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EFFICIENCY OF A HYBRID PARALLEL ALGORITHM FOR

PHASE-FIELD SIMULATION OF POLYCRYSTALLINE

SOLIDIFICATION IN 3D

P. STRACHOTA, A. WODECKI, AND M. BENE�∗

Abstract. We revisit our previously developed algorithm for phase-�eld simulation of solid-
i�cation of an arbitrary number of crystals with random crystallographic orientations and a fully
resolved 3D dendritic geometry. In this contribution, its hybrid parallel implementation based on
the combination of MPI and OpenMP standards undergoes parallel e�ciency tests. The results re-
veal the settings for optimal performance and their dependence on the number of CPUs used. Next,
the performance bene�ts of using the algorithm for single crystal growth are explained. Finally, a
very high resolution simulation is demonstrated together with its computational costs.
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1. Introduction. In simulations of dendritic crystal growth, phase �eld methods
[7, 11] are a common instrument. For each point in space and time, an order param-
eter p (t,x) distinguishes between liquid and solid state of matter. To simulate the
anisotropic evolution of m crystals with di�erent crystallographic orientations, either
multiple order parameters p1, p2, . . . , pn must be involved (the so-called multi-phase-
�eld method [21, 20]), or the orientation information must be handled separately,
leading to the orientation-�eld approach [9].

In our previous work [19], we introduced a unique algorithm of domain parti-
tioning with respect to crystallographic orientation. This partitioning evolves as the
crystals grow. The C/C++ numerical algorithm used for solving the phase �eld model
has its origin in [17] and was later implemented as a hybrid OpenMP/MPI parallel
code, as shown in [18] together with the parallel scalability tests. The algorithm that
realizes the orientation information handling has been incorporated into this hybrid
parallel framework. In this paper, we provide an analysis of the e�ciency of the re-
sulting hybrid parallel implementation and explore its capabilities in terms of very
high resolution simulations.

2. Problem Formulation. The dimensionless phase �eld model of solidi�cation
of a single component melt with anisotropic surface tension [4, 3, 16] is posed in a
domain Ω ⊂ R3 and time interval J = (0, T ) as

∂u

∂t
= ∆u+ L

∂p

∂t
in J × Ω, (2.1)

αξ2 ∂p

∂t
= ξ2∇ · T 0 (∇p,B) + f (u+ δû, p,∇p,B; ξ) in J × Ω, (2.2)

bc (u) = 0 on J × ∂Ω, (2.3)

T 0 (∇p,B) · n = 0 on J × ∂Ω, (2.4)

u|t=0 = uini, p|t=0 = pini in Ω, (2.5)
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with the boundary condition operator bc in (2.3) given by either bc (u) = u − u∂Ω

or bc (u) = ∇u · n. u represents the temperature �eld and p the phase �eld. The
value p = 0 corresponds to the liquid phase and p = 1 to the solid phase, with a
smooth transition in between. The phase interface is de�ned by the relation Γ (t) ={
x ∈ Ω| p (t,x) = 1

2

}
. The reaction term is currently used in the form [4, 2]

f (u, p,∇p,B; ξ) = ap (1− p)
(
p− 1

2

)
+ ξ2bβφ0 (∇p,B) (u∗ − u) .

The model parameters involve the dimensionless melting point of the material
u∗ = 1, the latent heat L, the attachment kinetics coe�cient α, positive constants
a, b, β [4] and the parameter ξ controlling the thickness of the di�use interface [5].

The crystallographic orientation given locally by the transformation matrix B
determines the crystal growth anisotropy via the anisotropic dual Finsler metric φ0

and the associated operator T 0, as explained below.

To obtain more realistic simulation results, random time-independent tempera-
ture noise [12] û : Ω → [−0.5,+0.5] is incorporated in the reaction term f . The
perturbation amplitude is controlled by the parameter δ ≥ 0.

The problem (2.1)�(2.5) describes the evolution of a two-phase system where the
solid region grows from one or more initial nucleation sites (where pini = 1), starting
from a uniform (dimensionless) initial supercooling given by uini = 0.

Anisotropic Surface Energy and Crystallographic Orientation. The op-
erator T 0 is derived from the dual Finsler metric φ0 (η∗), η∗ ∈ R3 [1, 3, 6] as

T 0 (η∗,B) = φ0 (η∗,B)φ0
η (η∗,B) where φ0

η =
(
∂η∗1φ

0, ∂η∗2φ
0, ∂η∗3φ

0
)T
. (2.6)

The metric φ0 assumes the form [13, 10]

φ0 (η∗,B) = |η∗|ψ (Bn) (2.7)

where ψ : R3 7→ (0,+∞) represents the anisotropic surface energy depending on the
normal direction n to the surface Γ and the crystallographic orientation given by the
matrix B ∈ R3×3 . The columns of BT form an orthonormal basis B = (v1,v2,v3).
Putting η∗ = ∇p and

n = − η
∗

|η∗|
(2.8)

ensures that n is the outer normal to Γ for x ∈ Γ.

ψ introduces anisotropy depending on the coordinates of n in the basis B given
by m = Bn. For example, the formula for 4-fold anisotropy reads [14]

ψ (m) = 1 +A1

[
m4

1 +m4
2 +m4

3 − 6
(
m2

1m
2
2 +m2

2m
2
3 +m2

3m
2
1

)]
(2.9)

where the coe�cient A1 speci�es the anisotropy strength.

Given n initial nucleation sites, a di�erent basis Bk is intrinsic to each crystal
growing from the k-th nucleus for k ∈ {1, 2, . . . , n}. The method that determines
the subdomains Ωk ⊂ Ω subject to crystallographic orientation given by Bk has been
elaborated in [19] and will be explained brie�y in the next section.
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3. Numerical Algorithms. By summarizing the results of [17], [18], and [19],
we describe the key aspects of the numerical algorithm with crystallographic orienta-
tion handling.

The solution of the equation system (2.1)�(2.5) is based on the following tech-
niques:

• For spatial discretization of the di�erential equations, a multipoint cell-centered
�nite volume scheme (FV-MPFA) on uniform quadrilateral meshes is em-
ployed [17]. For its evaluation in each cell, the scheme uses 2 layers of neigh-
boring cells in all directions. The higher order of the discretizations is chosen
to reduce the numerical anisotropy caused by the mesh geometry.

• The fourth order Runge-Kutta-Merson (RKM) solver [8] with adaptive time
stepping carries out the time integration of the resulting system of ordinary
di�erential equations. Note that keeping the random noise �eld û in (2.2)
constant in time guarantees that the time step adjustment algorithm is not
a�ected. The RKM solver can make both successful and unsuccessful time
steps. In the latter case, the time integration is repeated with a smaller time
step. Each time step involves multiple evaluations of the FV-MPFA scheme.

• MPI parallelization relies on 1-dimensional mesh decomposition into slices
along the z axis and uses 2 layers of halo cells in order to communicate the
results to the neighbors before each evaluation of the FV-MPFA scheme. In
addition, the RKM solver uses the MPI reduction operations to decide on the
time step adjustment.

• Within each MPI process (aka rank), OpenMP parallelization is employed
in all loops traversing through the mesh (i.e. RKM solver computations and
FV-MPFA scheme evaluation). High e�ciency of OpenMP parallelization is
achieved by
� creating the threads only once (per snapshot) at entry to the RKM
solver,

� parallelization of all for loops in such a way that individual threads pro-
cess contiguous blocks of memory and can bene�t from cache coherence.

The algorithm of domain decomposition according to di�erent crystallographic ori-
entations makes use of a table of pre-generated bases B1, . . . ,Bn corresponding to n
initial nuclei. In each cell, the index k ∈ {0, 1, . . . , n} to this orientation table is stored.
The special value k = 0 means no orientation and results in using ψ (m) = 1. The
values of k in all cells form the orientation index �eld (OIF). The OIF is initialized
to k in the k-th initial nucleus and to 0 elsewhere. Afterward, after each successful
time step of the RKM solver, the OIF is updated as follows:

1. OIF is reset to 0 except in cells where p > 1
2

2. From each cell with k = 0, a path is constructed toward the nearest crystal
by following the gradient of p. The path ends in a cell where k > 0 or when
a local maximum of p is reached.

3. If a positive value of k is found, it is propagated to all cells along the path
(the path is resolved).

From the above steps, it follows that each newly constructed path ends at the cell
where it connects to a previously resolved path. As a result, the total length of all
paths is bounded by the number of cells in the mesh.

It is important to note that in contrast to the FV-MPFA scheme, the OIF cal-
culation algorithm in each cell is non-local. Its hybrid parallelization consists in the
following:
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• The mesh decomposition into slices means that paths can cross one or (even)
more slice boundaries and OIF data must be communicated among processes.
� For unresolved paths ending at a boundary, a request for OIF data from
the respective neighbor is created.

� Likewise, for unresolved paths beginning at the boundary, a request for
sending data to the respective neighbor is created.

� Each MPI rank knows if such paths truly continue beyond the boundary
from the values of p in the halo cells.

� After performing the requested communications, an attempt to resolve
the paths is made. If there are paths crossing multiple slice boundaries,
several communication/path resolution iterations are necessary.

• OpenMP parallelization is employed for two tasks:
1. Parallelization of for loops iterating over cells in the mesh slice is per-

formed. For the given starting point, path-construction and resolution
is a serial process. However, paths constructed by individual concur-
rent threads can overlap, which introduces a slight processing overhead.
However, the possible concurrent memory writes during path resolution
do not represent a race condition as the result is uniquely determined
by the values of the phase �eld p.

2. Correct determination of necessary MPI communications is achieved by
using OpenMP reduction operations on the send/receive requests.

4. Results. In the following paragraphs, the parallel performance and capabili-
ties of the described simulation software will be presented. All performed simulation
cases have the following common parameter settings: a = 2, b = 1, α = 3, β = 300,
L = 2. 4-fold anisotropy given by (2.9) is used with A1 = 0.02. The domain Ω is

a cube in the form Ω = (0, `)
3
discretized by a uniform mesh of N × N × N cells.

The values of `, N , ξ, and the �nal time T are reported for each of the cases. Zero
Neumann boundary conditions are chosen for both u and p.

Runtime Environment. The simulations were performed on the HELIOS clus-
ter at the Department of Mathematics, FNSPE CTU Prague, using two types of
compute nodes:

• many identical AMD EPYC nodes: 2× 16-core AMD EPYC 7281@2.1GHz
CPU (SMT mode disabled), 128 GB DDR4 RAM,

• a single Intel XEON node: 2× 16-core Intel XEON Gold 6130@2.1GHz CPU
(hyper-threading disabled), 384 GB DDR4 RAM

All nodes are connected by the Intel Omni-Path 100Gbit/s interconnect, which is used
for MPI communication as well as parallel storage connection. Note however that I/O
operations were excluded from wall time measurement.

The relevant software environment involves CentOS 7.6 Linux, Intel C++ Com-
piler 13.0 and OpenMPI 2.1.5 with PSM module for communication over Omni-Path.
Neither OpenMPI process binding nor OpenMP thread binding were used.

Parallel E�ciency. To assess how e�cient the hybrid parallel algorithm de-
scribed in Section 3 is, let A and B be two computations of the identical case, per-
formed on nA and nB CPU cores, respectively. Let the wall times of the computations
be tA and tB, respectively. We de�ne the e�ciency of computation A with respect to
the reference computation B as

EAB =
tB · nB
tA · nA

· 100%. (4.1)
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For example, a 4-core computation A is 100% e�cient with respect to the reference
2-core computation B if A takes half the wall time of B. When nA = nB, we name
EAB the relative e�ciency.

Figure 4.1 presents the comparison of hybrid parallel computations on a single
compute node. For the total number of threads (i.e. used CPU cores) equal to 16
and 32, respectively, all the possible ratios between the number of MPI ranks and the
number of OpenMP threads per rank were tested. Both EPYC and XEON nodes were
used. As the used mesh size (N = 224) and hence the wall times were both relatively
small, all the computations were repeated and the average wall times were calculated
to control for time measurement inaccuracies. On XEON, 2 runs were performed that
gave almost identical results (with relative di�erences < 0.1%), so further runs were
not launched. On EPYC nodes, however, all computations were repeated 8 times,
resulting in time measurements with the coe�cient of variation between 0.8% and
3.5%.

The relative e�ciencies between the di�erent combinations of the numbers of
threads and ranks were plotted. In this situation, �MPI wins�, i.e. using hybrid par-
allelization slightly reduces the performance compared to MPI-only parallelization.
This may be caused by both hardware reasons (memory a�nity on NUMA architec-
ture [15]) and the overhead in the path �nding algorithm. The algorithm without
OIF behaved a little more in favor of OpenMP [18], but on a di�erent hardware.

In addition, the fastest of the computations on 16 and 32 cores were compared
with the serial (single-core) computation. There is a remarkable e�ciency drop on
the XEON node, which can be attributed to the �turbo� CPU feature able to increase
the base frequency from 2.1 GHz up to 3.7 GHz when some of the CPU cores are idle.
In contrast to that, the used EPYC CPUs feature the �all core boost� technology able
to raise the frequency of all cores up to 2.7 GHz (compared to 2.1 GHz baseline) as
long as the thermal conditions permit. Our tests indicate that in the HELIOS cluster,
the �boost� frequency can be maintained under maximum load for prolonged periods
of time.

In Figure 4.2, e�ciency of computations on a �ner mesh (N = 416) with a higher
number of crystals (50 instead of 10) is demonstrated. Such a mesh resolution allows
the parallelization on more than one compute node. Computations on 1, 2, and 4
nodes were performed, using all 32-cores of each node in di�erent combinations of
MPI ranks and OpenMP threads. The results show that while MPI alone is still
best performing on a single node, its e�ciency decreases sharply when 2 and 4 nodes
are used. The mesh slices become thinner, requiring more MPI communication to
happen, possibly including multiple iterations of the path resolution algorithm. The
more total CPU cores are used, the less MPI ranks and more OpenMP threads per
rank are required to achieve the best performance. In the optimal setting, multi-node
computations exhibit a high e�ciency with respect to the single-node computation.

The E�ect and Cost of OIF Computation. The model without OIF (in the
form described in [17]) can be used to simulate the growth of a single crystal and
a single crystallographic orientation (aligned with the coordinate axes) governs the
whole domain Ω. By introducing the OIF even for a single crystal, the following
consequences apply:

1. The OIF is set to k = 1 (the single orientation present) in the neighborhood
of the crystal. Unlike in the simpler algorithms [21, 20], this neighborhood
reaches as far as the discretization of ∇p on the mesh is nonzero. This is
almost exactly su�cient for the right hand side of (2.2) to yield identical
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Figure 4.1. E�ciency and relative e�ciency of hybrid parallelization on a single compute
node with di�erent numbers of MPI ranks and OpenMP threads. The (on average) best performing
variants on both 16 and 32 cores were the pure MPI (16 × 1 and 32 × 1) computations. Their
average wall times were used to evaluate the e�ciencies w.r.t. single-core computation and also
as the reference values of tB in (4.1) for evaluating the relative e�ciencies. For EPYC, the solid
bars correspond to the average wall times and the error bars indicate the minimum and maximum
measured relative e�ciencies out of all repeated runs. ξ = 0.02, δ = 0, domain dimension ` = 8,
mesh resolution N = 224, �nal time T = 0.2, n = 10 initial nuclei.

(nonzero) values as if the OIF were 1 everywhere, which is equivalent to not
using OIF at all. Currently, the use of the higher-order FV-MPFA scheme
and OIF updates after each successful time step only (in order not to interfere
with the RKM time step adjustment) can technically cause nuances between
the results obtained with and without the use of the OIF.

2. The computation of the OIF represents extra work that can slow down the
simulations.

3. The use of a simpler numerical scheme wherever k = 0 (�no orientation� far
from the crystal) can possibly speed up the simulations.

The real e�ect of introducing OIF on computational costs for a sample single crystal
growth simulation is shown in Figure 4.3. The in�uence of di�erent settings of hybrid
parallelization is also demonstrated. The algorithm with OIF is clearly faster. During
the computation, 20 snapshots of the result were saved at regular intervals. The wall
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Figure 4.2. E�ciency and relative e�ciency of hybrid parallelization on multiple compute
nodes with di�erent numbers between of MPI ranks and OpenMP threads on each 32-core node. The
e�ciencies (w.r.t single-node computation) are taken for the best performing variant on 2 and 4
nodes, respectively. ξ = 0.011, δ = 0, domain dimension ` = 8, mesh resolution N = 416, �nal time
T = 0.2, n = 50 initial nuclei.
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Figure 4.3. Comparison of the total wall times of the simulation of single crystal growth by
the hybrid parallel version of Intertrack with [19] and without [18] OIF. ξ = 0.011, δ = 0, domain
dimension ` = 8, mesh resolution N = 512, �nal time T = 0.2. One EPYC node was used.

times per snapshot in Figure 4.4 indicate how the algorithm with OIF bene�ts from
consequence no. 3. The speed increase is naturally more signi�cant when the crystal
is small. Interestingly, even the computation without OIF gradually slows down as
the simulation progresses.

Last but not least, the obtained crystal shape (not shown here) is identical in
both simulations.

Very High Resolution Simulation. As the last result, we demonstrate the
ability to simulate crystal growth with a large number of crystals on a very high
resolution mesh. 800 nucleation sites were randomly placed into a domain Ω = (0, 16)

3

discretized by a mesh of 10243 cells. Random noise was used to support the complex
dendritic growth of the crystals. The simulation up to (dimensionless) time t = 0.3
took 6896 time steps and 23 hours and 52 minutes of wall time on 8 EPYC nodes,
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Figure 4.4. Comparison of the wall times per snapshot of the simulation of single crystal
growth by the hybrid parallel version of Intertrack with [19] and without [18] OIF. ξ = 0.011, δ = 0,
domain dimension ` = 8, mesh resolution N = 512, �nal time T = 0.2. The computation with 16
MPI ranks × 2 OpenMP threads on one EPYC node (see Figure 4.3) was investigated.

Figure 4.5. The phase �eld p on a gray scale (left) and subdomains with di�erent orientations
(right) depicted in di�erent shades of gray. A slice through the plane z = 8 in a very high resolution
simulation with ξ = 0.011, δ = 0.05, domain dimension ` = 16, mesh resolution N = 1024, time
t = 0.3, and n = 800 initial nuclei.

each hosting 4 MPI ranks with 8 OpenMP threads. Saving 320 GB of data in 16
snapshots of the evolving solution took another 12 minutes. The slice through the
resulting phase �eld p and the partitioning of the domain Ω based on di�erent values
of the OIF are shown in Figure 4.5. The visualization of the �nal shape of the crystals
is in Figure 4.6.
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Figure 4.6. 3D visualization of the crystal shapes in a very high resolution simulation with
ξ = 0.011, δ = 0.05, domain dimension ` = 16, mesh resolution N = 1024, time t = 0.3, and
n = 800 initial nuclei. Each crystal has a unique random crystallographic orientation and is colored
in a di�erent shade of gray.

5. Conclusion. The performed tests revealed that hybrid MPI/OpenMP par-
allelization of the presented algorithm is a viable technique. While its performance
is comparable to MPI on a smaller number of CPU cores, it becomes unequivocally
superior as the number of cores increases. The evaluation of the results also revealed
interesting di�erences in the behavior of Intel and AMD server processors used in the
test. In addition, using OIF for simulations of the growth of a single crystal proved
to have rather unexpected performance bene�ts
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