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NUMERICAL INVESTIGATION OF THE DISCRETE SOLUTION OF
PHASE-FIELD EQUATION

PAVEL EICHLER∗, MICHAL MALÍK∗, TOMÁŠ OBERHUBER∗, AND RADEK FUČÍK∗

Abstract. In this article, we deal with the numerical solution of the phase-field equation. The
numerical solution is based on the lattice Boltzmann method compared with the finite difference
method. First, a short introduction to the mathematical and numerical model is presented and the
implementation of two different methods is briefly investigated. Then, the results of both methods are
compared and the experimental order of convergence is determined. One of the significant drawbacks
of the finite difference method is that a sufficiently fine computational mesh is crucial for accurate
results. The advantage of the lattice Boltzmann method is that it produces accurate results on
courser meshes.
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1. Introduction. Multiphase flow is one of the most investigated fields in com-
putation fluid dynamics because it is present in various phenomena in industry. These
phenomena include, for example, combustion in fluidized bed reactors, blood flow in
vessels, water evaporation from plants, etc.

There are different methods for the solution of multiphase flow [1]. One of these
methods uses a phase parameter φ [−], which describes the boundary between different
phases [2]. This method is mainly used in solidification problems [3], various fluid
flow problems [4], etc. There are two different physical theories in the solidification
physics. The Gibb’s theory [5] assumes sharp interfaces between different phases. On
the contrary, the Van der Waals theory [6] assumes boundary with nonzero thickness
W [m] and smooth transition of the parameter φ on the boundary. It can be shown
by the asymptotic analysis that these two methods are asymptotically equivalent as
W → 0+. In this work, we assume that W > 0.

There are various numerical methods for the study of the boundary evolution
in time, e.g., the volume of fluid method [7], the level-set method [8], the phase-
field method [9], the color gradient method [10], the Shan-Chen method [11], the
free-energy method [12, 13], etc. In this work, the phase-field method is discussed.

Next, we assume that the evolution of the phase parameter φ is determined by
the modified Allen-Cahn equation [14]. Two different numerical methods are used for
the discrete solution of this equation.

The first numerical method is the lattice Boltzmann method (LBM) [15]. This
method was originally derived from cellular automaton for the solution of the Navier-
Stokes equation. Contrary to the classical numerical method, LBM uses probability
density function as the unknown variables. There are several submethods of LBM
such as single relaxation time LBM [16], multi relaxation time LBM [17], cascaded
LBM [18], cumulant LBM [19], entropic LBM [20], etc. It was shown, that LBM can
be used for the solution of the advection equation [16], the shallow water equation
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[21], or the phase-field equation [22, 23]. In this work, LBM form for the phase-field
equation [22] is used.

The second numerical method is the finite difference method (FDM), which is
used as a reference numerical method.

The main aim of this article is to compare LBM and FDM for the solution of the
modified Allen-Cahn equation.

This work is organized as follows. The Section 2 describes the mathematical
model. Next, the discrete numerical methods are summarized. In the fourth section,
numerical results and discussion is presented. The last section concludes our findings.

2. Mathematical model. The mathematical model is based on the Van der
Waals theory, which assumes smooth transition of the phase parameter φ within the
phase interface of thickness W . It is assumed that φ is within the range of [−0.5, 0.5]
and the interface is represented as the set Γ = {~x ∈ Ω |φ (~x) = 0}, where Ω is the
computational domain.

The computational domain is a square, Ω = (0, 1)× (0, 1) with dimensions of m.
Next, the solution is investigated in the time interval (0, Tfin), Tfin [s]. The evolution
of the phase parameter φ (~x, t), ∀~x ∈ Ω, t ∈ (0, Tfin) is determined by the modified
Allen-Cahn equation [22]

∂φ

∂t
+∇ · (~uφ) = ∇ ·

[
M

(
∇φ− ∇φ

‖∇φ‖
1− 4φ2

W

)]
, (2.1)

where t [s] is the time, ∇ =
(
∂
∂x ,

∂
∂y

)T
, M [m2 s−1] is the mobility and W [m] is the

boundary thickness. Eq. (2.1) is supplemented by the periodic boundary conditions
on ∂Ω.

The initial condition for φ at t = 0 is given by

φ(~x, 0) = φ0(~x) =
1

2
tanh

[
2ξn(~x)

W

]
, (2.2)

where ξn is the normal distance to the interface Γ(0). The hyperbolic tangent profile
is chosen to smoothly approximate the jump of φ at the interface.

3. Discrete mathematical model. The computational domain Ω is discretized
using regular lattice Ω̂, see Fig. 3.1,

Ω̂ =
{
~xi j =

((
i+

1

2

)
∆`,

(
j +

1

2

)
∆`

) ∣∣∣ i ∈ {1, 2, · · · , Nx − 2},

j ∈ {1, 2, · · · , Ny − 2}
}

(3.1)

where Nx and Ny are the numbers of discrete lattice sites in x and y direction,
respectively. For simplicity, Nx = Ny and ∆` = 1/Nx.

The time interval (0, Tfin) is equidistantly discretized as {tn|n ∈ {0, 1, · · · , Nt}},
where tn = ∆tn, ∆t = Tfin/Nt, and Nt + 1 is the number of time steps.

3.1. Lattice Boltzmann method. The lattice Boltzmann method is a numer-
ical method originally designed for the fluid dynamic. The primary unknowns of the
method are the non-dimensional particle density functions fk [−], k ∈ {0, 1, · · · , q−1},
which describes the dynamics in mesoscopic sense. The variable q denotes the num-
ber of directions, in which the information is propagating within one time step. In
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Fig. 3.1: Discretization of the computational domain Ω. Light gray circles correspond
to the points ~xi j .

this work, we use q = 9. Next, it is common to work with non-dimensional units in
the LBM community. To transform parameters in physical units to non-dimensional
units, ∆` and ∆t are used as the scaling factors.

The evolution of discrete probability functions is determined ∀~xi j ∈ Ω̂,
∀tn ∈ {1, 2, · · · , Nt} by the equation

fk(~xi j + δt ~ξk, tn + δt)− fk(~xi j , tn) = Ck(~xi j , tn), (3.2)

where δt is the non-dimensional time step, ~ξk [−] is the non-dimensional discrete
mesoscopic velocity,

~ξk =


(0, 0)T for k = 0,

(1, 0)T , (0, 1)T , (−1, 0)T , (0,−1)T for k = 1, 2, 3, 4,

(1, 1)T , (−1, 1)T , (−1,−1)T , (1,−1)T for k = 5, 6, 7, 8.

(3.3)

Ck [−] is the discrete collision operator. In this work we use the single relaxation time
collision operator in the form

Ck = −δt
τ

(
fk − f (eq)

k

)
, (3.4)

where τ [−] is the relaxation parameter. This parameter is related to the mobility as

M = c2s
(
τ − δt

2

)
. f

(eq)
k [−] is the discrete equilibrium density function. To simulate

Eq. (2.1), the equilibrium density function is defined by [22]

f
(eq)
k = φwk

1 +
~ξk · ~u
c2s

+

(
~ξk · ~u

)2

2c4s
− ~u · ~u

2c2s

+
M

c2s

(1− 4φ2)

W
(~ξk · ~n), (3.5)

where wk [−] are weights satisfying

wk =


4
9 for k = 0,
1
9 for k = 1, 2, 3, 4,
1
36 for k = 5, 6, 7, 8.

(3.6)
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cs [−] is the non-dimensional speed of sound and ~n [−] is the normal vector to the
interface Γ. The normal vector is defined as ~n = ∇φ/‖∇φ‖, it can be approximated
using finite difference method as in the Section 3.2 or using central moments of discrete
density functions [22]. The second way is local and thus it is more suitable for parallel
implementation, nevertheless, it is not straightforward to express the numerical error
of this approach. Thus the norm ‖∇φ‖ is calculated using the finite difference method
as shown later.

The unknown phase parameter φ is recovered from discrete density functions as

φ =

8∑
k=0

fk. (3.7)

LBM is implemented using our in-house code based on C++ and CUDA frame-
work enabling computation on NVidia GPU cards.

3.2. Finite difference method. For an arbitrary function g = g (~x, t), the
notation gni j = g (~xi j , tn) is introduced.

The advection part is discretized as follows

∇ · (φ~u)ni j ≈
(φ~u)ni+1 j − (φ~u)ni−1 j

2∆`
+

(φ~u)ni j+1 − (φ~u)ni j−1

2∆`
. (3.8)

Next, if we label

~Ani j =

(
A

B

)n
i j

= M

(
∇φ− ∇φ

‖∇φ‖
1− 4φ2

W

)n
i j

(3.9)

then the diffusion part is approximated as

(∇ · ~A)ni j ≈
Ani+1/2 j −Ani−1/2 j

∆`
+
Bni j+1/2 −Bni j−1/2

∆`
, (3.10)

where

Ani+1/2 j ≈M

φni+1 j − φni j
∆`

−
φn
i+1 j−φ

n
i j

∆`

‖∇φ‖ni+1/2 j

1− 4(φ2)ni+1/2 j

W

 , (3.11a)

Bni j+1/2 ≈M

φni j+1 − φni j
∆`

−
φn
i j+1−φ

n
i j

∆`

‖∇φ‖ni j+1/2

1− 4(φ2)ni j+1/2

W

 , (3.11b)

(
‖∇φ‖2

)n
i+1/2 j

≈
(
φni+1 j − φni j

∆`

)2

+

(
φni+1/2 j+1/2 − φni+1/2 j−1/2

∆`

)2

+ α2, (3.11c)

φni+1/2 j ≈
1

2

(
φni+1 j + φni j

)
, (3.11d)

φni+1/2 j+1/2 ≈
1

4

(
φni+1 j+1 + φni+1 j + φni j+1 + φni j

)
. (3.11e)

The remaining terms can be obtained by permuting the indices in Eqs. (3.11). Next α
ensures not division by zero. Because the value of α does not have significant impact
on the finite difference solution, α = 10−5 is used for all simulations using FDM.
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The time derivative

∂φni j
∂t

= −∇ · (φ~u)ni j + (∇ · ~A)ni j (3.12)

is solved using the fourth order Runge-Kutta method [24] to have sufficient order of
discretization in time.

FDM is implemented both in series and in parallel using C++. The parallel
version is implemented both on CPU and on GPU using Template Numerical Library
(TNL) [25]. TNL is a numerical library based on template meta-programming and
offers a flexible code design.

4. Results & Discussion. First, one benchmark problem is selected to investi-
gate the efficiency of both LBM and FDM implementation. Then, the results of LBM
and FDM are compared and the experimental order of convergence is determined.

The benchmark problem is the diagonal displacement of a circular disk with
diameter R and center S. The parameters for the computation are Mp = 0.05 m2 s−1,
M0 = 0.001, Wp = 0.03 m, ~up = (100, 100) m, Tfin = 0.1 s, Rp = 0.5 m, and
Sp = [0.5, 0.5] m, where the subscript p denotes parameters in physical units and 0 in
non-dimensional units.

4.1. Implementation efficiency. To investigate the efficiency of our imple-
mentation, 5 different meshes are used with Nx = Ny = 32, 64, 128, 256, 512. In the
case of FDM, serial implementation on CPU, parallel implementation on CPU using
TNL and parallel implementation on GPU using TNL are used. In the case of LBM,
only parallel implementation using C++ and CUDA is used.

The computational times are given in Tab. 4.1a. Next, the speedup is determined
in Tab. 4.1b. From Tab. 4.1a, the implementation of FDM using TNL on GPU
provides the results in the shortest time. The second fastest method is the GPU
implementation of LBM. LBM is slower because it uses more unknowns and, thus, it
involves more accesses to the global memory.

We can conclude from the results in Tab. 4.1b that TNL is an efficient numerical
library which allows to speedup numerical solutions.

4.2. Numerical stability of LBM. In this subsection, the numerical stability
of LBM is discussed. It was observed in our simulation that the method can be
unstable due to the numerical computations of normal vectors. Thus we start with
the discussion on the computation of normal vectors in LBM. Two methods for the
stabilization are used. The first method is the same as in FDM, see Eq. (3.11c).
The value of the parameter α has impact on the numerical solution. If α is huge
(α = 10−2), the solution contains oscillations in values of φ. If α is small (α = 10−9)
the solution does not contain the oscillations.

Based on the results for different values of the parameter α, similar criterion was
suggested. As the magnitude of the phase parameter |φ| goes to 0.5, the value of
M
c2s

(1−4φ2)
W (~ξk · ~n) is small because of the expression (1− 4φ2). Next, if |φ| is close to

the value 0.5, the norm ‖∇φ‖ is small and can cause numerical instabilities. Thus,

empirical criterion was introduced. If |φ| > H, the term M
c2s

(1−4φ2)
W (~ξk ·~n) is neglected.

Nevertheless, the choice of H = 0.5−ε can have significant influence on the numerical
solution φ. It can be illustrated in Figs. 4.2, where the contour of φ are drawn.

If ε = 10−2, then the method is unstable for values of φ close to −0.5 and 0.5.
Next, on the finer mesh, the high value of H causes higher diffusion. It is illustrated
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Nx ×Ny FDM serial FDM CPU TNL FDM GPU TNL LBM

32× 32 1.30 1.11 0.53 0.32

64× 64 20.65 16.32 2.04 2.18

128× 128 331.74 266.46 8.34 23.76

256× 256 5307.35 4265.93 45.56 251.85

512× 521 85013.32 69533.82 451.41 2054.87

(a) Computation times in seconds.

Nx ×Ny FDM CPU TNL FDM GPU TNL LBM

32× 32 1.17 2.45 4.06

64× 64 1.26 10.12 9.47

128× 128 1.24 39.78 13.96

256× 256 1.24 116.49 21.07

512× 512 1.22 188.32 41.37

(b) Speedup based on times in Tab. 4.1a.

Table 4.1: Comparison of three different parallel implementations of FDM and one
parallel implementation of LBM. The abbreviations FDM serial, FDM CPU TNL,
and FDM GPU TNL represent serial implementation on CPU, parallel implementa-
tion on CPU using TNL, and parallel implementation on GPU using TNL, respec-
tively.

in Figs. 4.2a and 4.2c. If we set ε = 10−9, then the results are much better compared
to the initial condition, see Figs. 4.2b and 4.2d.

In Fig. 4.1, numerical L1 and L2 errors are drawn for different values of α and ε.
The error for mesh with N ×N points is computed according to formulae

La(N) = ‖φN − φ0
N‖La

,

where a ∈ {1, 2}. It illustrates that if α = ε = 10−9, similar results are obtained.
From the results in Figs. 4.2 and 4.1, we can conclude that our suggested cri-

terion can stabilize LBM but the choice of H can significantly influence the re-
sults of φ. However, in the multiphase simulation, the most significant is the set
Γ(t) = {~x ∈ Ω|φ(~x, t) = 0} which was determined for both values of H sufficiently, see
Figs. 4.2.

4.3. Comparison of LBM and FDM. In this subsection, results of LBM and
FDM are compared. In Tabs. 4.2, 4.3, L1, L2 errors and corresponding experimental
order of convergence are given. The experimental order of convergence is defined as

EOCa =
ln(La(N))− ln(La(2N))

ln(2)
, (4.1)

where a ∈ {1, 2}.
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Fig. 4.1: Comparison of L1 and L2 numerical errors for LBM with different values of
parameters α and ε.

Nx ×Ny L1 EOC1 L2 EOC2

32× 32 3.26 · 10−1

0.68
4.72 · 10−1

0.44
64× 64 2.04 · 10−1

0.95
3.47 · 10−1

0.63
128× 128 1.05 · 10−1

2.93
2.24 · 10−1

2.36
256× 256 1.37 · 10−2

3.89
4.35 · 10−2

3.70
515× 512 9.23 · 10−4

2.00
3.33 · 10−3

2.00
1024× 1024 2.30 · 10−4

2.00
8.32 · 10−4

2.00
2048× 2048 5.75 · 10−5 2.08 · 10−4

Table 4.2: L1 and L2 errors and experimental order of convergence EOC for FDM.

Nx ×Ny L1 EOC1 L2 EOC2

32× 32 7.55 · 10−2

3.37
1.23 · 10−1

2.81
64× 64 7.29 · 10−3

3.52
1.76 · 10−2

2.97
128× 128 6.36 · 10−4

2.11
2.23 · 10−3

2.13
256× 256 1.47 · 10−4

1.97
5.10 · 10−4

1.98
515× 512 3.75 · 10−5

1.99
1.29 · 10−4

1.99
1024× 1024 9.42 · 10−6

1.99
3.23 · 10−5

1.99
2048× 2048 2.36 · 10−6 8.09 · 10−6

Table 4.3: L1 and L2 errors and experimental order of convergence EOC for LBM.
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(d) Mesh 2048× 2048, ε = 10−9.

Fig. 4.2: Contour lines of φ for different values of the parameter ε and different mesh
sizes. The black circle represents the area where φ < 0. The results are computed
using LBM and are given at the time t = ∆t.

It can be seen in Tabs. 4.2, 4.3 that for coarse computational meshes, the experi-
mental order of convergence is lower than for finer meshes. The reason for this obser-
vation is that the initial profile of the hyperbolic tangent could not be approximated
sufficiently and thus the results are impaired, see Figs. 4.3a, 4.3b. Both methods have
experimental order of convergence near 2, nevertheless, LBM has lower L1 and L2

error for all meshes. Next, Figs. 4.3c, 4.3d illustrate that LBM preserve the initial
shape of the boundary Γ much better on coarser computational meshes than FDM.

5. Conclusion. The first computational study was to measure the time effi-
ciency of our numerical solvers. It was observed that the implementation of the finite
difference method on GPU using Template Numerical Library is very efficient com-
pared to the other implementation discussed in this article.

Next, the finite difference method and the lattice Boltzmann method were com-
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(a) FDM, mesh 64× 64.
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(d) LBM, mesh 256× 256.
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Fig. 4.3: Comparison of the FDM and LBM on two different computational meshes.
The results are given at the final time t = Tfin.

pared to the problem of the diagonal motion of a circle. We have observed the
experimental order of convergence was near 2 for both methods. However, LBM has
lower errors and produce better results on courser meshes.

These observations demonstrate that in the multiphase flow problems, the solution
of the phase-field equation using the lattice Boltzmann method is more suitable than
the finite difference method, which is commonly used in literature.
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