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INVESTIGATION OF BLOOD-LIKE NON-NEWTONIAN FLUID
FLOW IN STENOTIC ARTERIES USING THE LATTICE

BOLTZMANN METHOD IN 2D
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Abstract. The impact of non-Newtonian fluid properties on the mathematical modeling of flow
in stenosed arteries is investigated. The main goal is to determine whether the Newtonian fluid model
is sufficient for the flow modeling in the desired geometry. The magnitude of negative horizontal
flux is used as a primary quantity for comparing Newtonian and non-Newtonian approaches. The
comparison is performed for vessel geometries with gradually increasing severity of stenosis. The
mathematical model is solved using the lattice Boltzmann method with a modification to include the
non-Newtonian effects. The results show that the difference in fluid characteristics increases with
the degree of stenosis. However, for the simulation of flow in the least stenosed artery, both models
provide similar results and, thus, the Newtonian model can be employed.
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1. Introduction. The investigation of blood flow characteristics using the math-
ematical modelling can contribute to a better interpretation of correlations between
the regions of turbulent flow, shear stress on the artery walls, and other patterns con-
tributing to cardiovascular diseases. As shown in [5], the investigation of pathologies
in such vessels using the magnetic resonance imaging (MRI) flow measurement is often
underestimated due to the presence of a significant backflow induced by turbulence.
It is well known that blood behaves as a pseudoplastic fluid for low strain rates and
as Newtonian for high strain rates, i.e., in large vessels such as arterial vessels [9].
The objective of this study is to determine under which conditions the blood flow
can be considered as Newtonian in a simplified, two-dimensional geometry of a large
vessel. This is done by comparing the magnitude of backflow for both Newtonian and
non-Newtonian mathematical models in a vessel with various degrees of stenosis or
coarctation.

To investigate the non-Newtonian fluid behavior in the arterial vessel geometry,
numerical simulations using the lattice Boltzmann method (LBM) are used. The LBM
is a numerical method for the solution of the incompressible Navier-Stokes equations
[11]. In last decades, the method has been intensively studied by many researchers
and there exist several variants of LBM such as the Single Relaxation Time LBM [8],
Multiple Relaxation Times LBM [3], Cascaded LBM [6], Cumulant LBM [7], Entropic
LBM [2], and others. Because some LBM variants suffer from instabilities for higher
Reynolds number flows, the Cascaded LBM (CLBM) is used in this work [6].

The work is organized as follows. In Section 2, the mathematical model is sum-
marized and the numerical model is introduced. Then, in Section 4, results of the
non-Newtonian and Newtonian fluid flow simulations are presented and discussed.
The last section concludes the observations.

∗Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Tech-
nical University in Prague, Trojanova 13, 120 00 Praha 2.

91
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2. Mathematical model. The dynamics of the incompressible fluid in a rectan-
gular domain Ω = (0, Lx)× (0, Ly), Lx, Ly [m] and within the time interval (0, Tfin),
Tfin [s], can be described by the following balance equations:

∇ · ~u = 0, (2.1)

ρ

(
∂~u

∂t
+ ~u · ∇~u

)
+∇p = ∇ · Tµ + ρ~g, (2.2)

where ρ [kg m−3] denotes the fluid density, ~u [m s−1] denotes the fluid velocity,
p [kg m−1 s−2] is the pressure, Tµ [kg m−1 s−2] denotes the viscous stress tensor, and
~g [m s−2] is the acceleration caused by external forces.

Under the assumption that the non-Newtonian fluid in question is an incompress-
ible, generalized Newtonian fluid, the viscous stress tensor Tµ is given by

Tµ = 2µD, (2.3a)

where µ [kg m−1s−1] is the apparent dynamic viscosity and

D =
1

2

(
∇~u+ (∇~u)T

)
. (2.3b)

Moreover, assumption of small variations of viscosity, i.e., ∇µ ≈ 0, allows to express
Eq. (2.2) as

ρ

(
∂~u

∂t
+ ~u · ∇~u

)
+∇p = 2µ∇ · D + ρ~g. (2.4)

For the generalized Newtonian fluid, the apparent dynamic viscosity is a function
of the shear rate γ̇ [s−1] defined using the Frobenius matrix norm as

γ̇ = 2||D||F . (2.5)

Based on the type of the fluid, various empirical formulae for µ can be employed.
In this work, the model proposed by Carreau and Yasuda [1] is used in the form

µCY (γ̇) = µ∞ + (µ0 − µ∞) [1 + (λγ̇)a]
n−1
a , (2.6)

where µ0 [kg m−1s−1] and µ∞ [kg m−1s−1] represent dynamic viscosities of Newtonian
regimes for γ̇ → 0+ and γ̇ → +∞, respectively [1]. Parameters λ [s−1], a, and n are
constants determined empirically. The relationship between µCY and γ̇ and the two
limit viscosities µ0 and µ∞ are shown in Figure 2.1. In this study, the following values
are used: µ0 = 0.016 [kg m−1s−1], µ∞ = 0.0036 [kg m−1s−1], λ = 8.2 [s−1], a = 0.64,
and n = 0.2128.

3. Numerical model. The investigated domain Ω is discretized using a regular
lattice Ω̂,

Ω̂ =
{
~x~ι = (i∆`, j∆`)

∣∣∣~ι = (i, j), i ∈ N̂x − 2, j ∈ N̂y − 2
}
, (3.1)

where Nx and Ny denote the numbers of discrete lattice sites in x and y directions,

respectively, ∆` = Lx/Nx = Ly/Ny, and N̂ := {1, 2, . . . , N}.
The time interval (0, Tfin) is equidistantly discretized as

{
tn | tn = n∆t, n ∈ N̂t

}
,

where Nt + 1 is the number of time steps and ∆t = Tfin/Nt.

3.1. Lattice Boltzmann method. The lattice Boltzmann method
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Fig. 2.1: The dependency of the dynamic viscosity on the shear rate given by the
Carreau-Yasuda model. The Newtonian limits µ0 and µ∞ of the model are marked
by the dashed lines.
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Fig. 3.1: D2Q9 model for ~ξi, i ∈ 9̂.

is a numerical method that uses a meso-
scopic description for the solution of the
incompressible, Newtonian fluid flow de-
scribed by Eq (2.4).

The unknowns of the method are
the particle density functions fk, k ∈ q̂,
where q denotes the number of direc-
tions, in which the density function fk
are propagating within one time step.
In this work, we use q = 9 in two-
dimensional space. In the LBM, it is
common to work with non-dimensional
quantities, therefore, the functions fk
are considered dimensionless and in
order to transform other quantities
from physical to non-dimensional units,
∆` [m] and ∆t [s] are used as the scaling factors [8, 11].

The evolution of the discrete probability functions is determined ∀~x~ι ∈ Ω̂,
∀tn ∈ N̂t, ∀k ∈ q̂, by the discrete Boltzmann equation

fk(~x~ι + δt ~ξk, tn + δt)− fk(~x~ι, tn) = Ck(~x~ι, tn) + Gk(~x~ι, tn), (3.2)

where δt = 1 is the non-dimensional time step, ~ξk [−] is the non-dimensional micro-
scopic velocity,

~ξk =





(0, 0)T for k = 1,

(1, 0)T , (0, 1)T , (−1, 0)T , (0,−1)T for k = 2, 3, 4, 5,

(1, 1)T , (−1, 1)T , (−1,−1)T , (1,−1)T for k = 6, 7, 8, 9.

(3.3)
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Ck [−] is the CLBM discrete collision operator introduced in [6] and Gk [−] is the
discrete source term [12].

Macroscopic dimensionless quantities ρ and ~u are given by

ρ =

9∑

k=1

fk, (3.4a)

~u =
1

ρ

9∑

k=1

fk~ξk +
δt
2
~g. (3.4b)

3.2. Non-Newtonian LBM. Based on [13], the non-Newtonian effects are in-
cluded into the Newtonian LBM numerical model as follows. Into Eq. (2.4), an addi-

tional source term ~G is added which compensates for the non-Newtonian behavior:

ρ

(
∂~u

∂t
+ ~u · ∇~u

)
+∇p = 2µ∞∇ · D + ~G+ ρ~g, (3.5a)

where ~G satisfies

~G = 2(µCY − µ∞)∇ · D. (3.5b)

Then, the source term ~G is discretized into the velocity space, i.e., in Eq. (3.2), it is
included in Gk, k ∈ q̂.

4. Results and discussion.

4.1. Mathematical model setup. Flow of a blood-like fluid is considered in
a MRI-based, stenosed aorta geometry adapted from [10] and [4], see Figure 4.1.
The width (or diameter) of the vessel inside the stenosis (coarctation) is denoted by
W [m], see Figure 4.1. The width of a healthy vessel (i.e., without the stenosis) in
the middle of the computational domain is denoted by W0. In order to investigate
the non-Newtonian effects in the cases of more and less severe stenosis, the adopted
geometry is modified using gradually decreasing values of W . Specifically, the results
for these three aorta geometries are presented in this section: (a) original geometry
adapted from [10, 4] with W ≈ 1

2W0, (b) geometry with W = 1
3W0, and (c) geometry

with W = 1
4W0.

In order to minimize the influence of the inflow and outflow boundary condition,
the investigated domain was prolonged as illustrated in Figure 4.1. For all simulations,
a single computational lattice is used with Nx = 1280 and Ny = 256. Thus, the spatial
and temporal step sizes are ∆` = 0.15 mm and ∆t = 2.11 · 10−7 s, respectively. A
fully developed velocity profile between two parallel plates is prescribed at the inlet
boundary Γin. The maximal velocity of 1.5 ms−1 corresponds to the blood velocity
in human arterial vessels. At Γout, the free outflow boundary condition is prescribed.
At walls that are represented by the gray area in Figure 4.1, the no-slip boundary
condition is prescribed.

4.2. Temporal and spatial averaging. To illustrate the differences between
the Newtonian and non-Newtonian fluid flow, three quantities – the velocity mag-
nitude; the negative horizontal flux; and the difference between the non-Newtonian
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Fig. 4.1: Schematic representation of the computational domain with dimensions
marked in millimeters. The hatched area represents the domain of interest Ω =
(0, 100) × (0, 40). At Γin and Γout, the inflow and free outflow boundary conditions
are prescribed, respectively. The gray area represents the region outside vessels which
behaves as impermeable wall in the numerical simulations.

viscosity µCY and the Newtonian viscosity µ∞ – are averaged over the time interval
(t1, t2) using the formula

Q =
1

t2 − t1

t2∑

tn=t1

Q(tn), (4.1)

where tn is the discrete time and Q represents the time-averaged quantity in question.
In all cases, t1 = 2 and t2 = 20 s were used.

In order to illustrate the backward velocity flux as in [5], space averaging over
vertical axis is done using the formula

〈Q〉 (x) =
1

A(x)

∫

A(x)

Q(x, y)dy, (4.2)

where Q represents the space-averaged quantity and A(x) is the cross section area of
the vessel at x. Finally, the space- and time- averaged quantity Q is denoted by

〈
Q
〉
.

4.3. Results. The time integrated quantities, referred to as the mean velocity
magnitude, the mean negative horizontal flux and the mean viscosity difference, are
shown in Figures 4.2, 4.3, and 4.5, respectively.

The difference in the mean velocity magnitude, computed by the Newtonian mod-
els with µ = µ0 and µ = µ∞, and the non-Newtonian Carreau-Yasuda model, is
insignificant in the case of the least severe stenosis as shown in Figure 4.2a-c. In the
case of more severe stenosis, the models provide slightly different results in terms of
mean velocity magnitudes as shown in Figure 4.2d-i.The most different case is for
µ = µ0, where the steady state in the integrated mean velocity was not reached.

In order to better quantify the effects of the Carreau-Yasuda model compared to
two Newtonian models, the backflow caused by turbulence is investigated by means of
the mean negative horizontal flux in the region behind the coartcation, see Figures 4.3
and 4.5. For the least stenosed artery, the Newtonian model with µ = µ0 predicts
smaller negative flux than the Newtonian model with µ = µ∞ and Carreau-Yasuda
model, as shown in the first row of figures in Figure 4.3 and in Figure 4.4a. It can be
concluded that for all cases, the Newtonian model with µ = µ∞ is a sufficiently good
approximation of the non-Newtonian Carreau-Yasuda model.
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To illustrate the origin of different backflow magnitudes observed in Figure 4.4,
the difference between µCY , µ0, and µ∞ is shown in Figure 4.5. As expected, for
highly stenosed vessels, the blood flow velocity inside and behind the stenosis increases
and as turbulence occurs in the flow, γ̇ becomes large, and, therefore, the viscosity
µCY decreases towards µ∞. Even if the flow remains almost laminar for the case
of W ≈ 1

2W0, γ̇ is not zero (as shown by variable viscosity behind the stenosis in
Figure 4.5a), and again, the Newtonian results with µ = µ∞ correspond better to
µCY than the Newtonian results with µ = µ0.

(a) µ = µ0, W ≈ 1
2
W0 (b) µ = µ∞, W ≈ 1

2
W0 (c) µ = µCY , W ≈ 1

2
W0

(d) µ = µ0, W = 1
3
W0 (e) µ = µ∞, W = 1

3
W0 (f) µ = µCY , W = 1

3
W0

(g) µ = µ0, W = 1
4
W0 (h) µ = µ∞, W = 1

4
W0 (i) µ = µCY , W = 1

4
W0

Fig. 4.2: Magnitudes of mean velocity for gradually decreasing values of W . Results
for the Newtonian models with µ = µ0 and µ = µ∞ are shown in first two columns
and for the non-Newtonian Carreau-Yasuda model, the results are shown in the last
column.
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(a) µ = µ0, W ≈ 1
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(d) µ = µ0, W = 1
3
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Fig. 4.3: Comparison of mean negative horizontal flux ρu−x behind the vessel stenosis
for gradually decreasing values of W . Results for the Newtonian models with µ = µ0

and µ = µ∞ are shown in first two columns and for the non-Newtonian Carreau-
Yasuda model, results are shown in the last column.
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Fig. 4.4: Comparison of space- and time- averaged negative horizontal fluxes
〈
ρu−x

〉

behind the stenosis for gradually decreasing values of W .
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(a) W ≈ 1
2
W0

(b) W = 1
3
W0

(c) W = 1
4
W0

Fig. 4.5: Mean relative difference between µCY and µ∞ defined by µ−µ∞
µ0−µ∞ in loga-

rithmic scale for gradually decreasing values of W .

5. Conclusion. The impact of non-Newtonian properties in the mathematical
modelling of fluid flow in stenosed arteries was investigated in order to determine
whether the Newtonian model is a feasible approximation, or it is necessary to use a
non-Newtonian model. Using three aorta geometries with gradually increasing sever-
ities of stenosis, the comparison of Carreau-Yasuda model and two Newtonian mod-
els for the Carreau-Yasuda limit viscosities µ0 and µ∞ showed that the severity of
stenosis has a non-negligible impact on the fluid viscosity in the region behind the
stenosis. The fluid viscosity behind the stenosis decreases with a decreasing width of
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the stenosis due to turbulence. Consequently, the lower fluid viscosity in this region
leads to a larger negative horizontal flux that can potentially distort MRI measure-
ments. For the least stenosed artery, the variations in the fluid viscosity values are
smaller, nevertheless, the negative horizontal flux is affected by the viscosity value of
the two limiting Newtonian regimes of the Carreau-Yasuda model. In the case of most
stenosed artery this dependence is less significant. Based on the performed compu-
tational experiments, it can be concluded that the Newtonian approach is applicable
for the geometries of large vessels, however, with a careful choice of the Newtonian
fluid viscosity.
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