )

Apqr;n−1
ε,ijk m(σpqrijk )

uni+p,j+q,k+r = un−1
ijk

Definition 2.1 (Global rescaling (see also, [12])). Let ϑ = min
Ω
unijk and

ζ = max
Ω

unijk for each time step n. Then the rescaled version of unijk given by (2.9)

is obtained by the following relation unijk = 1
ζ−ϑ (unijk − ϑ). As a result, we have that

for each time step n, the rescaled version of unijk is in [0, 1] and it is used in the next
time step.

Equation (2.9) together with zero Dirichlet boundary condition, represents a sys-
tem of linear equations which can be solved efficiently by the Successive Overrelax-
ation (SOR) method. Finally, we note how to determine the average values Gpqrijk ,

Apqr;n−1
ε,ijk and Ān−1

ε,ijk either in voxels or on voxel sides. To determine these quantities,
we used the reduced diamond cell strategy (see [8]). The idea of the reduced diamond
cell approach is to drop the values in the eight corner points denoted by ci,j+q,k+r,
ci+1,j+q,k+r, with q, r ∈ {−1, 1} and as a result reducing the stencil from 18 to 10
points. Hence, from the computational standpoint, this approach reduces the compu-
tational cost.

Additionally, in the reduced diamond cell approach, the values of un−1 are obtained
from the midpoints ypqrijk of the voxel edges. These values are given approximately for
each (p, q, r) ∈ Pijk by

upq0ijk =
1

4

(
un−1
ijk + un−1

i+p,j,k + un−1
i,j+q,k + un−1

i+p,j+q,k

)
,

up0rijk =
1

4

(
un−1
ijk + un−1

i+p,j,k + un−1
i,j,k+r + un−1

i+p,j,k+r

)
,

u0qr
ijk =

1

4

(
un−1
ijk + un−1

i,j+q,k + un−1
i,j,k+r + un−1

i,j+q,k+r

)
.

The components of the averaged gradient on epqrijk are approximated by 2D diamond

cell approach in orthogonal planes which use the values upqrijk given above (see also
[8]). This means that

∇p00un−1
ijk =

1

m(ep00
ijk )

∫
ep00ijk

∇un−1dx

≈

(
p(un−1

i+p,j,k − u
n−1
ijk )/h1, (u

p,1,0
ijk − u

p,−1,0
ijk )/h2, (u

p,0,1
ijk − u

p,0,−1
ijk )/h3

)
,

∇0q0un−1
ijk =

1

m(e0q0
ijk )

∫
e0q0ijk

∇un−1dx
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≈

(
(u1,q,0
ijk − u

−1,q,0
ijk )/h1, q(u

n−1
i,j+q,k − u

n−1
ijk )/h2, (u

0,q,1
ijk − u

0,q,−1
ijk )/h3

)
,

∇00run−1
ijk =

1

m(e00r
ijk )

∫
e00rijk

∇un−1dx

≈

(
(u1,0,r
ijk − u

−1,0,r
ijk )/h1, (u

0,1,r
ijk − u

0,−1,r
ijk )/h2, r(u

n−1
i,j,k+r − u

n−1
ijk )/h3

)
.

Hence, we obtain that the approximations ∇pqrun−1
ijk for the gradient at the points

xpqrijk , with ∇pqrun−1
ijk denoting the approximation of the gradient in the barycenters

xpqrijk of voxel side epqrijk . Using the same approach for the computation of gradients of
image intensities, the following approximations are obtained as well:

Gpqrijk = g
(
δ|∇pqrIσ1;ijk|+ θ|∇pqrIthr

σ2;ijk|
)
,(2.10)

Apqr;n−1
ε,ijk =

√
ε2 + |∇pqrun−1

ijk |2, Ā
n−1
ε,ijk =

√√√√ε2 +
1

6

∑
Nijk

|∇pqrun−1
ijk |2.

2.3. Numerical experiments. In this section, numerical experiments were per-
formed on biological image of a developing pectoral fin in zebrafish embryo in order to
demonstrate the performance of our mathematical model (2.1) on membrane images.
In all the experiments performed, isosurface 0.5 is displayed. 3D microscopy images of
cell membrane were given to us to process by the research group of Nadine Peyriéras,
(CNRS BioEmergences, France, in the framework of ImageInLife EC funded project).
In zebrafish, pectoral fin serves as a vertebrate model for limb development. A sheet
of cells converges at the prospective fin field location, subsequently proliferates and
remodels into a 3D distinct structure. As the bud continues to grow and extends
from the body trunk, cells undergo morphological changes to give rise to the fin 3D
shape. Ectodermal cells are stretched and potentially play a part in shaping the fin
while mesodermal cells decrease in volume in order to accommodate their neighbors
given the increased compaction inside the fin. Here, we aim to measure dimensions of
different cell types (EVL, ectoderm, lateral plate mesoderm, and somitic mesoderm)
and monitor and quantify their shape changes influenced by external and internal
forces during the 2D to 3D transition. To label cell nuclei and membrane glob-
ally, wild type zebrafish embryos were injected with mRNA encoding H2B-mCherry
and eGFP-F at one-cell stage. Embryos were anesthetized and immobilized start-
ing from 18 hours post fertilization and mounted on the upright confocal microscope
Zeiss LSM 780. Datasets were acquired at the xy resolution of 0.6386660µm/pixel
and 0.8467909µm/pixel z-direction. Nuclei centers were obtained using Difference of
Gaussians algorithms and further validated using the software Mov-IT implemented
in the Bioemergences Workflow[5]. The nuclei centers were used for construction of
initial segmentation function in the presented membrane segmentation method.

We note that in all Figures 2.2−2.5, the first column shows the 3D volume rendering
of the original 3D membrane image intensity and the second column shows, in black
colour, their corresponding results after segmentation. Also, in Figure 2.1, first col-
umn of first row shows the 2D slice (along z axis) of 3D cell membrane image which
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is intended to be segmented, first column of second row shows the 2D slice (along z
axis) of 3D binarized image which is obtained by local thresholding, second column
of first row shows the result of segmentation without local thresholding while second
column of second row shows the result of segmentation with local thresholding. The
partial reconstruction of the membrane image shown in second column of first row
may be attributed to the fact that some internal structures or edges in the image
did not allow the segmentation function to get to the actual boundary of the cell.
However, with the local thresholding, the segmentation function is able to grow to
the boundary of the cell giving rise to the result which is shown in second column of
second row.

In the first numerical experiment, δ = 1.0 and θ = 0.0 were used. This choice of pa-
rameters reduced equation (2.1) to the classical subjective surface model [10]. Results
obtained using these parameters are shown in Figures 2.2 and 2.4. Furthermore, for
other numerical experiments, δ = 0.8 and θ = 0.2, δ = 0.7 and θ = 0.3, δ = 0.6 and
θ = 0.4 were used. The results obtained using these parameters are shown in Figures
2.3 and 2.5. With these nonzero choices of θ, it can be seen by visual comparison that
the results are correct.

Finally, we note that in these numerical experiments, computations were done on a
grid with 50 × 50 × 40 voxels, and computational method parameters were set to
h = 0.01, τ = 0.01, η = 0.95, r = 26, K = 0.8 and N = 100.

In conclusion, it is not difficult to see that mathematical model (2.1) is a useful and
successful generalization of the classical subjective surface model for 3D cell membrane
image segmentation.
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3D CELL MEMBRANE IMAGE SEGMENTATION 57

Fig. 2.1. In this figure, first column of first row shows the 2D slice (along z axis) of 3D cell
membrane image which is intended to be segmented, first column of second row shows the 2D slice
(along z axis) of 3D binarized image which is obtained by local thresholding, second column of first
row shows the result of segmentation without local thresholding while second column of second row
shows the result of segmentation with local thresholding.

Fig. 2.2. First column of this figure shows the 3D volume rendering of the 3D cell membrane
image which is intended to be segmented, while the second column shows the result after application
of (2.1) with δ = 1.0 and θ = 0.0.
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Fig. 2.3. First column of this figure shows the 3D volume rendering of the 3D cell membrane
image which is intended to be segmented, while the second column shows the result after application
of (2.1) with δ = 0.8 and θ = 0.2, δ = 0.7 and θ = 0.3, and δ = 0.6 and θ = 0.4 respectively.

Fig. 2.4. First column of this figure shows the 3D volume rendering of the 3D cell membrane
image which is intended to be segmented, while the second column shows the result after application
of (2.1) with δ = 1.0 and θ = 0.0.
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Fig. 2.5. First column of this figure shows the 3D volume rendering of the 3D cell membrane
image which is intended to be segmented, while the second column shows the result after application
of (2.1) with δ = 0.8 and θ = 0.2, δ = 0.7 and θ = 0.3, and δ = 0.6 and θ = 0.4 respectively.
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