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VORONOI IMPLICIT INTERFACE METHOD FOR GEOMETRY
EVOLUTION OF TWO MINERALS WITH APPLICATIONS IN

REACTIVE POROUS MEDIA

P. FROLKOVIČ, N. GAJDOŠOVÁ∗ AND S. GÄRTTNER, N. RAY†

Abstract. We present a numerical method to describe the precipitation and dissolution pro-
cesses of two interacting mineral phases and one fluid phase in porous media. We use the Voronoi
implicit interface method [9] to track an interface evolving in normal direction that can contain triple
points. To represent the interface implicitly, one uses the ε set of an evolving level set function that
is given as the (unsigned) distance function initially or after reinitialization. To obtain the speed of
evolution, we combine the Voronoi implicit interface method with a constant extrapolation of the
normal speed which is prescribed only at the interface [1, 5].
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1. Introduction. The tracking of solid-fluid interfaces is relevant for several ap-
plications such as melting/solidification and precipitation/dissolution processes. The
latter ones are relevant in reactive transport modeling, particularly in complex ge-
ometric structures such as porous media. Here, the solid-liquid interface relates to
the reactive surface which is an important driving force for possible alterations in the
pore structure.

In level set methods [10, 6], the dynamic interface, here Γ = Γ(t), is typically
represented as the zero set of some level set function defined for each time t ≥ 0 on
a fixed rectangular domain D ⊂ R2. To find such a level set function, e.g. at t = 0,
one may first compute the distance function d ≥ 0 to the interface Γ that is typically
obtained by solving the eikonal equation [10],

|∇d(x)| = 1 , x ∈ D , d(x) = 0 , x ∈ Γ. (1.1)

The interface Γ is the zero set of d, but the distance function d has no well-defined
gradient at Γ that can cause significant difficulties in numerical methods when describ-
ing the position of evolving interface Γ(t). Therefore, the so-called signed distance
function is preferred in level set methods [10], if the interface Γ separates only two
phases, and when the sign of ±d identifies the phases. However, a single signed dis-
tance function cannot be used in scenarios where also triple points may be present,
cf. Figure 1.1. Such a situation naturally occurs if, for instance, a system with two
mineral phases and one liquid phase is considered. In this case, the (unsigned) dis-
tance function d may be more convenient to represent Γ. To bypass the difficulties
arising from standard level set methods in such scenarios, the Voronoi Implicit Inter-
face Method (VIIM) was proposed in [8, 9] that can track multiple evolving phases
using the unsigned distance function. In what follows, we apply the VIIM method
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Fig. 1.1. An illustration of the fixed domain D with the interface Γ (the bold curve) containing
two triple points. Two subsets Γ1

ε and Γ2
ε of the ε level set Γε (the dashed curves), two values of the

indicator function χ, and the subdomain Ω are illustrated.

[9] for the advection in normal direction for interfaces containing triple points when
a variable speed of the evolution is prescribed only at the interface.

To distinguish the phases with such distance functions, we suppose that an indi-
cator function χ = χ(x) is available which indicates for x ∈ D \ Γ to which phase the
point belongs.

If instead of the zero level set of d one considers the ε level set Γε defined by

x ∈ Γε ⇔ d(x) = ε , x ∈ D

for some well chosen small parameter ε > 0, then the gradient ∇d(x) is typically well-
defined for almost all x in a neighborhood of Γε. Using the indicator function χ, we
obtain that the level set Γε consists of three parts Γpε , p = 1, 2, 3, that, for simplicity,
we consider to be closed curves, see Figure 1.1 for an illustration. Moreover, for
simplicity, we suppose that the level set Γε encloses a domain Ω ⊂ D with Γε ≡ ∂Ω,
see again Figure 1.1 for an illustration.

As described in detail in [9], the interface Γ can then be approximated by the
so-called Voronoi implicit interface ΓV defined by the points x ∈ Ω that are at the
same distance to two parts of Γε and at a larger or equal distance to the third one,
see details later. We note that the two interfaces, Γ and ΓV , can differ slightly in
general. Nevertheless, to simplify the explanation, we consider from now on that ΓV

approximates the interface we are interested in.
The main idea of the Voronoi implicit interface method is to track the evolution

of the ε level set Γε of d numerically. If necessary, the actual position of ΓV is not
taken directly from the zero level set of d, but it is reconstructed from Γε of d at any
time point.

2. Mathematical models. As described in the previous section, we suppose
that the position of the interface Γ(0) at t = 0 is given implicitly by the unsigned
distance function d from (1.1), and the phases are distinguished by the indicator
function χ. Next, at any time t ≥ 0 we suppose that three distinct interfaces Γpε ,
p = 1, 2, 3 are given implicitly as the zero level set Γε of a function φ such that
Γε ≡ ∂Ω, and φ(x, t) > 0 for x ∈ Ω, and φ(x, t) < 0 for x ∈ D \ Ω̄. Note that at
t = 0 one can take φ = ε − d. We emphasize that it is sufficient if the function χ is
well-defined at the time t only in a small neighborhood of Γε.

In the next steps, we describe how to determine the position of the Voronoi
implicit interface ΓV for the set Γε from the given function φ and how to track the
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position of ΓV in time. The method described here is a combination of VIIM in [9]
coupled with the extrapolation of the variable speed prescribed only at the interface
[1, 5].

The first step of the method is to find distance functions dp = dp(x), p = 1, 2, 3
to the interfaces Γpε by solving the eikonal equations

|∇dp(x)| = 1 , x ∈ D , dp(γ) = 0 , γ ∈ Γpε . (2.1)

Note that the zero Dirichlet boundary conditions in (2.1) are defined on implicitly
given boundaries Γpε .

The second step in the method is to find (or define implicitly) the Voronoi
implicit interface ΓV for Γε such that

ΓV = {x ∈ Ω : 0 < dp(x) = dq(x) ≤ dr(x)} , (2.2)

where p, q, r ∈ {1, 2, 3} and they are all distinct. A simple numerical algorithm is pro-
posed later to solve this problem. Moreover, the values of the indicator function χ(x)
can now be extended for all x ∈ Ω by

χ(x) = p ⇔ dp(x) < min{dq(x), dr(x)} ,

and χ(x) = 0 otherwise.
The third step is to find (or “reconstruct”) the unsigned distance function dV

by solving the eikonal equation, i.e.

|∇dV (x)| = 1 , x ∈ D , dV (γ) = 0 , γ ∈ ΓV . (2.3)

Note that ΓV in (2.3) is defined only implicitly and it is supposed to contain triple
points.

In the fourth step, one determines from the position (and eventually from some
other properties) of the interface ΓV a speed S = S(x) of the evolution of ΓV in its
normal direction at time t. As such speeds may be well-defined only for γ ∈ ΓV , say
S(γ) = SV (γ), we need to extrapolate it for x ∈ D in general. Such extrapolated
function S = S(x) can be obtained by solving the linear stationary advection equation

∇dV (x) · ∇S(x) = 0 , x ∈ D , S(γ) = SV (γ) , γ ∈ ΓV . (2.4)

(2.4) can be interpreted as a constant extrapolation along the normal vectors of ΓV for
the known values SV (that are given only on the interface ΓV ) to the values S defined
in the whole domain D [2]. This definition has also some numerical advantages, see
Remark 1 later.

The fifth step consists of solving the advection equation for the motion in normal
direction for some given time interval (t, t+∆t) with small ∆t (see section 3 for proper
choices),

∂tφ+ S|∇φ| = 0 , x ∈ D . (2.5)

Note that the given function φ at time t in (2.5) can be replaced by φ(t, x) = ε−dV (x)
in general. This is called reinitialization, and it is quite often used in level set methods
[6, 10].

Once the equation (2.5) is solved, we repeat the five steps for the time point t+∆t.
If ∆t is small enough, the indicator function χ from the third step of our method is
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well-defined in the neighborhood of the evolved interface ΓV at the time t + ∆t as
required in the first step of the method. The numerical method described later will
ensure a reasonable restriction on the choice of ∆t to fulfill this requirement.

As discussed in [9], the method treats vanishing subdomains in a natural way,
but emerging subdomains, if required, are to be initialized explicitly in the model.

Remark 1. We note that the usage of speed S in (2.5) obtained from (2.4) has the
important property that the function φ(x, t+ ∆t) is expected to be a distance function
to the interface ΓV at time t + ∆t. Although such a property can be proven only for
smooth interfaces [12, 1], several numerical experiments show a good approximation
of this property in general [12, 1, 5].

3. Numerical discretization. For simplicity of the notation, we consider the
quadratic domain D = (0, L)2. Let I > 0 be a given number of partitions and
h = L/I. We denote now the coordinates by two letters (x, y) ∈ D. We search for the
values dij that approximate the exact (unsigned) distances d(xi, yj) with xi = ih and
yj = jh, i, j = 0, 1, . . . , I by solving numerically (2.1), when d ≡ dp and Γ := Γpε , or
(2.3), when d ≡ dV and Γ := ΓV . We suppose that an approximation φnij ≈ φ(xij , t

n)
for some discrete time tn is available.

In what follows we present self-contained details on the discretization methods
to be used with the method described in Section 2. The main idea is to choose an
appropriate approximation of the gradient ∇dij ≈ ∇d(xi, yj) [7, 10] that will be used
in (2.1), (2.3), or (2.4). It is obtained by a finite difference approximation

∇dij = (∂xdij , ∂ydij) ≈
1

h
(δxdij , δydij) , (3.1)

where

δxdij := sgn(k)(di+kj − dij) , δydij := sgn(l)(dij+l − dij) . (3.2)

The indices k, l ∈ {−1, 0, 1} are determined from

k = arg min
m∈{−1,0,1}

di+mj , l = arg min
m∈{−1,0,1}

dij+m . (3.3)

We note that in cases when the interface intersects an edge between (xi, yj) and some
of its neighbors, the values dij have to be initialized by taking the Dirichlet boundary
condition into account, see Section 4.

When using (3.3) for the nodes lying on ∂D, one has to simply skip the unavailable
indices m in (3.3). No particular preference is recommended when the definition of k
or l is not unique. We note that the first-order accurate approximation ∇dij can be
extended to a second-order accurate form [11] quite straightforwardly.

To solve (2.1), it is rewritten in the form |∇d|2 = 1. Consequently, the numerical
scheme to find the approximative distance function can be written in the form

(di+kj − dij)2 + (dij+l − dij)2 = h2 . (3.4)

We briefly discuss how to solve the system of quadratic equations (3.4) with the fast
marching method in Section 4.4.

Once the numerical solution dVij , i, j ∈ {0, 1, . . . , N} of (2.3) is available, one can
solve (2.4) numerically by using the first-order accurate upwind differences,

sgn(k)(dVi+kj − dVij)(Si+kj − Sij) + sgn(l)(dVij+l − dVij)(Sij+l − Sij) = 0 . (3.5)



VORONOI IMPLICIT INTERFACE METHOD FOR GEOMETRY EVOLUTION 125

Note that k = l = 0 for a grid point (xi, yj) can occur only if (xi, yj) ∈ Γ, therefore
Sij shall be then given by Dirichlet boundary conditions. How to solve the resulting
linear system (3.5) in an efficient way is discussed in Section 4.4 later.

Finally, once the numerical values dVij and Sij are given, one can realize one time
step for sufficiently small ∆t in numerically solving the advection equation (2.5),

φn+1
ij = φnij −∆tSij |∇φnij | , (3.6)

where ∇φnij is obtained analogously to ∇dVij in (3.1) - (3.3). The time step ∆t must
be chosen such that the stability of the scheme (3.6) is attained. To derive a criterion
for ∆t, we rewrite (3.6) into the equivalent form,

φn+1
ij = φnij −

∆t|Sij |
h

(
Cij(φ

n
ij − φni+kj) +Dij(φ

n
ij − φnij+l)

)
(3.7)

where

Cij :=
|φnij − φni+kj |
|∇φnij |

, and Dij :=
|φnij − φnij+l|
|∇φnij |

.

Clearly, the scheme (3.6) is stable if its right hand side represents a convex combination
of φnij , φ

n
i+kj , and φnij+l, i.e.

∆t

(
max
i,j
|Sij |(Cij +Dij)

)
≤ h . (3.8)

As Cij ≥ 0 and Dij ≥ 0, and C2
ij +D2

ij = 1, one obtains

1 ≤ max
i,j

(Cij +Dij) ≤
√

2 .

Consequently, to fulfill (3.8), it is sufficient to use

∆tmax
i,j
|Sij | ≤

h√
2
. (3.9)

For both choices of ∆t, (3.8) or (3.9), the value φn+1
ij is bounded by the values

φnij , φ
n
i+kj , φ

n
ij+l. If, for instance, the function φ at time tn equals to the distance

function dV , see the discussion after (2.5) on the reinitialization, the values φn+1
ij in

(3.6) differs from φnij at most by a value ±h. This property insures that for a properly

choosen value ε, e.g. ε = 2h, the ε set of φ remains in the same phase for t ∈ [tn, tn+1]
as required in Step 5 of the method in Section 2.

4. Initialization procedure. We describe now how to define the values dij for
the grid nodes (xi, yj) next to the interface Γ, for which the zero Dirichlet boundary
conditions are prescribed. We do it first for the eikonal equation (2.1) following [1, 5],
and then for (2.3) with a slight modification. Finally, the initialization procedure will
be explained for the linear advection equation (2.4). Our main tool in deriving the
following results is a simple assumption of linear interpolation along edges of the mesh
for all involved numerical approximating functions.

We note that instead of defining (fixing) the values dij for the grid nodes next to
the interface, one can obtain these values from (3.4) using an extrapolation procedure
for the unavailable values di+kj or dij+l as described in [5]. The following descrip-
tion of the initialization procedure can be rather straightforwardly replaced with the
extrapolation procedure in [5], and its implementation is foreseen for a future devel-
opment as it can result in a more precise approximation, see [5] for details.
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4.1. The eikonal equation (2.1). Let φnij > 0 and Γ = Γpε , i.e. (xi, yj) ∈ Ω.
We say that the grid node (xi, yj) is next to the interface Γ in x direction if at least
one of the following two inequalities is valid:

φnijφ
n
i−1j < 0 or φnijφ

n
i+1j ≤ 0 . (4.1)

Analogously, we say the node (xi, yj) is next to the interface Γ in y direction if at
least one of following inequalities is true:

φnijφ
n
ij−1 < 0 or φnijφ

n
ij+1 < 0 . (4.2)

Using (4.1) and (4.2), we approximate positions of the points on Γ that intersect edges
of the grid. Let (xi, yj) be, e.g., a grid node next to the interface in x direction. We
search for a coordinate xi−α j or xi+α j that will be identified with some αi−1j ∈ (0, 1)
or αi+1j ∈ (0, 1), respectively, such that

xi±α j = αi±1jxi±1 + (1− αi±1j)xi. (4.3)

Analogously, the values αij±1 ∈ (0, 1) and the point yi j±α shall be found. The
interface points (xi±α, yj) and (xi, yj±α) approximate the intersection points of Γ
with the edges of the grid.

The values αi±1j are determined from the linear interpolation of φnij and φni±1j
by requiring that 0 = αi±1jφ

n
i±1j + (1−αi±1j)φnij and analogously for αij±1. Clearly,

αi±1j =
φnij

φnij − φni±1j
, and αij±1 =

φnij
φnij − φnij±1

. (4.4)

Note that the values αi±1j and αij±1 are specific for each grid node (xi, yj) that we
do not emphasize in their notation. Furthermore, some care shall be taken in general
for very small values of φnij > 0 when one might prefer to set φnij = 0.

Following [1, 5], one can now define the values dij for the nodes next to the
interface explicitly. Firstly, if there is only one interface point next to (xi, yj), we
approximate [1]

dij = αi±1jh or dij = αij±1h . (4.5)

If there is one interface point in x direction and one interface point in y direction, we
define

dij =
αi±1jαij±1√
α2
i±1j + α2

ij±1

h , (4.6)

where the signs in ± must be chosen accordingly. The definitions (4.5-4.6) must
be modified in cases, when there are two interface points next to (xi, yj) in x or y
direction by replacing the corresponding αi±1j or αij±1 in (4.5-4.6) by the minimum
of the two values, e.g. for (4.5) we modify it by

dij = min{αi−1j , αi+1j}h or dij = min{αij−1, αij+1}h ,

and analogously for (4.6).
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4.2. The eikonal equation (2.3). Let d ≡ dV and Γ := ΓV . We suppose that
the distance functions dp in (2.1) are obtained by the numerical method described in
Section 4.1. Consequently, we now define for all combinations of three different values
of p, q, r ∈ {1, 2, 3} that χij = p if dpij < min{dqij , drij} and χij = 0 otherwise. Note

that if χij = 0 then xij ∈ Γ, and therefore dVij = 0.
Let χij 6= 0. We say that the grid node (xi, yj) is next to the interface Γ in x

direction if at least one of the following statement is valid:

χij 6= χi−1j 6= 0 or χij 6= χi+1j 6= 0 . (4.7)

Analogously, we say the node (xi, yj) is next to the interface Γ in y direction if at
least one of the following inequalities is true:

χij 6= χij−1 6= 0 or χij 6= χij+1 6= 0 . (4.8)

Let (xi, yj) be a point next to Γ in x direction. Let p = χij and q = χi±1j , i.e.,
dpij < dqij and dpi±1j > dqi±1j . If we now denote in (4.4), formally, that φnij := dpij − d

q
ij

and φni±1j := dpi±1j − d
q
i±1j , then the point xi±αj is given by (4.3) with the coefficient

αi±1j given by (4.4). Special care shall be given to the case when |dpij − d
q
ij | is very

small, when one shall prefer to redefine χij = 0. We proceed analogously to define
the points (xi, yj±α) and the coefficients αij±1. Consequently, the interface points
(xi±α, yj) and (xi, yj±α) approximate the intersection points of Γ with the edges of
the grid.

Analogously to the previous section, we can initialize the values of dij for the
points next to the interface. The definitions (4.5) and (4.6) remain unchanged, if
(xi, yj) and its neighbors lie only in two phases, i.e. χi±1j = χij±1 6= χij . The presence
of a triple point is indicated, if the vertices (xi, yj), (xi±1j , yj), and (xi, yj±1) of a
triangle lie in three different phases, i.e. χij 6= χi±1j , χij 6= χij±1, and χi±1j 6= χij±1.
In this case we define

dij = min{αi±1j , αij±1}h . (4.9)

Finally, if some approximation of the position of a triple point is required, for instance
to compute the length of an interface or the area of an enclosed domain, one might
take any reasonably approximated position inside of the triangular element, where
the triple point is indicated.

4.3. The advection equation (2.4). The previous idea from section 4.2 can
be used also for the advection equation, where the main difference to (2.3) is that
the Dirichlet boundary conditions in (2.4) are non-homogeneous. Having the po-
sitions of interface points (xi±α, yj) or (xi, yj±α) from (4.3) at hand, we use the
Dirichlet boundary conditions in (2.4) to define the values Si±αj = SV (xi±α, yj) or
Sij±α = SV (xi, yj±α), respectively. Now depending on which formula from (4.5),
(4.6), or (4.9) was used to define dij , we define analogously

if (4.5), then Sij = Si±αj or Sij = Sij±α , (4.10)

if (4.6), then Sij =
α2
ij±1Si±αj + α2

i±1jSij±α

α2
i±αj + α2

ij±1
, (4.11)

if (4.9) then Sij = Si±αj for αi±1j ≤ αij±1 and Sij = Sij±α otherwise. (4.12)

The extrapolated values Si,j shall be used in the scheme (3.5) for the nodes next to
the interface ΓV .
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Fig. 5.1. Distance function from the Voronoi interface dV (left) and velocity extension S (right).

4.4. Numerical solution of algebraic system (3.4). Before introducing an
algorithm to solve the algebraic system of quadratic equations (3.4), we comment
briefly the possible forms of these equations. We note that using the previous sections,
the values dij for the nodes next to the interface are initialized.

In a generic case when k 6= 0 and l 6= 0 in (3.3), the equation (3.4) has three
unknowns dij , di+kj , and dij+l. If either k = 0 or l = 0, the equation (3.4) has only
two unknowns. Note that one cannot have k = l = 0 in (3.4) as this can happen only
when Dirichlet boundary conditions are used for dij , and when the algebraic equation
(3.4) is not used.

To solve such a system of quadratic algebraic equations, the fast marching method
[10] is used with no modifications. This iterative method suggests consecutive steps
in solving (3.4) in such a way that only one scalar quadratic equation with single
unknown dij is to be solved in each step. The solution is then obtained in a finite
number of iterations, for details see [10, 1, 5].

5. Numerical experiments. We now illustrate the capability of our method
introduced in the previous sections with the following two scenarios: First, we consider
a configuration with two mineral phases and one fluid phase forming initially a T-
shaped geometry with triple point. The example is chosen to clearly demonstrate
the behavior of the model and the method to solve it. The corresponding distance
functions to the connected components of Γε, i.e. d1, d2, d3, are depicted in Figure 5.2.
We now assume that the interface 1 moves with speed one and the interface 2 with
speed two, while the third interface is immobile, i.e. the speed equals zero. These
locally defined velocities must be extended to the whole domain as discussed above
and illustrated in Figure 5.1 (right). Figure 5.3 depicts the comparison between the
initial and final interface configuration of the simulation.

We applied our method with the parameter ε = 2h being chosen as the doubled
mesh spacing on a regular 100x100 grid. The time stepping follows the stability
constraints on the maximal time step size as discussed in Section 3. All simulations are
performed using MATLAB. The fast marching solver is built upon an implemention
by Jens Oberlander.

As a second and more sophisticated illustration, we apply our method to the
example motivated in the introduction. Here, we again consider two minerals and one
fluid phase - but this time arranged in a circle being composed of two semicircles for
mineral D (right) and P (left), cf. Figure 5.4 left. In this research we focus on the
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Fig. 5.2. Distance functions d1, d2, d3.

Fig. 5.3. Comparison between the initial interface position and its final position. The location
of the tripel point is highlighted in green.

following reactive system, cf. [3]

A(aq) + D(s) → B(aq) (5.1)

B(aq) + C(aq) → P(s). (5.2)

This system includes three mobile species and two mineral species which dis-
solve or precipitate respectively. First, species B is produced while D is dissolved
(reaction 5.1), followed by its chemical conversion into the precipitating mineral P
(reaction 5.2).

The chemical reactions are represented by the following system of ordinary dif-
ferential equations denoting the vector of (mobile) species’ concentrations as
~c = (cA, cB , cC)T

d

dt
~c =

 σD( cBcA − 1)(ρD − cA)

−σP (cBcC − 1)(ρP − cB)− σD( cBcA − 1)(ρD − cB)

−σP (cBcC − 1)(ρP − cC),

 (5.3)

where ρ(·) represents the mineral density and σ(·) denotes the length of the respective
interface to the fluid (reactive surface). In this example, the values ρD = 20 and
ρP = 4 are chosen. The normal velocities SD and SP along the fluid-solid interfaces
of D and P are accordingly given by

SD =
cB
cA
− 1, SP = cBcC − 1, (5.4)

respectively. The initial conditions are chosen as ~c0 = (2, 1, 1)T such that the reaction
(5.2) is at chemical equilibrium. At the same time, the abundance of species A triggers
reaction (5.1).
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Fig. 5.4. Position of the interfaces and the two tripel points at different times: 0s, 0.2s, 2s.
The simulation is performed on a 200x200 grid.

The respective mineral phases dissolve or precipitate according to the reaction
network (5.1, 5.2), which leads to dynamic interface velocities according to (5.4). This
is opposed to the situation of the first example, in which the interface velocity was
prescribed. Our method allows to accurately capture the alteration of the geometry
as well as the position of the triple points. A time series of its evolution is depicted
in Figure 5.4.

As such reactions inherently lead to structural changes of the medium, one might
wish to capture the geometry accurately since flow and transport paths are altered
during its evolution. This is crucial for reactive transport applications in porous media
such as CO2 storage, see e.g. [4].
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