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REGULARIZATION METHODS FOR THE CONSTRUCTION OF
PRECONDITIONERS FOR SADDLE POINT PROBLEMS∗

OWE AXELSSON†

Abstract. For the iterative solution of saddle point problems one needs efficient preconditioners
to achieve a fast convergence. Three types of preconditioners are presented which are based on
regularization by use of an augmented matrix. They are applicable also for problems with a highly
singular pivot block matrix. One of the methods is applicable also for nonsymmetric saddle point
problems.
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1. Introduction. During many years numerical solution of saddle point prob-
lems has been an important research topic, see e.g. [1, 2, 3]. Saddle point problems
arise in many applications, such as fluid flow problems with an incompressible fluid.
In many cases they are not fully incompressible or for their numerical solution one
adds a regularization which corresponds to such a small compressibility. This is also
done in structural engineering problems to avoid locking phenomenon, see e.g. [4, 5].
Use of such a regularization gives a greater freedom in the choice of finite element basis
functions used for the discretization of the problem. The major purpose of the present
paper is to compare three preconditioners for regularized matrices. The methods give
strong clustering of the eigenvalues of the preconditioned matrix which results in
a fast convergence of the iterative acceleration method. One of the methods is par-
ticularly suitable for nonsymmetric saddle point problems and can handle problems
with a highly singular pivot block matrix.

The standard form of a discretized saddle point problem is

[
A BT

B 0

]
where A,

of order n × n, is symmetric and positive definite (spd) and B, of order m × n,
m < n, is assumed to have full rank. Its weakly incompressible or regularized form is

A =

[
A BT

B −K

]
, where K is spsd, and if B is rank deficient, it is assumed that K is

positive definite onN (B). This implies that the Schur complement, S = K+BA−1BT

is spd.
As shown e.g. in [6], this matrix has eigenvalues located in two intervals, i.e.

with both positive and negative values,

[−λmax(S),−λmin(S)/(1 +
γ2

µ1
λmax(S))] ∪ [µ1, µn + σm],

where 0 < µ1 ≤ µ2 ≤ · · · ≤ µn and 0 ≤ σ1 ≤ σ2 ≤ · · · ≤ σm denote the eigenvalues
of A respectively of BA−1BT . Further γ2 = %(S−1/2BA−1BTS−1/2), i.e. the spectral
radius.
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In [6] is also shown that the real part of the eigenvalues of A′ =

[
A BT

−B K

]
,

which are positive, are bounded as

min{λmin(A), λmin(S)} ≤ Re (λ) ≤ max{λmax(A), λmax(K)}.

If the imaginary part Im(λ) 6= 0 then ‖x‖ = ‖y‖ if (xT , yT )T is an eigenvector,
and Im(λ) = yT2 Bx1 − yT1 Bx2 if ‖x‖ = ‖y‖ = 1, where x = x1 + ix2, y = y1 + iy2,
and xi, yi, i = 1, 2 are real valued. Further

1

2
(λmin(A) + λmin(K)) ≤ Re(λ) ≤ 1

2
(λmax(A) + λmax(K))

To cope with such strong variations of the eigenvalues one must use a good pre-
conditioning for the iterative solution of the given problem. A major aim of this paper
is to consider preconditioning methods involving an acceptable solution cost, which
lead to real and positive and also well distributed eigenvalues.

As shown e.g. in [6], block diagonal preconditioners can not achieve such a goal.

For instance, even with the preconditioner B =

[
A 0
0 S

]
, the eigenvalues of B−1A

equal unity when the first component of the eigenvector, x ∈ N (B) and y = 0, but
for x ∈ N (B)⊥ they are indefinite and for B−1A′ they are complex, that is,

λ =
1− c

2
±

√(
1− c

2

)2

+ 1, respectively λ =
1 + c

2
± i

√
1−

(
1 + c

2

)2

,

where c is an eigenvalue of S−1/2KS−1/2.
For these reasons, instead of block diagonal we consider preconditioners on block

triangular form. To give a hint how they are constructed, we note that A and A′ can
be factorized as

A =

[
A 0
B −S

] [
I A−1BT

0 I

]
, A′ =

[
S(1) BT

0 K

] [
I 0

−K−1B I

]
,

where S(1) = A+BTK−1B, if K is spd. We consider also nonsymmetric saddle point
problems. The following methods will be analysed:

(i) B =

[
A0 0
B −S0

]
to A =

[
A BT

B −K

]
where A0 is an spd matrix approximating A such that α = x∗Ãx/x∗x ≥ 1,

∀x, where Ã = A
−1/2
0 AA

−1/2
0 and S0 = K+BA−10 BT . Here K may be a zero

matrix if B has full rank.
(ii) A block matrix factorized preconditioner,

B =

[
AW BT

0 W

] [
I 0

−W−1B I

]
=

[
A BT

−B W

]
, for A′ =

[
A BT

−B K

]
,

where AW = A + BTW−1B, and W is spd somehow approximating K. We
consider augmented methods where W has been replaced by 1

rW .

(iii) B =

[
Ar 2BT

0 −Wr

]
for

[
A BT

C 0

]
, to be applied both for symmetric, where

C = B and nonsymmetric problems, where Ar = A+BTW−1r C, Wr = 1
rW ,

and r is a normally large real number.
These methods have been partly considered in [6], [7] and [8] but are here presented
with more general and condensed proofs. Replacing A with AW respectively Ar can
be seen as regularization methods.
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2. Preconditioning methods. We consider now block triangular precondition-
ers, see e.g. [9, 10] for early references.

2.1. A lower block triangular preconditioner. Following [6, 7], let B =[
A0 0
B −S0

]
be a preconditioner to A =

[
A BT

B −K

]
. Here a more precise analysis

will be given. We assume that A0 is spd and A0 ≤ A in the inner product ordering.
In some applications A is a mass matrix, for which the construction of A0 is simple.
For instance in porous media modelled by Darcy’s flow equations, see e.g. [8], the ve-
locity vector u = −K∇p, ∇ · u = f in a given domain Ω, where p is the pressure
variable. For Stokes problem, A is a discretized Laplacian matrix and there exists
various methods to approximate it.

By assumptions made, α ≥ 1 where

α = α(x) = x∗Ãx/x∗x, ∀x, Ã = A
−1/2
0 AA

−1/2
0 .

Further it is assumed that K ≥ 0. Then, with S0 = K + BA−10 BT , which is spd it
follows that

0 ≤ K̃ := S
−1/2
0 KS

−1/2
0 = I − B̃B̃T ,

where B̃ = S
−1/2
0 BA

−1/2
0 . Note that B̃B̃T = S

−1/2
0 BA−10 BTS

−1/2
0 . Hence 0 ≤ β ≤ 1,

where β = β(x) = x∗B̃B̃Tx/x∗x. We assume that

(Ã− I)x 6∈ N (B), except if Ãx = x. (2.1)

In practice A0 is chosen such that multiplications with A−10 can be done without much
computational effort. For instance, A0 = LLT , where L is lower triangular, or simi-
larly LLT is a factorization of A−10 , see [11] and [12] for references to the construction
of approximate inverses. Methods to solve systems with matrix S0 will be discussed
in Section 4.

For the spectral analyses of B−1A, we make a congruence transformation of both

B and A with

[
A
−1/2
0 0

0 S
−1/2
0

]
, which is equivalent to a similarity transformation of

the preconditioned matrix B−1A. Hence the eigenvalue problem takes the form,

λ

[
I 0

B̃ −I

] [
x
y

]
=

[
Ã B̃T

B̃ −K̃

] [
x
y

]
, ‖x‖+ ‖y‖ 6= 0. (2.2)

Theorem 2.1. Let A0 ≤ A be spd and S0 = K + BA−10 BT and let λ be an
eigenvalue of B−1A. Then λ = 1 if and only if the corresponding eigenvector satisfies
Ax = A0x. For λ 6= 1, the eigenvalues are contained in the interval [1/λmax;λmax],

where λmax ≤ αmax+1
2 +

√(
αmax+1

2

)2 − 1 and αmax = supx
x∗Ax
x∗A0x

.

Proof. For a proof, see [6, 7].
Hence the condition number of B−1A is bounded by

λmax/λmin = λ2max < (αmax + 1)2.

It is seen that the choice of matrix A0, i.e. the value of αmax, plays an important role
to avoid too large values of λmax.
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2.2. A preconditioner with a regularized matrix. Consider now methods
involving the regularized, i.e. augmented matrix,

Ar = A+BTW−1r B,

where Wr = 1
rW , W is a chosen spd matrix and r is a, normally large, positive

number. Note first that the solution of[
A BT

B 0

] [
x
y

]
=

[
f
0

]
and

[
Ar BT

B 0

] [
x
y

]
=

[
f
0

]
, (2.3)

i.e. where the constraint Bx = 0 holds, have the same solutions. Hence a precondi-
tioned method to compute the solution of (2.3) can be based on this latter matrix.

Let then Br =

[
Ar 0
B Wr

]
be a preconditioner to Ar =

[
Ar BT

B 0

]
. It holds

B−1r Ar =

[
A−1r 0

−W−1r BA−1r W−1r

] [
Ar BT

B 0

]
=

[
I A−1r BT

0 W−1r Sr

]
, (2.4)

where Sr = BA−1r BT = B(A+BTW−1r B)−1BT .
Lemma 2.2. Assume that B has full rank and A and W are spd. Then
(i) (B(I +BTB)−1BT )−1 = I + (BBT )−1

(ii) (B(A+BTW−1B)−1BT )−1 = W−1 + (BA−1BT )−1.
Proof. (These relations are well known but since the proof in short for complete-

ness we present it here also.)
Since BT (I +BBT ) = (I +BTB)BT , it follows that

(I +BTB)−1BT = BT (I +BBT )−1

and multiplying with B and taken inverses, it follows that

(B(I +BTB)−1BT )−1 = (I +BBT )(BBT )−1 = I + (BBT )−1.

Replacing here B with W−1/2BA−1/2 and multiplying from both sides with W−1/2,
gives (ii).

Theorem 2.3. Assume that B has full rank and let Br =

[
Ar 0
B Wr

]
be a pre-

conditioner to Ar =

[
Ar BT

B 0

]
, where Ar = A + BTW−1r B, Wr = 1

rW and W is

spd. Then

B−1r Ar =

[
I A−1r BT

0 W−1r Sr

]
.

There are n eigenvalues of B−1r Ar equal to unity. The remaining eigenvalues are the
eigenvalues of W−1r Sr which equal 1/(1 + 1

rµ ), where µ is an eigenvalue of µWx =

BA−1BTx, x 6= 0.
Proof. This follows from (2.4). Further Lemma 2.2 shows that

S−1r = (B(A+BTW−1r B)−1BT )−1 = W−1r + (BA−1BT )−1.

Hence

S−1r Wr = I + (BA−1BT )−1Wr,
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whose eigenvalues are 1 + 1
rµ , where µ is positive.

Assuming that µ is not too small it follows that all eigenvalues cluster at unity
when r increases. To get a not too small value of µmin one can choose W = D as
a diagonal matrix such that

µDe = BA−1BTe,

where e = (1, 1, · · · , 1)T . How to solve systems with Ar will be discussed in Section 4.

That the off-diagonal block matrix part in (2.4) does not harm the convergence
of an optimal Krylov space acceleration method follows from the next Lemma.

Lemma 2.4. The degree of the minimal polynomial to a matrix of the form[
I F
0 E

]
, where E is positive definite and E − I is nonsingular, is independent of F .

Proof. It holds[
I F
0 E

]k
=

[
I F (I + · · ·+ Ek−1)
0 Ek

]
=

[
I F (I − E)−1(I − Ek)
0 Ek

]
.

Hence, if
q∑̀
=0

a`E
` = 0 where

q∑̀
=0

a` = 1, for some q ≥ 2, then

q∑
k=0

ak

[
I F
0 E

]k
=

I q∑
k=0

akF (I − E)−1

0 0

 =

[
I F (I − E)−1

0 0

]
.

Since [
I F (I − E)−1

0 0

] [
I F
0 E

]
=

[
I F (I − E)−1

0 0

]
,

it follows that

q+1∑
k=0

ak

[
I F
0 E

]k+1

−
q∑

k=0

ak

[
I F
0 I

]k
=

[
0 0
0 0

]
,

that is, the degree of the minimal polynomial is q+ 1, i.e. just one degree higher than
the minimal polynomial for matrix E.

Therefore the convergence of a Krylov subspace optimal method needs just one
additional iteration due to the presence of the off diagonal block in the preconditioned
matrix.

2.3. An upper block triangular preconditioner. Let A′ =

[
A BT

B 0

]
and

the preconditioner B′ =

[
Ar BT

0 −Wr

]
, where Ar = A + BTW−1r B, Wr = 1

rW and

W is spd. Assume also that A is spsd and N (A) ∩ N (BT ) = {∅}, so Ar is spd.
The generalized eigenvalue problem takes the form,

λ

[
Ar BT

0 −Wr

] [
x
y

]
=

[
A BT

B 0

] [
x
y

]
, ‖x‖+ ‖y‖ 6= 0.
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A congruence transformation with

[
A
−1/2
r 0

0 W
−1/2
r

]
on both sides results in

λ

[
I B̂T

0 −I

] [
x̂
ŷ

]
=

[
I − B̂T B̂ B̂T

B̂ 0

] [
x̂
ŷ

]
,

where B̂ = W
−1/2
r BA

−1/2
r and x̂ = A

1/2
r x, ŷ = W

1/2
r y. Hence

λ

[
x̂
ŷ

]
=

[
I B̂T

0 −I

] [
I − B̂T B̂ B̂T

B̂ 0

] [
x̂
ŷ

]
, i.e. λ

[
x̂
ŷ

]
=

[
I B̂T

−B̂ 0

] [
x̂
ŷ

]
.

Here the eigenvalues are complex and with both positive and negative real parts. To
improve on that we choose the modified preconditioner

B =

[
Ar 2BT

0 −Wr

]
to A =

[
A BT

B 0

]
. (2.5)

Theorem 2.5. The preconditioned matrix B to A in (2.5) can be written on
the similarity transformed form,[

I −B̂T
−B̂ I

]−1 [
I + B̂B̂T B̂T

−B̂ 0

][
I −B̂T
−B̂ I

]
=

[
I 0

0 B̂B̂T

]
(2.6)

which shows that its eigenvalues are real and equal unity with multiplicity n and the
remaining eigenvalues equal 1/(1+ 1

rµ ). The eigenvectors for the unit eigenvalue equal

[eTi ,−(W−1r Bei)
T ]T , where ei are the unit vectors in Rm.

Proof. Here

λB
[
x
y

]
= A

[
x
y

]
, ‖x‖+ ‖y‖ 6= 0,

which after transformation leads to

λ

[
I 2B̂T

0 −I

] [
x̂
ŷ

]
=

[
I − B̂T B̂ B̂T

B̂ 0

] [
x̂
ŷ

]
.

Hence

λ

[
x̂
ŷ

]
=

[
I 2B̂T

0 −I

] [
I − B̂T B̂ B̂T

B̂ 0

] [
x̂
ŷ

]
, i.e. λ

[
x̂
ŷ

]
=

[
I + B̂T B̂ B̂T

−B̂ 0

] [
x̂
ŷ

]
.

A computation shows that[
I + B̂T B̂ B̂T

−B̂ 0

][
I −B̂T
−B̂ I

]
=

[
I −B̂T
−B̂ I

] [
I 0

0 B̂B̂T

]
,

which implies (2.6). Further it follows that the eigenvectors for the unit eigenvalues
equal (eTi ,−(W−1r Bei)

T )T . It holds

(B̂B̂T )−1 = W 1/2
r (B(A+BTW−1r B)−1BT )−1W 1/2

r = (B̃(I + B̃T B̃)−1B̃T )−1,
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where B̃ = W
−1/2
r BA−1/2. By Lemma 2.4,

(B̂B̂T )−1 = I + (B̃B̃T )−1 = I +W 1/2
r (BA−1BT )−1W 1/2

r .

It follows that the eigenvalues of B̂B̂T equal 1/(1+ 1
rµ ), where we recall that Wr = 1

rW

and µ are the eigenvalues of µWz = BA−1BT z, z 6= 0.
As before, it follows that the eigenvalues cluster strongly at unity and the iteration

method will need very few iterations. Furthermore, the preconditioning method can
be implemented in an efficient low cost way.

The eigenvalues are equal to those for the method in the previous subsection.
However, there the preconditioned matrix has an off-diagonal matrix block.

3. A preconditioner for nonsymmetric saddle point problems with a
highly singular pivot block matrix. Preconditioners for saddle point problems
with (highly) singular pivot block matrix has been considered e.g. [13, 14, 6, 7] and
in [15], where also nonsymmetric saddle point problems have also been considered.

Nonsymmetric saddle point problems where A =

[
A BT

C 0

]
, and B and C may not

be equal, arise in some applications. Consider for instance a convection diffusion
problem, ∇ · (−ε∇u + wu) = f , where w is a given velocity vector, with provided
boundary conditions. If we let v = −εu+ wu, the saddle point equation becomes{

v + ε∇u−wu = 0
∇ · v = f.

Another problem where B and C differ arises in electrolytic cell problems (see [16]).
In some problems, A is singular. As before, we assume that B and C have full

rank and that N (A) ∩ N (B) = {∅}, N (A) ∩ N (C) = {∅}. Then A is regular, even
though A may be highly singular.

Judged by the favourable results in the previous subsection, we let

B =

[
Ar 2BT

0 −Wr

]
be preconditioner to A, where Ar = A+BTW−1r C.

Theorem 3.1. Under the above stated assumptions, the preconditioned matrix
B−1A has eigenvalues equal to unity for eigenvectors x of the form x 6∈ N (µA −
BTW−1C). The nonzero eigenvalues equal λ = µ/(r + µr) where µ is an eigenvalue
of µAx = BTW−1Cx, x 6= 0. There are at most m − m0 such eigenvalues, where
m0 = dimN (A).

Proof. The eigenvalue problem takes the form

λ

[
Ar 2BT

0 −Wr

] [
x
y

]
=

[
A BT

C 0

] [
x
y

]
, ‖x‖+ ‖y‖ 6= 0.

Since A is regular, it follows that λ 6= 0. Hence y = −λ−1W−1r Cx, which after
substitution in the first equation, multiplied by λ, gives

λ2Arx− 2λBTW−1r Cx = λAx−BTW−1r Cx,

that is,

(λ2 − λ)Ax+ (λ2 − 2λ+ 1)BTW−1r Cx = 0.
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It follows that

(1− λ)(−λA+ (1− λ)BTW−1r C)x = 0.

Hence either λ = 1 or x is an eigenvector of

λ

1− λ
Ax = BTW−1r Cx = rBTW−1Cx.

Hence 1
r

λ
1−λ = µ, that is, λ = µr

1+µr or 1− λ = 1/(1 + µr).

If m0 = dimN (A), there are at most m −m0 such eigenvalues. The remaining
eigenvalues, i.e. n+m0, equal unity.

Remark 3.1. If Reµ > 0, then the eigenvalues cluster at unity when r →∞.
Remark 3.2. Indefinite matrix problems where A is indefinite can be solved by

use of the augmented matrix method if r ≥ r0 > 0, if r0 is sufficiently large so that
A + r0B

TD−1C is regular, where D = W or an approximation of W . That is, for
C = B, it is positive definite for r ≥ r0. For further treatments of such problems, see
e.g. [17].

Remark 3.3. In all methods, there arise inner systems that are also normally
solved by iteration. This can often be done to a quite rough accuracy without increasing
the number of outer iterations much. For an early presentation of this, see [18], see
also [19].

4. A projection matrix approach to solve the augmented matrix sys-
tems. First we note that the appearance of small eigenvalues µ can be avoided by
choosing

W = BD−1BT

where D is a diagonal matrix, for instance De = BA−1BTe, e = (1, 1, · · · , 1)T . A
simpler choice could be De = Ae. To solve the arising systems with W one can use
a Cholesky or modified incomplete factorization method, see e.g. [12], a multilevel
iteration method [18, 19] or a domain decomposition method.

To solve the arising systems with the block matrix Ar in the preconditioner one
can use a projection matrix. We consider then the choice

W = CD−1BT , (4.1)

and assume that systems with W can be solved efficiently.
Let P = D−1BTW−1C. Note that, besides matrix vector multiplications with

sparse matrices, actions of P on vectors involve only solution of systems with matrix
W .

Assuming that W satisfies (4.1) exactly or at least is a good approximation, it
follows from this definition of W that

P 2 = D−1BTW−1CD−1BTW−1C = D−1BTW−1C = P.

Hence P is a projection matrix satisfying CP = B. To utilize this for the solution of
systems with Ar we first multiply Ar with D−1 to get

Ãr = D−1Ar = D−1A+ rD−1BTW−1C.
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This matrix is multiplied with (I+rP )−1 from the right. Note first that since P 2 = P ,
it follows that

(I + rP )

(
I − r

r + 1
P

)
= I + rP − r

r + 1
P − r2

r + 1
P = I,

that is,

(I + rP )−1 = I − r

r + 1
P.

Hence

Ãr(I + rP )−1 = (D−1A+ rD−1BTW−1B)(I + rP )−1 =

= (D−1A− I + I + rP )(I + rP )−1 =

= I + (D−1A− I)

(
I − r

r + 1
P

)
. (4.2)

For vectors x ∈ N (B) it holds Px = 0 and since D is an approximation of A it can
be expected that

(I + (D−1A− I))x = D−1Ax

will not take large values.
For x ∈ N (B)⊥, then since P 2x = Px, it follows from P (I − P )x = 0 that is Px

is close to x. Hence for such vectors, it holds approximately that

Ãr(I + rP )−1x = x+
1

r + 1
(D−1A− I)x,

that is a small perturbation of x when r is large. It follows that the preconditioning
method leads to a rapid convergence. The major cost is in solving systems with matrix
W , which takes place twice during each iteration, once to compute actions of P which
takes place in solving systems with Ar, and once to solve for the lower block systems
in B. It is possible to use inner iteration solutions for Ar, in which case however more
actions of W−1r are involved.

Saddle point problems arise in many applications, such as for Stokes equation in
fluid flow problems. It is also possible to rewrite a second order elliptic problem in a
saddle point form involving both the solution and its gradient as unknown variables.
As is well known, this leads to higher accuracies for the gradients even for the lowest
order of finite element basis functions. Let

Lu = −∇ · (ε∇u) + q2u = f (4.3)

in a bounded domain Ω with say homogeneous Dirichlet boundary conditions. Here
ε is a variable coefficient that can take small values in part of the domain. Further q
is typically a main long wave length where a wave equation is modelled by operator
L. Let w = ∇u. Then (4.3) can be rewritten in the block operator form,{

w −∇u = 0
∇ · (εw)− q2u = −f.

Assume for simplicity that ε is piecewise constant. After a standard finite element
discretization, the corresponding block matrix form is[

M̃ BT

D0B −q2M

] [
w
u

]
=

[
0
f

]
(4.4)
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where we keep the same notations for the arising vectors. Here M̃ =

[
M 0
0 M

]
in

a 2D space problem, B a discretization of the divergence operator, M is the mass
matrix and D0 is a diagonal matrix with entries corresponding to its value in different
elements. To solve (4.4) any of the presented preconditioners can be used.

We scale the system to obtain a nearly symmetric form,[
M̃ B̂T

B̂ −q2M̂

] [
w
û

]
=

[
0

f̂

]
,

where M̂ = D
−1/2
0 MD

−1/2
0 , B̂ = D

1/2
0 B, û = D

−1/2
0 u, f̂ = D

−1/2
0 f . It is symmetric

if it is a lumped mass matrix.
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