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ON FINITE ELEMENT APPROXIMATION OF INCOMPRESSIBLE
FLUID FLOW IN COMPUTATIONAL DOMAIN WITH VIBRATING

WALLS: MATHEMATICAL MODELS FOR TREATMENT OF
CHANNEL CLOSING ∗

PETR SVÁČEK†

Abstract. In this paper a simplified mathematical model of a voice production problem is
considered. Here we focus on modelling of the glottis closure, which is an important part of phonation
process. A simplified vocal fold model describing the vocal fold vibrations with two degrees of freedom
is considered and coupled with a simplified model of the fluid flow described by the incompressible
Navier-Stokes equations. The vocal fold vibrations cause a deformation of the fluid computational
domain which is treated with the aid the Arbitrary Lagrangian-Eulerian method. The vibrations can
possible lead to an appearance of the vocal folds contact. This situation is treated with the aid of a
combination of inlet boundary conditions, a fictitious porous media approach and the Hertz impact
forces. Numerical method is based on the stabilized finite element method. Numerical results are
presented.
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1. Introduction. Human phonation process is a complex phenomena consisting
of the air flow, structural vibrations, their mutual interactions and periodical appear-
ing of the vocal folds contacts, see [6]. Except this also the acoustics phenomena is
important. One important aspect is that the phonation is in fact an aeroelastic insta-
bility. This aeroelastic instability causes vocal folds oscillations with large amplitudes
leading to their mutual contact. This periodical contact leads to the closure of the
vocal tract at glottal part. Thus a realistic mathematical model should consist of the
fluid-structure interaction description as well as a mathematical model of the (peri-
odical) contact of the vocal folds. As such a treatment is extremely difficult, usually a
simplified models are employed, see e.g. the simplified two degrees of freedom model
of the vocal folds of [3] or the aeroelastic model in [2].

This paper presents a complex mathematical model consisting of the fluid flow
problem, the structural description by motion equations, coupling conditions and a
treatment of the contact problem. For the fluid flow the model of incompressible
Navier-Stokes equations is used written in the arbitrary Lagrangian-Eulerian(ALE)
form. The acoustic modelling is omitted in this paper as the influence of acoustic
forces on the fluid flow or on the structure motion is negligible in the voice production
process.

Further, the numerical approximation based on the finite element(FE) method is
described, where the attention is paid step by step to the time discretization, weak
formulation, stabilization of the FE method, linearization and to the solution of the
linearized problem. The described approach is applied for solution of a benchmark
problem.
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2. Mathematical model.

2.1. Flow problem. The air flow in terms of the flow velocity u = (u1, u2) and
the kinematic pressure p is modelled by the system of the Navier-Stokes equations
(cf. [1]) written in the ALE form (cf. [4]), i.e. in the computational domain Ωt it is
governed by

DAu

Dt
+ ((u−wD) · ∇)u = div τ f ,

∇ · u = 0,(2.1)

where τ f = (τfij) is the fluid stress tensor given by τ f = −pI + 2νD, D is the

symmetric gradient tensorD(u) = 1
2 (∇u+∇Tu) with components dij = 1

2 ( ∂ui

∂xj
+

∂uj

∂xi
)

and ν > 0 is the constant kinematic fluid viscosity. In Equations (2.1) wD denotes

the domain velocity and DAu
Dt is the ALE derivative, i.e. the derivative with respect

to the reference configuration Ωref , cf. [4].

0
L L L

2

O

g
(t

)

I Γ
ΓΩΓ

Wt
t

Fig. 2.1. The computational domain Ωt with specification of the boundary parts.

In order to solve system (2.1) an initial and mixed boundary conditions are pre-
scribed at the boundary ∂Ωt of the computational domain. To this end it is assumed
∂Ωt is at any time t ∈ [0, T ] formed by mutually disjoint parts ∂Ωt = ΓI∪ΓS∪ΓO∪Γt.
Here, ΓI denotes the inlet part of the boundary, ΓO is the outlet part of the boundary,
ΓS denotes the axis of symmetry (in this paper it is part of x-axis y = 0 with the unit
outward normal n = (0, 1)) and Γt = ΓWt ∪ ΓWf denotes either the fixed (ΓWf ) or
the deformable (ΓWt) walls. The following boundary conditions are prescribed

a) u = wD on ΓWt,

b) u2 = 0,−τ12 = 0 on ΓS ,(2.2)

c)
1

2
(u · n)−u− n · τ =

1

ε
(u− uI) on ΓI ,

d)
1

2
(u · n)−u− n · τ = prefn on ΓO,

where n denotes the unit outward normal vector to ∂Ωt, uI is a prescribed inlet
velocity, pref is a reference pressure value (pref = 0 in what follows), ε > 0 is a
penalization parameter and α− denotes the negative part of a real number α. Here, the
boundary condition (2.2c) weakly imposes the Dirichlet boundary condition u = uI

with the aid of a penalization parameter ε.
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Fig. 2.2. Two degrees of freedom model (with masses m1, m2, m3) in displaced position
(displacements θ1 and θ2) The acting aerodynamic forces F1 and F2 are shown.

2.2. Structure model. A simplified structural model of the vocal fold is used
modelled as a rigid body consisting of three masses (m1, m2 and m3), see Fig. 2.1.
The vocal fold motion is governed by the displacements θ1(t) and θ2(t) of the two
masses m1 and m2. The equation of motion (see [2] for details) reads

Mθ̈ + Bθ̇ + Kθ = −F ,(2.3)

where θ = (θ1, θ2)T , M is the mass matrix of the system, K = diag(k1, k2) is the
diagonal stiffness matrix of the system characterized by spring constants k1, k2, and
B = ε1M + ε2K is the matrix of the proportional structural damping, ε1, ε2 are the
constants of the proportional damping. The mass matrix is given by

M =

(
m1 + m3

4
m3

4
m3

4 m2 + m3

4

)
.(2.4)

The vector F = Fimp + Faero consists of the aerodynamical forces Faero = (F1, F2)T

and the Herz impact forces Fimp due to the possible impact of vocal folds.

2.3. Coupling conditions. The aerodynamical forces F1, F2 are evaluated with
the aid of the aerodynamical lift force L(t) and aerodynamical torsional moment M(t)
acting on the surface of the structure ΓWt. The aerodynamical lift force and the
aerodynamical torsional moment are evaluated with the aid of the mean (kinematic)
pressure p and the mean flow velocity u = (u1, u2) as the integrals over the surface of
the airfoil

L = −l
∫

ΓWt

ρτ2jnj dS, M = l

∫
ΓWt

ρτijnjr
ort
i dS,(2.5)

where l denotes the depth of the profile section, and the vector rort has components
rort
1 = −(x2−xEA

2 ), rort
2 = x1−xEA

1 with (xEA
1 , xEA

2 ) being the position of the structure
elastic axis.
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The displacement of any point ξ = (ξ1, ξ2) ∈ ΓWt is determined in terms of θ1, θ2

as At(ξ) = (ξ1, y), where

y = ξ2 +
θ1 + θ2

2
+ (ξ2 −

Lref

2
)(θ2 − θ1).(2.6)

This displacement is used as boundary condition for the sought ALE mapping At,
which maps the reference domain Ωref

0 onto the computational domain Ωt. Conse-
quently the domain velocity at the surface ΓWt is determined by θ1, θ2, whereas the
domain velocity in the interior of the domain Ωt needs to be evaluated as the time
derivative of the ALE mapping At.

2.4. Treatment of the contact. The use of the simplified structural model in
combination with the symmetry assumption allows to calculate the gap g(t) between
the vocal folds in terms of the initial gap g(0) and the values of displacements θ1(t) and
θ2(t), see Figure 2.1. Let us emphasize that the solution of the ordinary differential
equations (2.3) formally allows this gap become zero or even negative - this situation
corresponds to the impact of the vocal folds. On the other hand the displacement of
the part ΓWt based on the displacements θ1(t) and θ2(t) (as part of the computational
domain) is both geometrically not possible as well as physically incorrect (as during
the impact the surface of the vocal fold is deformed at the contact area) for the case
of g(t) being negative.

Moreover for the computational purposes (to avoid mesh distortion) it is also
difficult to treat values of g(t) being still positive but close to zero. Consequently the
deformation of ΓWt is treated with the aid of the formula (2.6) for the gap g(t) ≥
gmin > 0 (here gmin is usually specified as a small fraction of the initial gap). Two
modifications of this formula are considered in the case when g(t) becomes lower then
gmin.

The first approach is a simple vertical shift of the (rigid) vocal fold which keeps
the actual (fictitious) gap g(t) equal to gmin. This means that the equation (2.6) is
replaced by

y = ξ2 +
θ1 + θ2

2
− (gmin − g(t))+ + (ξ2 −

Lref

2
)(θ2 − θ1).(2.7)

where (gmin − g(t))+ denotes the positive part of the number gmin − g(t), i.e. it is
either zero if g(t) ≥ gmin or it shifts the whole surface to keep the the gap equal gmin

otherwise.
The second more realistic approach is based on a modification of the displacement

of only the points in the contact zone. This is realized by modification of Equation
(2.6) for mesh vertices which violate the condition of g(t) ≥ gmin, i.e. Equation (2.6)
is modified as

y = min (ỹ, gmin)(2.8)

where ỹ is computed by the original formula (2.6)

ỹ = ξ2 +
θ1 + θ2

2
+ (ξ2 −

Lref

2
)(θ2 − θ1).(2.9)

In both cases the computational fluid domain Ωt is formally decomposed into
two parts, Ωt = ΩP

t ∪ Ωf
t where by Ωf

t the domain occupied by fluid is denoted and
by ΩP

t the part of the computational domain which should be occupied by the vocal
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tract (with no fluid) is denoted. The flow through the domain Ωp
t is modelled as flow

through a fictitious porous media, see Fig. 2.3, i.e. the Navier-Stokes equations are
modified by an added Darcy term σPu in ΩP

t

DAu

Dt
+ ((u−wD) · ∇)u+ σPu = div τ f .(2.10)

In practical realization Equation (2.10) is solved in the whole domain Ωt with σP = 0

in Ωf
t and with a suitable chosen constant σP > 0 in ΩP

t .

Ω

Γ

t

Wt

Fig. 2.3. The detail of the porous media flow domain Ωp
t .

3. Numerical approximation. The numerical discretization of the described
coupled problem is realized by the stabilized finite element method applied for approx-
imation of the fluid part, solution of the motion equations with the aid of 4th order
Runge-Kutta method and coupling of both parts with the aid of a strongly coupled
algorithm. For the purpose of the time discretization the time interval I is divided
by an equidistant partition tj = j∆t with a constant time step ∆t > 0. The approxi-
mations of velocity and pressure at time instant tj are denoted by uj ≈ u(·, tj) and

pj ≈ p(·, tj) for j = 0, 1, . . .. Similarly, by wj
D and Ωj approximations of the domain

velocity wD(·, tj) and the computational domain Ωtj at time instant tj are denoted.
In what follows we focus on numerical discretization at a (fixed) time step tn+1. For
the sake of simplicity the indices n+ 1 are omitted in what follows, i.e. the following
notation is used u := un+1, p := pn+1, wD := wn+1

D and Ω := Ωn+1.

3.1. Flow problem. In order to discretize equations (2.1) we start with ap-
proximation of the ALE time derivative at t = tn+1 by the second order backward
difference formula

DAu

Dt
|tn+1

≈ 3un+1 − 4ũn + ũn−1

2∆t
(3.1)

where at a given time instant t = tn+1 the velocity uk defined on Ωk is transformed
to the velocity field ũk defined on Ω = Ωn+1 by

ũk(x) = uk(Atk(A−1
tn+1

(x))), x ∈ Ω.(3.2)
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Further, the finite element discretization is based on the weak reformulation of
time discretized equations (2.1). The function spaces for velocity and pressure are
defined as V and Q given by

V = {ϕ ∈H1(Ω) : ϕ · n = 0 at ΓS}, Q = L2(Ω).(3.3)

The space X of test functions is subspace of V specified as

X = {ϕ ∈H1(Ω) : ϕ = 0 at ΓWt
, ϕ · n = 0 at ΓS}.(3.4)

The weak form of Equations (2.1) is derived in the standard form: first, the ALE
time derivative is replaced using the formula (3.1), next the first equation of (2.1)
is multiplied by a test function z ∈ X , integrated over Ω, the Green’s theorem for
viscous terms and the pressure gradient is used and the boundary conditions (2.2) as
well as the definition of spaces V , X are taken into an account. Similarly the second
equation is multiplied by a test function q ∈ Q, integrated over Ω and both equations
are summed up together.

Thus we arrive to the weak form: Find U = (u, p) := (un+1, pn+1) ∈ V ×Q such
that u satisfy the boundary condition (2.2a) and

a(U ;U, V ) = L(V )(3.5)

holds for any V = (z, q) ∈ X ×Q. The forms a and L are defined for any U = (u, p) ∈
V ×Q, U = (u, p) ∈ V ×Q and V = (z, q) ∈ X ×Q as follows

a(U ;U, V ) =

(
(

3

2∆t
+ σP )u, z

)
Ω

+ c(U ;U, V ) + (2νD(u),D(z))Ω +

+
1

ε
(u, z)ΓI

+

(
1

2
(u · n)+u, z

)
ΓI∪ΓO

+ (∇ · u, q)Ω − (∇ · z, p)Ω(3.6)

and

L(V ) =

(
4ũn − ũn−1

2∆t
, z

)
Ω

+
1

ε
(uI , z)ΓI

−
∫

ΓO

pref (n · z)dS,(3.7)

where by the symbol (·, ·)M the dot product in L2(M) or L2(M) is denoted. Fur-
ther, the skew-symmetric trilinear form c represents the convection term (here we
abbreviate w = u−wn+1

D )

c(U ;U, V ) =
1

2
((w · ∇)u, z)

Ω
− 1

2
((w · ∇)z,u)

Ω
+

1

2

(
(∇ ·wn+1

D )u, z
)

Ω
.(3.8)

In order to approximate problem (3.5) by finite element method, the spaces V
and X are approximated using their FE subspaces Vh and X h, respectively. These
spaces are constructed over an admissible triangulation T∆ of the domain Ω. Similarly,
the pressure space Q is approximated by its FE subspace Qh constructed again over
the same triangulation T∆. Here, the Taylor-Hood FEs are used, i.e. the spaces of
continuous piecewise quadratic functions defined by

Wh = {ϕ ∈ C(Ω) : ϕ ∈ P2(K) ∀K ∈ T∆}, Vh = Wh ∩ V X h = Wh ∩X ,

are used for velocities and the space of continuous piecewise linear functions

Qh = {ϕ ∈ C(Ω) : ϕ ∈ P1(K) ∀K ∈ T∆}.
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are used for pressure approximations.
The FE approximations of uh ≈ u and ph ≈ p are then sought in the FE spaces

Vh×Qh constructed over an admissible triangulation τh of the computational domain
Ωf

t : Find an approximate solution Uh = (uh, ph) ∈ Vh × Qh such that Eq. (3.5)
holds for any test function Vh = (zh, qh) ∈ X h × Qh. Instead of formulation (3.5)
the stabilized finite element approximations Uh = (uh, ph) are sought in the space
Vh ×Qh such that

a(Uh;Uh, Vh) + P(Uh, Vh) + S(Uh;Uh, Vh) = L(V ) + F(U ;V ),(3.9)

holds for any test function Vh = (zh, qh) ∈ X h×Qh. Here, the stabilization terms S, F
and P represents the SUPG/PSPG stabilization terms and the div-div stabilization
terms, respectively. These terms are defined for any Uh = (uh, ph) ∈ Wh × Qh,
Uh = (uh, ph) ∈Wh ×Qh and Vh = (zh, qh) ∈ X h ×Qh

S(Uh;Uh, Vh) =
∑

K∈T∆

(
(

3

2∆t
+ σP )uh − µ4uh + (wh · ∇)uh +∇p,Ψ(Vh)

)
K

F(Uh;Vh) =
∑

K∈T∆

(
4ũn

h − ũ
n−1
h

2∆t
,Ψ(Vh)

)
K

(3.10)

P(Uh, Vh) =
∑

K∈T∆

τK

(
∇ · uh,∇ · zh

)
K
,

where Ψ(Vh) := δK(wh · ∇)zh + δK∇qh, wh = uh −wn+1
D and δK , τK are suitably

chosen stabilization parameters.
The problem (3.9) is nonlinear and requires an iterative solution. Here, the ap-

proach based on the Oseen linearization is used. Starting with an approximation
U0
h ∈ Vh×Qh the linearized problems are solved for k = 0, 1, . . .: Find Uk+1

h ∈ Vh×Qh

such that

a(Uk
h ;Uk+1

h , Vh) + P(Uk
h , Vh) + S(Uk

h ;Uk+1
h , Vh) = L(Vh) + F(Uk

h ;Vh),(3.11)

holds for any Vh ∈ X h × Qh. This process is repeated till ‖Uk+1
h − Uk

h‖ < ε with a
suitable chosen ε > 0.

3.2. Structure model, ALE mapping and ALE derivative. The motion
equations (2.3) are formulated as a first order system and time discretized with the
aid of 4th order Runge-Kutta method. This method is used to find the approximations
θn1 ≈ θ1(tn), θn2 ≈ θ2(tn), θ̇1

n
≈ θ̇1(tn), θ̇2

n
≈ θ̇2(tn) starting from an initial condition.

Here, the zero initial condition is used θ0
1 = θ0

2 = θ̇1
0

= θ̇2
0

= 0 and the Runge-Kutta
methods is applied on sub-intervals of the interval (tn, tn+1), where the aerodynamical
forces F1 and F2 are interpolated in the interior of the interval from the values found
at time instants tn and tn+1.

Based on the found displacements θn+1
1 , θn+1

2 at the time instant tn+1 the displace-
ment of the boundary ΓWtn+1 is determined by equation (2.6). The ALE mapping A
at time instant tn+1 is determined in terms of sought displacement of the reference
domain with the Dirichlet boundary conditions specified by (2.6) at ΓWref and with
the zero Dirichlet boundary condition otherwise. To this end the approach based on
solution of a fictitious elastic problem is used similarly as in [7]. This approach how-
ever is strongly modified in order to keep the quality of the mesh satisfactory even
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in the case of almost enclosed channel. This is why, instead of solving of a linear
elasticity problem, the geometrical non-linearities are taken into an account.

Once the ALE mapping at Atn+1
is determined, the ALE domain velocity wn+1

D

is computed with the aid of the second order backward difference formula, i.e. for
x ∈ Ωn+1 with a reference ξ ∈ Ωref , we have

wn+1
D (x) ≈ 3x− 4xn + xn+1

2τ
(3.12)

where x = Atn+1(ξ), xn = Atn(ξ), xn−1 = Atn−1(ξ).
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Fig. 4.1. The aeroelastic responses θ1(t) (left) and θ2(t) (right) of the structure for flow velocity

U∞ = 0.65 m/s. The phonation onset phase is shown.
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Fig. 4.2. The aeroelastic response of the structure for flow velocity U∞ = 0.65 m/s. The

phonation phase with periodical closing of the gap between vocal folds and the Hertz impact forces
involved.

4. Numerical results. In this section benchmark the problem from [5] is nu-
merically approximated by the proposed method using both approaches for treatment
of the channel closing. For the inflow velocity U∞ = 0.65m/s the aeroelastic insta-
bility occurred are shown in terms of the displacements θ1 and θ2 in Figure 4.1. In
the context of the voice production this corresponds to the phonation onset. With
further continuation the amplitude vibrations increases, but the limitation by the gap
guarantees these vibrations to stay limited, and leads to a limit cycle of oscillations as
shown in Figure-4.2. Here, the vibrating vocal folds starts influenced by their mutual
contact. Figure 4.3 shows the vibrations in terms of the gap between the vocal folds.
One can see that for the phonation onset the contact problem is unimportant (Figure
4.3, left), whereas during the phonation the gap between two vocal folds periodically
becomes zero (Figure 4.3, right). This behaviour well corresponds to the results of
simplified models. For a higher inflow velocity U∞ = 0.7m/s similar behaviour was
observed with much faster appearance of the phonation, see Fig. 4.4 and Fig. 4.5. Fig-
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ures 4.6-4.7 then compares the two suggested approaches of geometrical gap closing
in terms of flow velocity in the glottis region.
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of the gap g(t).

-0.0008
-0.0006
-0.0004
-0.0002

 0
 0.0002
 0.0004
 0.0006
 0.0008

 0  0.05  0.1  0.15  0.2
t[s]

-0.0005
-0.0004
-0.0003
-0.0002
-0.0001

 0
 0.0001
 0.0002
 0.0003
 0.0004
 0.0005

 0  0.05  0.1  0.15  0.2
t[s]

Fig. 4.4. The aeroelastic responses θ1(t) (left) and θ2(t) (right) of the structure for flow velocity
U∞ = 0.70 m/s - phonation onset

-0.2
-0.15
-0.1

-0.05
 0

 0.05
 0.1

 0.15

 0.25  0.3  0.35  0.4  0.45
t[s]

-0.1
-0.08
-0.06
-0.04
-0.02

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.25  0.3  0.35  0.4  0.45
t[s]

Fig. 4.5. The aeroelastic responses θ1(t) (left) and θ2(t) (right) of the structure for flow velocity
U∞ = 0.70 m/s. The phonation onset phase is shown with much faster growth of the amplitudes.

0.1 5.6 11.1 16.6 22.1 27.6 33.1 38.6 0.1 5.6 11.1 16.6 22.1 27.6 33.1 38.6 0.1 5.6 11.1 16.6 22.1 27.6 33.1 38.6

Fig. 4.6. The flow velocity magnitude during the opening and closing phase for the inlet flow
velocity U∞ = 0.65 m/s, simple rigid body approach of closing applied
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Fig. 4.7. The flow velocity magnitude during the opening and closing phase for the inlet flow
velocity U∞ = 0.65 m/s - second approach

5. Conclusion. This paper presents the detailed description of the numerical
approximation of the problem of fluid-structure interaction problem used in models
of human phonation. Main attention is paid to modelling of the contact of vibrating
vocal folds. Here two strategies are suggested and numerical results are shown.
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