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PSD-GREEDY BASIS GENERATION FOR
STRUCTURE-PRESERVING MODEL ORDER REDUCTION OF

HAMILTONIAN SYSTEMS∗

PATRICK BUCHFINK† , BERNARD HAASDONK† , AND STEPHAN RAVE‡

Abstract. Hamiltonian systems are central in the formulation of non-dissipative physical sys-
tems. They are characterized by a phase-space, a symplectic form and a Hamiltonian function.
In numerical simulations of Hamiltonian systems, algorithms show improved accuracy when the
symplectic structure is preserved [10]. For structure-preserving model order reduction (MOR) of
Hamiltonian systems, symplectic MOR [17, 14, 11, 3, 16] can be used. It is based on a reduced-order
basis that is symplectic, which requires symplectic basis generation techniques.

In our work, we discuss greedy algorithms for symplectic basis generation. We complement
the procedure presented in [14] with ideas of the POD-greedy [9], which results in a new greedy
symplectic basis generation technique, the PSD-greedy. Inspired by POD-greedy, we use compression
techniques in the greedy iterations to enrich the basis iteratively. We prove that this algorithm
computes a symplectic basis when symplectic techniques are used for compression. In the numerical
experiments, we compare the discussed methods for a linear elasticity problem. The results show
that improvements of up to one order of magnitude in the relative reduction error are achievable
with the new basis generation technique compared to the existing greedy approach from [14].
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1. Introduction. Hamiltonian systems are mathematical models designed for
dynamical non-dissipative phenomena, which includes e.g. mechanical systems, like
linear elasticity models [2] or truss structures [4], and wave-type and transport domi-
nated problems [17, 14, 16]. A Hamiltonian system is characterized by a phase-space, a
symplectic form and a Hamiltonian function. The dimension of the phase-space might
be large, e.g. if the system stems from the discretization of a (Hamiltonian) partial dif-
ferential equation. Since this dimension is directly linked to the computational power
that is required to compute the solution, it might be computationally infeasible to
solve the system (a) in real-time, (b) for many different parameters or (c) on small
computers like e.g. smartphones. Such tasks naturally occur for (a) controller design
and interactive simulations, (b) parameter studies, parameter optimization and un-
certainty quantification or (c) in situ simulations, i.e. simulations at places which lack
availability of communication structure to high-performance computing facilities. In
all three cases (a) to (c), the computational demand can be decreased by computing
an efficient surrogate model with model order reduction (MOR), see e.g. [1]. While
classical MOR might violate the structure of the Hamiltonian system, symplectic
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MOR can be used to preserve the underlying symplectic geometry [17, 14, 11, 3, 16].

MOR requires a reduced-order basis (ROB) that is used to approximate solutions
in the high-dimensional phase-space with a low number of basis vectors. The most
widely used data-based basis generation techniques are based on the idea to use solu-
tions of the high-dimensional full-order model (FOM) for different time instances and
parameters as training data. These so-called snapshots are then used to compute the
ROB e.g. with data-compression methods like the Proper Orthogonal Decomposition
(POD), see e.g. [1]. Another approach are greedy algorithms, which are extensively
used in the generation of ROBs for parametric problems, e.g. [20, 7, 9]. The ROB is
built incrementally by extending the basis in several greedy iterations. Each iteration
consists of two steps: (i) one or multiple snapshots which are not well approximated
by the current ROB are selected. Error estimators may be used as a computation-
ally efficient surrogate to select these snapshots, which enables a broader search. In
a second step, (ii) these snapshots are used to compute an extension of the basis,
which is in turn used in the next iteration. One example for a such an algorithm
is the POD-greedy (also called PCA fixspace) [9]. In each greedy iteration, it uses
the POD to compute an increment of the basis from a whole trajectory of snapshots.
The method is standard for parametric, time-dependent problems. Also convergence
statements have been derived [8].

For symplectic MOR, the classical, orthogonal basis generation techniques are not
adequate since special (symplectic) ROBs are required. A greedy algorithm which gen-
erates a symplectic basis is presented in [14]. It does not use compression techniques
for multiple snapshots in the greedy iteration but picks single snapshots. A symplectic
Gram-Schmidt procedure [18] is used to compute a symplectic ROB. By construction,
this method is limited to the generation of orthogonal, symplectic ROBs.

In our work, we propose a new greedy algorithm for symplectic basis generation,
the PSD-greedy. It follows the idea of POD-greedy and uses compression techniques
for trajectories of snapshots in the greedy iterations. We prove that such a technique
is able to produce a symplectic ROB if a symplectic procedure is used for compression.
In comparison to the previously mention approach [14], we are able to compute non-
orthogonal, symplectic ROBs. Such ROBs showed superior results in [3].

In the remainder of Section 1, the required essentials of Hamiltonian systems,
symplecticity and symplectic MOR are introduced. We present the new PSD-greedy
algorithm in Section 2. The performance of PSD-greedy in comparison to existing
symplectic basis generation techniques is analyzed in Section 3 based on a linear
elasticity problem. A summery and an outlook conclude the paper in Section 4.

1.1. Hamiltonian systems and symplecticity. In the scope of this section,
we restrict ourselves to autonomous, finite-dimensional, canonical Hamiltonian sys-
tems. Non-canonical systems can be redirected to the presented case with a state
transformation [17]. Non-autonomous systems, i.e. systems with a time-dependent
Hamiltonian function, can be reduced to the presented case if the Hamiltonian func-
tion is continuously differentiable with respect to the time variable, see e.g. [3]. We
introduce the concept of a symplectic form and parametric Hamiltonian system in
the following. To this end, let P ⊂ Rp be the parameter domain and µ ∈ P be an
arbitrary, but fixed, parameter vector.

A Hamiltonian system is described by the triplet (V, ω,H) consisting of (a) a
finite-dimensional vector space V, the so-called phase-space, (b) a symplectic form
ω : V × V → R and (c) a Hamiltonian function H : V × P → R, which is at least
one times continuously differentiable in the first argument. It can be shown that the
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phase-space is necessarily even-dimensional and thus, isomorphic to R2N , which is why
we restrict to V = R2N in the following [5]. A symplectic form is a skew-symmetric
and non-degenerate bilinear form. In the canonical case, the symplectic form can be
expressed in terms of the Poisson matrix J2N with

ω2N (v, w) = vTJ2Nw, J2N =

[
0N IN
−IN 0N

]
,

JT2NJ2N = I2N

JT2N = − J2N ,
(1.1)

where 0N ∈ RN×N is the matrix with all zeros and IN ∈ RN×N the identity matrix.
A continuously differentiable map g : R2m ⊃ Ω → R2N with m ≤ N is called

symplectic (with respect to ω2N and ω2m on Ω), if

(Dxg(x))
T J2NDxg(x) = J2m for all x ∈ Ω, (1.2)

where Dxg(x) ∈ R2N×2m is the Jacobian defined on Ω. For linear maps g(x) = Ax,
A ∈ R2N×2m, we call the coefficient matrix Dxg(x) = A a symplectic matrix, if it
fulfills (1.2).

For every symplectic matrix A ∈ R2N×2m, there exists its symplectic inverse

A+ := JT2mATJ2N such that A+A = JT2mATJ2NA
(1.2)
= JT2mJ2m

(1.1)
= I2m. (1.3)

A solution of the parametric Hamiltonian system for a fixed parameter µ ∈ P is
a curve x(•,µ) : It → R2N , It = [t0, tend], in the phase-space which is a solution to
the initial value problem for t ∈ It

d

dt
x(t,µ) = J2N∇xH(x(t,µ),µ), x(t0,µ) = x0(µ) (1.4)

known as Hamilton’s equation with initial datum (t0,x0(µ)), x0(µ) ∈ R2N .
An important property of Hamiltonian systems is that the solution preserves the

Hamiltonian function over time, i.e. H(x(t,µ),µ) = H(x0(µ),µ) for all t ∈ It.
Furthermore, the flow of the system is a symplectic map (1.2), see e.g. [10].

1.2. Symplectic model order reduction. Symplectic MOR follows the idea
of general projection-based MOR techniques to approximate the solution in a low-
dimensional subspace

colspan (V ) = V ⊂ R2N , dim (V) = 2n� 2N, V ∈ R2N×2n.

In contrary to classical MOR, (a) this subspace is required to be a symplectic (and
thus even-dimensional) subspace and (b) a symplectic projection is used instead of an
orthogonal projection [17]. This choice ensures that the symplectic structure is pre-
served and the reduced system can be expressed by a Hamiltonian system of reduced-
order 2n with the reduced HamiltonianHr : R2n×P → R, (xr,µ) 7→ H(V xr,µ). The
symplectic subspace can be computed with symplectic basis generation techniques.
In the following, we describe three of such methods which are relevant for our new
algorithm.

In [17], the Proper Symplectic Decomposition (PSD) was proposed. It follows the
idea of the method of snapshots [19], which collects solution vectors xs

i,j := x(ti,µj)
(so-called snapshots) of the FOM for different time instances ti and parameter vectors
µj ∈ P for i = 1, . . . , nt and j = 1, . . . , nµ, which we denote in the following, by
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reindexing, as xs
i for i = 1, . . . , ns := ntnµ. The PSD chooses the basis to minimize

the symplectic projection error of all snapshots

minimize
V ∈R2N×2n

ns∑
i=1

∥∥(I2N − V V +
)
xs
i

∥∥2

2
subject to V TJ2NV = J2n, (1.5)

where the constraint ensures that V is a symplectic matrix and thus, that the sym-
plectic inverse V + exists. Due to strong non-convexity, no general solution could be
derived so far. The authors of [17] derived several approaches to obtain an ROB in the
set of orthogonal, symplectic bases, which is a subset of the set of symplectic bases.

A greedy algorithm is presented in [14]. It computes an orthogonal, symplectic
ROB. Each iteration 1 ≤ j ≤ ns consists of two steps: (i) the snapshot xs

ij
with

maximum symplectic projection error is selected to extend the ROB of the previous
iteration. Then, (ii) a symplectic Gram-Schmidt procedure, see e.g. [18], is used to
compute a symplectic ROB, which spans the symplectic subspace of the previous
iteration united with the symplectic space spanned by xs

ij
and JT2Nxs

ij
.

More general bases are discussed in our work [3] with a technique that is able to
compute non-orthogonal, symplectic ROBs. It is based upon the SVD-like decompo-
sition [21, 22] of the snapshot matrix Xs := [xs

1, . . . ,x
s
ns

] ∈ R2N×ns that stacks the
snapshots as columns. By removing the restriction of the ROB to be orthogonal, this
method showed in the numerical experiments to require less basis vectors compared
to the previously introduced orthogonal, symplectic basis generation methods.

2. Main results. We introduce PSD-greedy in analogy to POD-greedy. In con-
trast to POD-greedy, we use symplectic instead of orthogonal techniques to compress
trajectories in each iteration of the greedy algorithm. The advantage of this concept in
comparison to the existing symplectic greedy approach [14] is twofold: (i) if, in a next
step, error estimators are used to select the snapshots for enrichment, compressing a
whole time series instead of selecting single snapshots of maximum projection error
over all time steps alleviates known stagnation issues [7, 9] of greedy basis generation.
On the other hand, (ii) we are able to use non-orthogonal basis generation techniques
by which we expect similar improvements for the parametric case as observed in [3].

Following the idea of general greedy algorithms, our procedure operates iteratively
and extends the ROB from iteration i − 1 to i by adding basis vectors to the ROB,
which is reflected by adding the new vectors as columns to the matrix representation
Vi of the ROB. For symplectic ROBs, this requires a special treatment in order to
preserve the symplecticity, which is discussed in the following lemma. For the ease
of notation, if we introduce a symplectic matrix V ∈ R2N×2m in the following, then
the submatrices EV ,FV ∈ R2N×m denote the first and the last m columns of V such
that V = [EV ,FV ]. Symplecticity of V is, by insertion in (1.2), equivalent to the
following conditions on EV and FV :

ET
V J2NEV = F T

V J2NFV = 0m and ET
V J2NFV = Im. (2.1)

Lemma 2.1. If V ∈ R2N×2mV and W ∈ R2N×2mW are symplectic matrices,
then the matrix stacking the 2mU := 2mV + 2mW columns of V and W with

U := [EU ,FU ] ∈ R2N×2mU , EU := [EV ,EW ], FU := [FV ,FW ] (2.2)

is a symplectic matrix if and only if W TJ2NV = 02mW×2mV
.
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Proof. The symplecticity of U is expressed with (2.1) in terms of the three
conditions on EU and FU . Firstly, it holds

ET
UJ2nEU =

[
ET
V

ET
W

]
J2n

[
EV EW

]
= 0mU

,

which is equivalent to ET
W J2NEV = 0mW×mV

by using the symplecticity of V and
W . Analogously, the two conditions, F T

UJ2nFU = 0mU
and ET

UJ2nFU = ImU
, are

equivalent to

F T
W J2NFV = F T

W J2NEV = ET
W J2NFV = 0mW×mV

.

The four derived conditions on EV ,FV ,EW and FW are in turn equivalent to the
single condition W TJ2NV = 02mW×2mV

.

Note that under the assumptions of Lemma 2.1, the result U is guaranteed to
be a symplectic matrix. From (1.2), it follows that U is of full column rank and the
linearly independent columns form a basis of colspan (U).

The new symplectic basis generation technique, the PSD-greedy, is presented in
Algorithm 1. The algorithm computes a symplectic basis represented by Vimax with
imax greedy iterations. The user inputs a finite parameter set M ⊂ P, an error
tolerance rtol > 0 and a snapshot generation algorithm Xs : M → R2N×ns(µ), where
the number of snapshots ns(µ) might vary with µ.

We use different submodules in the algorithm: The algorithm is formulated in
terms of a modular symplectic basis generation technique PSD (•) that is used to
compute an extension of the basis from the residual Ri. The requirements on this
procedure are discussed in Lemma 2.2. The function ∆ (•, •) computes an error
indicator with respect to the basis given in the first argument for the parameter
vector given in the second argument. Examples are the symplectic projection error
(1.5) or the true reduction error as introduced later in Equation (3.2). Furthermore,
error estimators might be used to lower the computational cost of this operation,
which enables a broader search. The extend(•, •) function is supposed to extend the
matrix in the first argument by the matrix given in the second argument in the fashion
of Equation (2.2).

In the first iteration of the algorithm, the ROB V0 is empty. When computing
the error in lines 3 and 5 and the residual in line 6 for V0, all terms linked to V0 are
neglected, i.e. set to zero.

We do not restrict how many basis vectors are added in each iteration. The
simplest choice is to add a fixed number ∆n1 = · · · = ∆nimax

, ∆ni := ni − ni−1,
of basis vectors in each iteration. More adaptivity is obtained if the module PSD (•)
chooses the number of basis vectors in each iteration based on the given residual.
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Algorithm 1: PSD-greedy algorithm based on a symplectic basis generation
technique PSD (•) that is supposed to fulfill the assumptions of Lemma 2.2.

Input: finite parameter set M ⊂ P, error tolerance rtol > 0,
snapshot-generation algorithm Xs : M → R2N×ns

Output: symplectic basis Vimax
∈ R2N×2nimax , number of iterations imax

1 E0 ← [ ], F0 ← [ ], V0 ← [E0,F0] . start with empty basis

2 i← 0
3 while ∃µ ∈M : ∆ (Vi, µ) > rtol do
4 i← i+ 1
5 µi ← argmaxµ∈M ∆ (Vi, µ)

6 Ri ← (I2N − Vi−1V
+
i−1)Xs(µi) . compute residual w.r.t. previous basis

7 V ext
i ← PSD (Ri) . compute extension

8 Vi ← extend(Vi−1, V
ext
i ) . extend basis ’symplectically’, see Eq. (2.2)

9 end
10 imax ← i

Lemma 2.2. Consider R ∈ R2N×nR . We assume that PSD (R) returns a ROB
represented by V ext ∈ R2N×2mV ext for an arbitrary mV ext ≤ N which fulfills

1. V ext is a symplectic matrix and
2. colspan (V ext) is a subspace of colspan (R).

Let X ∈ R2N×nX , nX ∈ N. For every symplectic matrix W ∈ R2N×2mW , the
extended matrix U := extend (W , V ext) is a symplectic matrix if V ext = PSD (R)
with R = (I2N −WW+)X.

Proof. With Lemma 2.1, it is sufficient to show W TJ2NV
ext = 02mW×2mV ext

since W and V ext are symplectic matrices by assumption. Due to assumption (2) on
V ext, there exists a matrix C ∈ RnX×2mV ext such that we can express V ext = RC.
With the identity

W TJ2NWW+ (1.3)
= W TJ2NW JT2mW

W TJ2N
(1.2)
= J2mW

JT2mW
W TJ2N

(1.1)
= W TJ2N ,

it indeed holds

W TJ2NV
ext = W TJ2N (I2n −WW+)XC = 02mW×2mV ext .

The symplecticity of all matrices Vi in Algorithm 1 follows from Lemma 2.2 with
induction over the iteration index i. The induction basis holds since for i = 1 the
ROB V1 = V ext

1 is symplectic by assumption 1 of Lemma 2.2.

3. Numerical experiments. As numerical example, we inspect a linear elastic-
ity problem parametrized by the Lamé parameters and a parameter for external forces
collected in the parameter vector µ := [λL, µL, Fmax] ⊂ R3

>0 for a three-dimensional
domain Ω ⊂ R3. The governing Hamiltonian PDE with the Hamiltonian function

HPDE(u,w;µ) =
1

2

∫
Ω

%-1 ‖w‖22 + 〈σ(u;µ), ε(u)〉F dξ, % ∈ R>0 fixed,

is solved for the unknown displacement and momentum u,w : It × Ω → R3 for
appropriate boundary conditions, where

σ(u;µ) = λL trace (ε(u)) I3 +2µLε(u) ∈ R3×3, ε(u) =
1

2

(
∇ξu+ (∇ξu)

T
)
∈ R3×3
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are the stress and the strain tensor and 〈•, •〉F is the Frobenius inner-product, i.e.
the summed element-wise products. The domain Ω imitates a simple fusiform muscle
(see Figure 3.1). An external load is applied in axial direction on the right boundary.
The parameter domain P is based on the parameters given in [12] with

λL ∈ [6e4, 1.2e5] N/m2, µL ∈ [6e3, 1.22e4] N/m2, Fmax ∈ [0.49, 5.89] N

and a fixed density ρ = 1059.7 kg/m3. The time interval is It := [0, 0.5]s. Although
the mechanics are too simple to build a realistic muscle model, we investigate how
well the Hamiltonian formulation and symplectic MOR are potentially suited for the
reduction of the mechanical part of three-dimensional muscle models.

We use the Finite Element Method [6] with 1920 first-order Lagrangian elements
to discretize the equations, which results in a (time-dependent) Hamiltonian system
(1.4) with the quadratic Hamiltonian function

H(x, t,µ) =
1

2
xTHx+ xT

[
−f(t,µ)
0N×1

]
, H(µ) :=

[
K(µ) 0N
0N M -1(µ)

]
, (3.1)

where K(µ),M(µ) ∈ RN×N are the stiffness and the mass matrix and f(t,µ) ∈ RN
is the vector of external forces with N = 15, 066.

The Hamiltonian system is discretized equidistantly in time with nt = 1000 time
steps with the implicit midpoint rule [10]. This method is a symplectic time integra-
tion scheme and preserves quadratic invariants like the quadratic Hamiltonian (3.1).
The use of a symplectic integrator in combination with symplectic MOR is imperative
to preserve the symplectic structure throughout the whole simulation pipeline, which
enables preservation of the system energy or stability [17, 14].

The experiments are conducted in the MOR framework pyMOR [15]. The special
architecture of this open-source software makes use of highly abstract interfaces which
allows a seamless integration with external PDE solver libraries. In our experiments,
we used the bindings to the Finite Element software package FEnics [13].

We present two experiments which investigate (a) the training and (b) how well
the trained models generalize to parameter vectors that are not included in the train-
ing set. We use the L2(It,R2N ) norm with an Hfix-weighted norm in space

‖x(t)‖2L2,Hfix
:=

∫
It

‖x(t)‖2Hfix
dt, ‖x(t)‖2Hfix

:= (x(t))
T
Hfixx(t),

where the integral over time is approximated with the composite trapezoidal rule and
Hfix := H(µfix) is a weighting matrix for a fixed parameter vector µfix ∈ P such that

λL = 80 690 N/m2, µL = 8 966 N/m2, Fmax ≈ 3.83 N.

−2 0 2 ·10−2
−0.60.6

·10−2

−6
0

6
·10−3

x
y

z

Fig. 3.1. Discretized Fusiform-muscle-shaped domain Ω in blue and boundary traction (Neu-
mann values) as dark red arrows.
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Table 3.1
Greedy MOR techniques used in the experiments. Classified by orthogonality and symplecticity.

Greedy MOR technique abbreviation ortho. sympl. ref.

POD-greedy with PODG 3 7 [9]
Hfix as inner product matrix

Based on symplectic Gram–Schmidt sGSG 3 3 [14]

PSD-greedy with PSD (•) submodule:

PSD Complex SVD PSDG cSVD 3 3 [17]

PSD SVD-like decomposition PSDG SVD-like 7 3 [3]

The bases are compared with the absolute and the relative reduction error

eabs,i(µ) := ‖x(t,µ)− Vixr,i(t,µ)‖L2,Hfix
, erel,i(µ) :=

eabs,i(µ)

‖x(t,µ)‖L2,Hfix

, (3.2)

where x(t,µ) ∈ R2N is the solution of the FOM and Vi ∈ R2N×2ni , xr,i(t,µ) ∈ R2ni

are the ROB and the solution of the reduced model of the ith greedy iteration.
In both experiments, we investigate four different greedy basis generation tech-

niques (see Table 3.1). These include the POD-greedy (PODG) with Hfix as inner
product matrix, two PSD-greedy (PSDG cSVD and PSDG SVD-like) and the existing
symplectic greedy approach (sGSG). The subindex (•)G indicates that all of them
are greedy methods. The two PSD (•) submodules investigated for the PSD-greedy,
PSD complex SVD and PSD SVD-like decomposition, are chosen based on our ob-
servations in [3]. Both methods fulfill the assumptions of Lemma 2.2. The PSD
complex SVD computes a minimizer of the symplectic projection error (1.5) in the
set of orthogonal, symplectic ROBs and is, thus, chosen to investigate the perfor-
mance of PSD-greedy with orthogonal, symplectic compression techniques. The PSD
SVD-like decomposition is the only basis generation technique that computes a non-
orthogonal, symplectic ROB. It is used to examine the behavior of PSD-greedy with
non-orthogonal, symplectic compression techniques.

As training set M ⊂ P, a 4×4×4 Cartesian grid is used. Each iteration 2∆ni = 2
vectors are added. The termination condition is set to leave the greedy algorithm after
imax = 30 greedy iterations, which results in a ROB of dimension 2nimax

= 60.
The results of the training experiment are presented in Figure 3.2 with the max-

imum absolute reduction error (3.2) over all 64 training parameter vectors µ ∈ M .
We observe that PODG is not able to reduce the problem without introducing big
errors whereas all symplectic methods show a decreasing error. The decline is mostly
monotonic which means that the incrementally extended reduced models do improve
the reduction error in every iteration. We observe a stagnation of PSDG cSVD for
i > 10 with a maximal absolute error of 10−3. The other two symplectic methods,
sGSG and PSDG SVD-like, are able to further decrease the error. The PSDG SVD-like
outperforms the other methods for all i > 1, which is underlined by an improvement
of one order of magnitude for i ∈ {6, 7}. This matches the observations of our work
in [3]. In line with those results, the superiority is assumed to stem from removing the
requirement of orthogonality of the ROB, which poses less constraints on the basis
generation and leaves more leeway for the ROB to adapt to the data more precisely
with less basis vectors.
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Fig. 3.2. Maximum absolute reduction error over 64 parameter vectors for training.

In the second experiment, we consider 100 random parameter vectors µ ∈ P \M
that were not used in training. The results are presented in Figure 3.3 in terms of the
relative reduction error (3.2) of 15 ROBs Vi with ROB size 2ni. Boxplots are used
to visualize the statistics of the relative error (3.2) for the 100 random parameter
vectors, where the whiskers indicate the minimum and maximum relative error. The
observations of the training transfer directly to the test results. This means that the
symplectic methods do not only perform well on the training parameter vectors but
are able to generalize to random parameter vectors in the parameter domain. Except
for PSDG cSVD, the decline of the mean value of the relative error is in most of
the cases monotonic. The superiority of the non-orthogonal PSDG SVD-like basis
generation technique also transfers from the training to the test experiment. With
ROB sizes 2ni ≥ 12, the median of the relative error of PSDG SVD-like is always
below 1% relative error which occurs for sGSG with 2ni ≥ 32. This means, the new
PSDG SVD-like is able to reduce the ROB size by a factor of 2.6 compared to sGSG

while achieving the same relative error.
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Fig. 3.3. Statistics of the relative error over 100 random test parameter vectors.

4. Summary and outlook. We presented a new greedy algorithm, PSD-greedy,
to compute a symplectic ROB, which is relevant for structure-preserving MOR of
parametric Hamiltonian systems. It adopts the idea of POD-greedy to use compres-
sion methods in each greedy iteration to enrich the reduced-order basis. We proved
that it is sufficient to use symplectic methods for compression in order to compute a
symplectic basis. The numerical experiments showed that improvements of up to one
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order of magnitude in the relative reduction error are achievable with the new basis
generation technique compared to the existing greedy approach.

Further work should analyze the convergence rates of symplectic greedy algo-
rithms. This is not straightforward since convergence results for greedy algorithms
available in the literature rely on the orthogonality of the ROB [9, 14], which is not
required by our algorithm. Furthermore, error estimators should be used in a next
step to avoid the expensive evaluation of the full-order model during greedy iterations
in order to find the parameter with maximum error.
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